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A SIMPLE CONSTRUCTION OF EXPONENTIAL BASES IN L2

OF THE UNION OF SEVERAL INTERVALS

by KRISTIAN SEIP

(Received 23rd September 1993)

It is proved that every space L2 (/, u / 2 ) , where / , and 12 are finite intervals, has a Riesz basis of complex
exponentials {eilkX}, {Xk} a sequence of real numbers. A partial result for the corresponding problem for n g 3
finite intervals is also obtained.
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1. Introduction

Riesz bases of complex exponentials in the space L2(I), where / is a finite interval of
R, have been thoroughly explored since the possibility of nonharmonic Fourier
expansions was discovered by Paley and Wiener [7]. A complete theory is exposed in
the fundamental paper [3], the basic result of which is the necessary and sufficient
condition for basicity obtained by Pavlov [8].

From the point of view of communication theory, it is natural to ask for a solution of
the corresponding problem of basicity when the one interval is replaced by a union of
disjoint intervals / ^ ^ . . . u / , . The problem is then to find those sequences
A = {Xk} ™= _ a, of real numbers for which the exponential systems

£(\) = {eUkX: kke\)

form Riesz bases in L2(/j u / 2 u . . . u / n . Restated in the terms of signal processing, the
matter is to find those sampling sets A which yield both stable and non-redundant
sampling of corresponding multiband signals; we refer to Landau's (by now) classical
paper [5], which also gives a rigorous explanation of the meaning of the "Nyquist rate"
in this connection.

Little seems to be known about this problem; in fact, existence of Riesz bases of
complex exponentials in L 2 ( / 2 u / 2 u . . . u / J for n^2 has so far been established only
in very special situations. The most general result available appears to be that such
Riesz bases exist whenever the intervals /1 , / 2 , . . . , / n have commensurable lengths. This
result can be proved by the methods of the recent paper [2], as pointed out by the
authors; it can also be proved by means of another approach, originally used by
Kohlenberg in a less general situation [4,6].

In this paper, we construct Riesz bases of complex exponentials with other constraints
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on the intervals. Firstly, we confirm that such bases do exist in every space L2(/, u / 2 ) .
Secondly, we prove existence of bases in L2(/2 u /2 u . . . u /„) under certain (nondiscrete)
conditions on the gaps between the intervals.

Aside from an application of Avdonin's theorem [1], our approach is quite
elementary. It is strongly felt that the restrictions we make, as well as those concerning
commensurability, reflect our insufficient understanding of the problem rather than
genuine obstacles. We can see no reason why exponential bases should not exist in
every space L2(/2 u /2 u . . . u /„).

2. Construction of exponential bases on two intervals

The solution of the existence problem for « = 2 is provided by the following theorem.

Theorem. Let ai<b1<a2<b2, where a1,b1,a2,b2 are otherwise arbitrary real
numbers. Then there exists a subsequence, say A = {lfc}"=_c0, of the sequence
{2nm/(b2—a1)}^=^!B such that the exponential system <f(A) is a Riesz basis in

It is clear that the problem is invariant under simultaneous dilations and translations
of the intervals [a , ,^] and [_a2,b2~\. We may therefore assume (for convenience) that
b1=n and a1(b2 — a2)——n. Since we restrict attention only to exponentials which are
(b2—ai)-periodic and since

[-^,7t] = [a1 ,b1]u[a2-(fc2-a1) , b2-{b2-al)~],

we may equivalently consider the problem of finding a Riesz basis in the space
L2( — n,n). For, if (?(A) is a Riesz basis in L2( — n,n) with dual basis {gk}, then S{\)
(restricted to [fli.fci] u [a2,fe2]) is a Riesz basis in L^a^b^ u [a2,b2]) with dual basis
{hk}, where

Thus, our theorem is equivalent to the following lemma.

Lemma. For every ae(0,1), we can find a subsequence, say A = {Ak}£L-a), of the
sequence {am}^>=_00 such that the exponential system <?(A) is a Riesz basis in the space
L2(-n,n).

The lemma is an immediate consequence of Kadec's 1/4-theorem [9, p. 42] if
0 < a < 1/2, since then we can find a sequence A satisfying

\JLk-k\£a/2<l/4
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for every integer k.
The case of rational a is also easy. Then we may use the fact that the union A of p

mutually disjoint translates of the sequence {?&}"=_„ is a sequence of the desired type
(see [3]). With a = p/q and p and q relatively prime integers (0<p<q), we may clearly
extract such a subsequence A from {am}™= _„.

The problem is more delicate for irrational a in the range l/2<a<l, and here it
seems necessary to use more advanced tools. We shall base our argument on an
important theorem due to Avdonin (see [1] and [3, p. 251]). The following statement is
a special version of Avdonin's theorem: Let kk = k + dk and suppose the sequence {Xk} is
separated, i.e., \n{J¥:k\Xj—Xk\ >0. If there exist a positive integer N and a positive
number d < 1/4 such that

<dN

for all integers m, then the system S{A) is a Riesz basis in L2( — n, n).
Let us now see how to pick from {am} the points ^miv+i,̂ mjv+2.--.̂ (m+i)jv> with N

chosen so that Avdonin's theorem applies. We require these points to lie in the interval
[mN+1/2, (m + l)N +1/2). Letting Smin(wi) and Smax(m) denote respectively the smallest
and largest possible value of the sum

we have

Z
k=mN+l

and

Therefore, if choosing N^(l— a)"1, we have

and it follows that the Xk may be chosen so that

k=mN+l 'TN'

With these choices of N and the Xk we are done, in view of Avdonin's theorem.
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3. Construction of exponential bases on nS3 intervals

The argument above which allowed us to reduce the original problem to a problem
concerning one interval, can be generalized to yield some information about the
corresponding problem for n intervals. We obtain rather severe restrictions on the
lengths of the intermediate gaps; however, since we avoid discrete conditions, we find
our observations noteworthy.

We shall need the following elementary fact about Riesz bases (see [9, p. 32]): A
sequence of vectors {/„}"= i in a separable Hilbert space #P is a Riesz basis in J? if and
only if the sequence {/„} is complete in Jf and there exist positive constants A and B
such that for every finite sequence of scalars cuc2,.--,cN we have

we refer to the largest possible A and the smallest possible B as the bounds of the Riesz
basis {/„}.

We introduce the auxiliary function

n(x) = 1 —cos-x + sin-x

and prove the following proposition.

Proposition. Let E be a compact subset of R with left end-point a0 and right end-point
b0, and suppose that the exponential system S(\) (A = {Ajk}"=_co) is a Riesz basis in
L2(£u [ao—{b—a),a0]) with bounds A and B. Then ifbo<a<b and

[B (. a-bo

\J A \Hmi7
J A \ b-ao

there exists a subsequence, say A' = {A.'k} "=_«,, of the sequence {m2n/(b—aQ)} such that the
exponential system S{\') is a Riesz basis in L2(£u [a,b~]) with bounds A' and B' satisfying

A'^(l-n)2A and B'£(l+n)2B.

We may argue that our problem is translation and dilation invariant in such a way
that we may assume (for convenience) that bo = n and a0—(b—a)= — n. Since we
consider only exponentials which are (b—a0)-periodic, we may equivalently consider the
problem of obtaining a Riesz basis in the space L2(E'), where £' = £ u [ —7t,a0]. For
each integer k, we pick a k'ke{m2n/{b—a0)} such that

b-a0 2\ b-a0
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We now apply the Paley-Wiener stability criterion [9, p. 38], considering
(A' = { î}) as a perturbation of the given basis <?(A) in L2(E'). In other words, we need to
prove that for some /*< 1 and all finite sequences of scalars {ck}, we have

\\LHE-)
(1)

Put 5k = kk — k'k and write

— ei>kX)

We expand each of the functions l—e'SkX in the same ingenious way as done by Kadec
in his proof of the 1/4-theorem and follow his estimates step by step (see [9, pp. 42-44]).
This gives us (1) with \i as in the Proposition; the procedure is verbatimly as in [9, pp.
42-44] (to which we refer for details), except that we have to take into account the non-
orthogonality of the given basis by using the estimate

L.HE') LHE')

at a certain point in the proof.
Two applications of the triangle inequality to (1) give us the estimates for A' and B',

and this completes the proof of the Proposition.
Let us now apply the proposition to obtain a result for n ^ 3 intervals.

Corollary. Let n^3, suppose we have al<bl<a2<b2< ... <an<bn, and put

;= max

If

then there exists a subsequence, say A' = {A|k}t>=_c0, of the sequence {m2n/(bn

that the exponential system &(A') is a Riesz basis in the space L2(\Jn
J=l[aj,bj]).

To prove this assertion, we argue as follows. Define

— ax)} such

for7 = 1,2,...,n so that, in particular, we have
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= \ai- E (bi-ailbA and £„= Q [a,,fej.
L 1=2 J i = i

Observe that for each j = 2,3,...,n, the Proposition applies to L2(£,) with a = a}, b-bj,
[ao-(b-a),ao] = Ej-1, and

b-a0 bj- fli+X"=;+i(*>.—"«)'

It follows that we may start with an orthonormal exponential basis for the space L2(Ei),
apply our Proposition recursively, and thereby obtain a basis for L2(£n), provided the
numbers

are sufficiently small. More precisely, define

let /iJ denote h composed with itself _/ times, and check, by a straightforward argument
based on repeated use of our Proposition, that it is sufficient that

for all_/ = 0, l,...,n — 2. Since h is invertible on the interval (0,1) and the inverse function
h~l satisfies

for xe(0,1), we obtain from this condition the conclusion of the Corollary.

4. Two remarks

If we observe that

j=2

it becomes apparent that the bases constructed in the proofs of both the Theorem and
the Corollary depend only on the total measure of the set Ui=i[a>^j] an<* o n t n e
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lengths of the gaps between the intervals. In other words, the individual lengths of the
intervals have no influence on the construction. This is a curious fact when comparing
with the requirement, mentioned in the introduction, about intervals of commensurable
lengths.

Let us finally observe that our approach may be adapted to the special case of
symmetrical "multiband regions", which is a reasonable situation to consider from a
practical point of view. As an example, let

E = \_-b2, - a 2 ] u \_-auai] u [a2,fc2]

with 0<a1<a2<b2- Then repeating the arguments of the proof of the Theorem and
assuming that b2 — a1<a2 — au we obtain that for some subsequence, say A, of the
sequence {2nm/(b2 + al)}) the system S(A) is a Riesz basis in L2(£). A similar
modification can be made in the Proposition and in the Corollary.
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