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ON THE ANALYTIC STRUCTURE OF CERTAIN

INFINITE DIMENSIONAL TEICMULLER SPACES

TAKEO OHSAWA

Introduction

It is well known since long time that quasiconformally different finite

Riemann surfaces give rise to biholomorphically nonequivalent Teichmϋller spaces

except for a few obvious cases (cf. [R], [E-K]). This is deduced as an application of

Royden's theorem asserting that the Teichmϋller metric is equal to the Kobayashi

metric. For the case of infinite Riemann surfaces, however, it is still unknown

whether or not the corresponding result holds, although it has been shown by F.

Gardiner [G] that Royden's theorem is also valid for the infinite dimensional

Teichmϋller spaces. On the other hand, recent activity of several mathematicians

shows that the infinite dimensional Teichmϋller spaces are interesting objects of

complex analytic geometry (cf. [Kru], [T], [N], [E-K-K]). Therefore, based on the

generalized form of Royden's theorem, one might well look for further insight into

Teichmϋller spaces by studying the above mentioned nonequivalence question.

In the present article, we shall restrict our attention to the connected sum of

infinitely many finite Riemann surfaces and show that, if their flecks are sufficient-

ly long at infinity, one can naturally associate to each quasiconformal equivalence

class of such surfaces the cofinal equivalence class of a sequence of nonnegative

integers which distinguishes the infinitesimal forms of the Teichmϋller metric (cf.

Proposition 3.3). For that we shall show in section one, that the space of integr-

able holomorphic quadratic differentials decomposes asymptotically as the surface

is pinched along a simple closed geodesic to two hyperbolic surfaces (cf. Theorem

1.5). The proof of this fact relies on the method of solving the 9-equation with L

estimates as developed by [A-V], [0-1,2] and [D] on complete Kahler manifolds.

This, combined with an elementary argument on the quasi-isometric equivalence

of normed vector spaces, allows us to distinguish the infinitesimal forms of the

Teichmϋller metric by the direct summands at infinity of the space of integable
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quadratic differentials. As a consequence we shall conclude that there exist un-

countably many nonequivalent Teichmϋller spaces.

As a related result we must mention a very recent work of C. Earle and F.

Gardiner [E-G] that provides the distinction of Teichmϋller infinitesimal forms in

the case of topologically finite Riemann surfaces.

The author thanks to H. Tanigawa, J. Noguchi and S. Mukai for stimulating

conversations. He also thanks to M. Taniguchi, C. Earle and J. Bland for useful

comments.

§1. Asymptotic decomposition theorem

Let R be a (connected) Riemann surface. In what follows we assume that R is

hyperbolic, i.e. it admits the unit disc Δ = {z G C | | z | < 1} as the universal

covering space. We shall denote by πR a covering map Δ —• R. By dσR we denote a

Hermitian metric on R uniquely determined by the equation

* , 2 _ dzdz
πR °R~ ( l - U I 2 ) 2 '

We shall denote by dμR the volume form of R with respect to doR. Given any sec-

tion ω of the multi-canonical bundle KR

 m(m ^ Z), \co\R will denote the (point-

wise) length of ω with respect to the fiber metric of KR induced from dσR. For

any continuous function φ : /?—>R and for any p ^ 1, Lm(R, φ) will stand for

the Banach space of measurable sections u of KR satisfying

j e~φ\u\*RdμR< oo.

We put

II u \\Ptφ = ( j Γ e~Φ I u \P

R dμR)

for any u €= Lm(R, φ). We shall not refer to φ if φ = 0. In the later argument we

shall use those φ for which π φ(z) — log (1 — | z | ) is a subharmonic function

on Δ. By the symbol d we mean the complex exterior derivative of type (0,1)

acting on LP

m(R, φ) in the sense of distribution. Our main concern is to know how

geometry of R is embodied in the Banach space structure of Am(R) : = Lm(R) Π

Ker d . Applications to Teichmϋller spaces in mind, we shall only study

A2{R) below, although we shall need certain information on A2(R, φ) by a tech-
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nical reason.

First let us consider the annuli

Δ(rv r2) := {z e C \ r, < \ z\ < r2) (0 < rλ < r2 ^ oo).

For any ω ^ A2(Δ(rv r2)) we consider its Laurent expansion

ω(z) — ( Σ ckz )dz

and put

(Jΰ+\Z) = ( 2 J ckz )az

ω ( V k\ J <g>2

A;<-2

ωo(z) = c_2z~2dz®2

Without loosing generality we may assume that rλ = r2 , since

Δ(rlf r2) — Δ{\jrι/r2) {r^JV^).

LEMMA 1.1. There exists a constant C such that, for any ε ^ (0,1) and for any

r e (θ,"2"j the following inequalities hold for all a) ̂  A2(Δ(r, r ) ) .

(1.1) X ( o , ε - i ) | ω + i " C r β | | ω | | i

(1.2) J i |ω_ | < CrΊlωHi

(1.3) J _ I ω01 < Cε || ω 1̂

Proof Let θr:Δ(r,l)—*Δ(r,r ) be a biholomorpic map given by

# r(z) = * / r . Then

II = f 1 0 *I II Γ I a *
I ω Hi = J I 0 r ω

and

(1.4) X o ^ - J ω + l = X(o^) '^ ω + |

/I \ 2

From the assumption 4|-r, I] <^ Δ(r , 1). Hence
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(1.5) f \θ*ω\\duΔ<CΛωl

for some constant Cv since the Z, -norms are all locally equivalent for holomor-

phic functions.

Clearly

(1.6) f \θ*ωJ2duΔ< f \θ*ω\\duΔ.

Moreover, by Cauchy's inequality and the maximum principle, there exists a con-

stant C2 such that, for any holomorphic function / on 4(0,1) with a pole of order

at most one at 0, the inequality

i/ωι2<c2ur f
fΔ (1/3,1/2)

holds for any z G Δ\0,iς\.

Combining (1.4) through (1.7) one immediately gets (1.1). The inequality (1.2)

is reduced to (1.1) by the inversion £—• z"1.

In view of (1.1) and (1.2), (1.3) is a consequence of the equality

rrl"di, r'1 dt
1 t +

t

I d[ 1 -

'ri- t

For simplicity we set

JS(r) = C-z~2dz®2 c Al(Δ(r, r"1)) for any r > 0

and define a bijective linear map Γ r from A2(Δ(r, r~ )) to ^42(4(0, r~ )) Θ

A2(Δ(r, °°)) ®JS(r) by Γ r(ω) = (ω+, ω_, ω0). Then as an immediate consequ-

ence of Lemma 1.1, we obtain the following decomposition theorem.

THEOREM 1.2. For any ε > 0 there exists an r > 0 such that

(1.8) (1 ~ ε) || ω \\x ^ \\ Tr(ω) \\x ^ (1 + ε) || ω \\x

for all ω e A2(Δ(r, r~ ) ) . Here the L -norm \\ ||x o/ Tr{ω) is defined as the sum of

those of the components.
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We shall generalize Theorem 1.2 from the annuli to those Riemann surfaces

that are pinchable to two hyperbolic surfaces. For that we first recall the follow-

ing (cf. [0-2] or [D]).

THEOREM 1.3. Let M be a complex manifold of dimension n that admits a com-

plete Kahler metric and let (E, h) be a positive Hermitian line bundle over M. Then,

for any q > 0 and any d- closed (n, q)-form υ on M which is square integrable with

respect to d — \J— 1 991og h and h, there exists an (n, q — \)-form u on M such

that du = v and \\ u \\hθ ^ || υ | | M . Here || | | M denotes the L -norm with respect to h

and θ.

Applying this to Riemann surfaces we shall prove a lemma which generalizes

the property (1.1) of the correspondence ω—• α>+.

Let R be any hyperbolic Riemann surface of the form R \ {p} for some

Riemann surface R and p ^ R, and let z be a local coordinate around p which

maps a neighbourhood D of p biholomorphically onto the unit disc. We put Dr' =

{q^ D\ \z(q) I < r) for r^ (0,1). By pr we shall denote the restriction map

from^O?) to Al(R\Dr).

LEMMA 1.4. For any r ^ (0, -Q) one can find a continuous linear map φr from

A2(R\Dr) to A2(R) so that {φr}re(0,i/9) satisfies the following.

φr°pr = id for all r.

(1.10) There exists a constant C3= C3(R, D, p) such that for all ε ^ (θ, -w

with ε log r < — log 3,

/ _ I φr(ω) — ω I + I I φr(ω) \ ̂  C3ε || ω ||x
JR\Drε

 JDrε\{p}

holds for all ω e A\(R\Dr).

Proof We fix any point pf on dD1/2 and a covering map 7Γ from Δ onto R

satisfying ττ(O) = pf. Then we define a real-valued continuous function φ on R by

φ(q) = sup log(l — \ z | 2 ) .

Clearly φ is continuous and enjoys the following two properties.
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(1.11) There exists a constant C4 such that

C^φiq) < dist(^', q) ^ CAφ(q) for any q e i?, where dist(^, q) denotes

the distance between pr and q with respect to doR.

(1.12) VCΓT(d97Γ*0 +

( i - U l τ
As a consequence of (1.11) we have

(1.13) f eil+η)ΦdμR<oo for any η > 0.

Let χ :R—>R be any C°° function satisfying χ | ( - oo, 1/3) = 0 and χ \ (1/2, oo)

= 1. Then we define φr as follows.

Given any ω G A2(R\Dr) we define a UΓΛ -valued (0,l)-form v on i? by

v= ί (ω~ ^l^\^)+)9χ(UI) on D\Dι/3

[0 otherwise.

Since the pointwise norm of 9 χ ( | z | ) is bounded by const*dist(dD v ΘZ)1/3), ap-

plying Lemma 1.1 to estimate the norm of ω — (ω\ D\Dr) + from above, we

obtain by a straightforward application of the Cauchy-Schwartz inequality,

(1.14) sup y ^ ±ίC51 log r Γ
ωΨQ ω

for some constant C5 which depends only on dist(dDlf dDί/3).

Regarding υ as a KR-va\\ied (l,l)-form on R and applying Theorem 1.3 for

M = R by utilizing the curvature inequality (1.12) with respect to the regulariza-

tions of φ that approximate φ from above (cf. [Ri]) we obtain a section u of KR

over R satisfying

du = υ

(1.15) u ± Ker 3
U 1112,30/2 ==

Then we put

ί(α)|Z?\5f)+ + χ( | z | ) (ω-(ω |Z)\5 r ) + )-« onZ)\{/)}
Φλ<O) l ω + ( χ ( | z | ) - l ) ( ω - ( α > | Z ) \ ^ + ) - « on R\Dι/3.

The desired estimate for Φr{ω) — ω and Φr(ω) follows directly from (1.2),

(1.3), (1.14), (1.15) and
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f I I <T II II ( Γ 3 0 / 2 , \ 1 / 2

J \u\ύ\\u \\2,3Φ/2[J e dμR .
JR \JR I D

To provide a situation under which we can generalize Theorem 1.2, let

R{ (i = 1, 2) be two hyperbolic Riemann surfaces of the form R{\ ip), and let z{:

D{-^ Δ be local coordinates around p{. Then for any r^ (0,1) we define a

Riemann surface R[r] by patching i? ^\ {| zt | ^ r} along D{\ ί| ^ | ^ r} via the

correspondence

q • z2

ι(r/z1(q)).

We put D{(r) = {q e R.\ | z{(q) \ < r}. Then the following generalizes Theorem

1.2.

THEOREM 1.5. For any ε > 0 ί/i£f<? exist an r0 > 0, depending on ε and

distOD d ) , dDjil/3)) (i= 1,2), and a bijective linear map ΣJr from A2(R[r]) to

A\(RX) ®A\(R2) ®JS(r) satisfying

(1.16) (1 - ε) || ω \\, ̂  || ΣΓr(ω) \\x ^ (1 + ε) || ω ^

for all ω G Aι

2{R[ή).

Proof Let D^r) = {q ^ R{\ \ z{(q) \ < r). By Lemma 1.4 there exist a con-

stant C6 and continuous linear maps Φir from A^RiXDjir)) onto A2(Rt) for r e

0, -q) such that

(1.17) Γ _ I Φir(ω) - ω, I + Γ | Φir(ω{) I ̂  C6ε || ω{ \
JR>\Ώi{re) JDi{Ύε)\{pi)

for all ω, e A^iR^D^r)) provided that r e (0, exp(-( log3)/ε)) .

Then we put

3Tr{ω) =

By (1.17) ?Γr satisfies (1.16) for sufficiently small r. In particular, ΐf r is then in-

jective and the image of ?Tr is closed. Therefore the surjectivity of !Tr will follow

from the assertion that, for any (ωv ω2, ω3) in A2(R1) ® A2(R2) @ A{y[r) there
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exists an ω e A^(R[r\) such that

\SΓr{ω) - (ωl9 ω29 ω3) \\λ < j \ \ (ωlf ω2, ω3) \\v

For that one has only to repeat the argument in the proof of Lemma 1.4. The de-

tail is thus left to the reader. Π

Note that the above R[r] is uniquely determined by the triples i(Rif Dif

Zj)}i=12 and r. To make this dependence more explicit, we shall denote R[r] by

(Rlf Dlf zj # r(R2, D2, z2). We note that one may take r0 = const * min(dist

OA(1), 9A(l/3)), dist(9Zλ>(l), 9Z)2(l/3)) exp(-(log3)/e)).

§2. Quasi-irreducible decomposition of normed vector spaces

Let (Lo || | | ω ) (i = 1, 2) be normed vector spaces. For any (vv v2) €= Lγ 0

L2 we put

II (vlt υ2) Hi = || # ! ||(1) + II υ21|(2)

and

II (vί9 υ2) L = m a x ί l l v11|(1), || z ; 2 1 | ( 2 ) } .

We shall call the normed vector space (Lx Θ L2, || Hj) (resp. (LA Θ L2, || D )

the 1-direct sum (resp. the °°-direct sum) of (Lly \\ ||(1)) and (L2, || | | ( 2 ) ). For any

K^ 1, a bijective linear map Φ : Lι^
y L2 is said to be a if-quasi-isometry if

i f" 1 1| v ||(1) ^ || Φ(v) ||(2) ^ i ί | | f ||(1) for all v G Lx. By an abuse of language we

shall call the quantity

i ιι(1)), α 2 , II U ) (^to ,^] )
: = infOogifl there exists a iί-quasi-isometry between (Lif \\ | |ω)}

the distance between (Lly \\ ||(1)) and (L2, || | | ( 2 ) ). A normed vector space

(L, || ||) will be said to be 1-if-irreducible (resp. °° -Jί-irreducible) if L Φ {0}

and L is not if-quasi-isometric to the 1-direct sum (resp. the °° -direct sum) of

two nontrivial subspaces of L equipped with the induced norm. Moreover we say

that (L, || ||) is purely 1-if-irreducible (resp. purely °° -^-irreducible) if every

(nontrivial) subspace of L is 1-if-irreducible (resp. °°-if-irreducible) in the above

sense. The following is obvious from the definition.
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PROPOSITION 2.1. If 1 ύ dim!, < °° and the subset {v e L | || υ || = 1} is a

C -smooth hyper surface of L, then there exists a K > 1 such that L is both purely

1-K-irreducible and purely oo-K-irreducible.

For any finite Riemann surface R, as is well known A2(R) is finite dimension-

al and the unit sphere of A\(R) is (^-smooth (cf. [F-K], [R], [E-K]). Accordingly

we have the following.

PROPOSITION 2.2. For any finite Riemann surface R with Al

2(R) Φ iO), there ex-

ists a K > 1 such that A2(R) is purely 1-K-irreducible.

COROLLARY 2.3. Under the above situation the dual space of A2(R) is purely

oo-K-irreducible for the same K.

For any countably many normed vector spaces {(Lif || | | ( ί ) )} ι e N we put

®% = {/ e π Lt I 11/11, := Σ || Λ | |ω < <*>}

and

θ % = {/ e ΠL, I II / IL : = sup || /, ||(<) < ~ ) .

Here f{ denotes the i-th component of /

THEOREM 2.4. Let K <Ξ (1, ψΣ) and let {(Li7 \\ | | w ) } < e N , {(L'i9 || U } ί e N te

ίî 6> sequences of finite dimensional normed vector spaces such that @c°Li and ®°°Lf

i

are mutually K-quasi-isometric. Suppose that (Lt, \\ \\ω) and (Uif \\ \\'ω) are all purely

oo -K -irreducible. Then there exists a bijective map r : N — > N such that

(Lιf || | | ω ) and (Lf

τ{i), || | £ ω ) are mutually K -quasi-isometric for all i ^ N.

Proof. For simplicity we shall suppress the subscripts for the norm. Let Ψ :

®°°Li -^ Θ°°L^ be any UT-quasi-isometry. For any i e N and for any u ^ L{

satisfying || u \\ = 1 we put

Ψ(u) = Σ vJf vj e L).
iN

~Since Ψ is a Jί-quasi-isometry we have iΓ~ ^ sup || z;y
Let us put
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Ψ'Hvj) = Σu[, u[(ΞLk.

Clearly || u[ || ^ τ^if2 ^ if"2 if k Φ i, so that

κ~2 < sup ιu; ιι ̂  if2.
y

In particular there exists a such that if"2 ύ \\ Vj || ^ K and if ~3 ^ || wj || ^ ϋC .

Let us take another #' <Ξ L. with || u'\\ = 1 and / e N such that if"2 ^ || t^ll

^ if2 and if"3 ^ || u'l || ^ if3. Here v\ and w^ are defined similarly as vβ and ŵ .

Then j and / must be equal because Lt is purely °°-if -irreducible.

Hence the map

U,

is well-defind and gives a K -quasi-isometry onto a subspace of L).

Interchanging and role of Lt and Z/; we have a if -quasi-isometry from L)

onto a subspace of Lt for the same z and . Since dim L{ and dim L) are finite, it

follows that Ψ{ is surjective. Thus we may p u t ; = τ(i). D

§3. Non-equivalence of TeichmuUer spaces

Let {Rj}^^ be a sequence of finite and hyperbolic Riemann surfaces of the

form R1 = Rx\ {pj and R{ = Rf\ ipif q^} for i ^ 2. Here pt and qi_ι are dis-

tinct points of Rj. We choose any local coordinates zt :Di—^ A (resp. wt: i^ -"* 4)

around ^ (resp. ^) so that i)^ Π E^ = 0 for all i ^ 2.

Then we put % = (Rif (Dif *,), (£,_!, ^ . i ) ) where (£ 0 , w0) : = 0 , | Λf | =

i?, and

Given any sequence r = {ft } ί e N c: (0,1) we define Riemann surfaces 91 ̂ [r], in-

ductively on i, by defining Sl^lr] = i?j and

Λ a m M = (^,W, A, z{) #riRi+v Eif wt).

We then define $l[r] as the inductive limit of {^ s ί W} ί e N

Letting 9tiΛ = ($l+ι, (J)M, z,+ι), 0 ) , %, = (%l+j, (Di+j, zi+j), (Ei+j, wl+i))

for j ^ 2,
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and r>{ = iri+j}jGN we put 9t>t[r] = 9ί>i[r>i].

Note that

We shall call 91 a decorated sequence of Riemann surfaces and 9ί[r\ the

r-connected sum of 91. 9i{ shall be referred to as the i-th component of 91.

Once for all we shall fix 91 and r. Then, for any Riemann surface R' which is

if-quasiconformally equivalent to 9l[r], one can find a decorated sequence 91' =

{/?,'} ί e N and a sequence r' = <r/} ί e N ^ (0,1) satisfying the following properties.

(3.1) 9l'[r'] is conformally equivalent to R''.

(3.2) \9l\\ is iΓ-quasiconformally equivalent to | 91J for every i.

(3.3) rf < r't ̂  rf'\

In fact, this is a consequence of two obvious facts that the quantity mr - — — log r

attached to Δ(r, 1) satisfies

K~ιmr ^ mr ^ iίm y

if 4(r x , 1) and A{r2f 1) are iί-quasiconformally equivalent to each other, and that

any ϋί-quasiconformal homeomorphism from Δ(rv 1) to Δ(r2, 1) is extendable to

a ϋί-quasiconformal automorphism of C \ {0} by iteration of the reflections along

the circles centered at 0.

THEOREM 3.1. Let 91 be any decorated sequence of finite and hyperbolic Riemann

surfaces. Then there exist two sequences r= {r{}, ε = {εf} c: (0,1) with lim^^

(r{ + εf) = 0 such that, for any quasiconformal deformation (91', r') of (91, r) one can

find a j e N such that for all K N , A\(9l'zj+k[r']) are purely 1 — (1 + εj+k)
3-

irreducible and A2(9ί'[r']) (resp. A2(9ΐ>j+k[r'])) is (1 + εj+k)-quasi-isometric to

A\m<,i+kVr'λ) Θ Aι

2(%'>i+k[r']) Θ C (resp. (&£Ut'i+k+J) Θ ll

c). Here lι

c denotes
the space of absolutely summable sequence with values in C.

Proof. The assertion is a routine consequence of Theorem 1.5 and Proposi-

tion 2.2. The detail is left to the reader. D

Let 91 be as above and let 9tt be its ί-th component. If the Riemann surfaces

i G N, consist of only finitely many conformal equivalence classes, then we
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can choose r and ε independently of the order of ^t{ (i έ 2), i.e., letting $τ' =

^r(/)^/eN ^ o r a n y bijective map r : N — » N satisfying r ( l ) = 1, they can be re-

quired to satisfy the same condition as above for all 9lτ. Moreover, in this situa-

tion, we can require that all the components A2(Rf

J+k+m) are purely 1 ~ (1 +

εj+k) -irreducible. The following is then deduced from Theorem 2.1.

PROPOSITION 3.2. Under the above situation, 9l\_r\ and 9tτYr\ are not quasiconfor-

mally equivalent if two sequences {dimi4 2( | $ ? | ) } ί e N and {dirrii4.2(| $τii) | ) } / e N are

cofinally non-equivalent.

Let 3Γ(9l[r\) denote the Teichmuller space of 9i[r]. In virtue of Gardiner's

theorem, the tangent space of STORM) at the point [($!>], id)] e ST(!ΆM) is

isometric to A2(R[r]) with respect to the Teichmuller infinitesimal form (cf. [G,

Theorem 3.5]). It is also known from the work of Gardiner that any biholomorph-

ism between Teichmuller spaces is an isometry with respect to the Teichmuller

metric (cf. [G, Corollary 2.1]). Hence we have also the following consequence of

Theorem 3.1.

PROPOSITION 3.3. Under the above situation, ΣT(dlM) and 2T(9lτM) are not

biholomorphically equivalent whenever {dim A>(| $ t |)} and {dim A2(\ 9tτ(t) |)} are cofi-

nally non-equivalent.

As an immediate corollary to Proposition 3.3 we obtain the following.

THEOREM 3.4. There exist uncountably many biholomorphically non-equivalent

Teichmuller spaces.

Furthermore, if r and ε are sufficiently rapidly decreasing, then the

(1 + εj) -quasi-isometry between A2(Mf

ύj\.r\) and A2(Mf^\jr\) will imply

iίy-quasiconformal equivalence between dl^jM and dl'^lr'] with lim Kj = 1.

Therefore we see that our r can be chosen so that the existence of a biholomorphic

automorphism σ of ^(#[>]) with σ([($[r] , /)]) = [ ( # Ί > ' ] , g)] forces ΆM and

ίR'lr'] to be are conformally equivalent.

Under the above situation it is clear that, for any pointy ^ ΣT(91M) one can

find a locally closed submanifold 3Γ' c: ΣT(91M) of arbitrarily large dimension

passing through p, and a neighbourhood U ^ p, such that every biholomorphic

automorphism σ of 2T(ΛM) satisfies σ(p) ^ T\ U.
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According to the work of Earle and Gardiner [E-G] it is known that any biho-

lomorphic automorphism of the Teichmϋller space of a topologically finite Riemann

surface with non-empty border is induced from a quasiconformal homeomorphism

between conformally equivalent surfaces. Combining this fact with the above

observation we obtain

PROPOSITION 3.5. Under the above assumptions on 9Ϊ and r, fΓ(3i[r\) is not biho-

lomorphically equivalent to the Teichmuller space of any topologically finite Riemann

surface.
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