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ELLIPTIC INTEGRALS AND LIMIT CYCLES

A.M. URBINA, M. LEON DE LA BARRA, G. LEON DE LA BARRA AND M. CANAS

By using zeros of elliptic integrals we establish an upper bound for the number of
limit cycles that emerge from the period annulus of the Hamiltonian XH in the
system X, = XH + e{P,Q), where H — y7 + x* and P, Q are polynomials in x, y,

( N . \
as a function of the degrees of P and Q. In particular, if (P,Q) = I ^a.ix',0 I

\i = 2 )

with N = 2k + 1 or 2* + 2, this upper bound is Jfc - 1.

1. INTRODUCTION

Since the source work of Poincare [2] polynomial vector fields have received great
attention.

In this context, Hilbert's famous 16<fc problem, concerning the maximum number
and positions of Poincare boundary cycles (that is, limit cycles) for polynomial differen-
tial equations of the first order and degree remains open even for the case of quadratic
differential equations.

In this work we consider a family of polynomial vector fields Xe = XH + e(-P> Q)
where Xo = XH is the Hamiltonian field corresponding to the Hamiltonian function
H(x,y) = y2 + x4 .

By using zeros of elliptic integrals (Theorem 1) we establish an upper bound for
the number of limit cycles that emerge from the period annulus of XH as a function of
the degrees of P and Q.

Next, we apply this result to a related family of Lienard's equation Xe (x,y) =
/ N \

XH + e ^ a{Xl,0 1 and we obtain for N = 2fc + l,2fc + 2, that at most ifc - 1 limit

cycles emerge from the periodic trajectories of XQ (Theorem 2).

Elsewhere [7] we studied this Lienard's equation and we proved that there is t > 0
such that for 0 $J e ^ e", Xc(x,y) has no separatrices in a neighbourhood of the origin
and we found an upper bound for the maximum number of small amplitude limit cycles
that emerge from the origin under the above perturbation of XH •
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2. MELNIKOV'S DEVIATION

Let Xe = XH + e(P, Q) be a one parameter family of vector fields, where Xo =
XH is a Hamiltonian vector field corresponding to H(x,y) — y2 + x4 and P, Q are
polynomials in x and y.

Let 53 = ]0> s[ X {0} be a transversal section to the vector field Xo.
Melnikov's deviation for the family Xc, with respect to 53 ls:

d(x,e) = h(x,e)-x, x G

for £ small enough and h the Poincare return map.
The zeros of d(—, e) correspond to the periodic orbits of Xe which intersect J^.
If (dd/de)(xo,0) = 0 and (d2d/dxde)(x0,0) ^ 0 then a corollary of the Im-

plicit Function Theorem implies the existence of e > 0 and a unique smooth function
P : ]-e,e[ —> £ such that /?(0) = x0 and d(/3(e),e) = 0 for all e G ]-e,e[. Moreover,
if xo is a simple zero, then /3(e) is also a simple root of d(x,e) = 0 (Bifurcation Lemma,

[I])-
We use the normalised displacement function for Xo :

F(x,e) =4x3d(x,e)

Obviously, for x f 0, tf(/3(e),e) = 0 if and only if F(0(e),e) = 0.
The derivative (dF/de) (x,e) has an integral representation (Melnikov's integral

[1]) given in our case by (dF/de) (x,0) = /0
T(x'0) (2yQ + 4x3P)dt, where T(x,0) is

the minimum positive t required for the trajectory T starting at (x,0) to return to £)>
x = x (f(t)), y = y (i(t)) and 7 (t) is the integral curve corresponding to F.

The above integral is an elliptic integral in Cartesian coordinates.
Several authors have done interesting research on the zeros of this type of elliptic

integral with respect to some specific Hamiltonian functions H [3, 4, 5, 6, 8].
We proceed now to establish some results on elliptic integrals related to our case .

3. ZEROS OF ELLIPTIC INTEGRALS

Let A1 be the space of polynomial forms of order 1, that is,

A1 = {w = P(x,y)dx + Q(x,y)dy | P,Q polynomials }.

In A1 the following equivalence relation is denned:
u>1 ~ u>2 <̂  o>i — u»2 — AdH + dB where A, B are polynomials in two variables

x and y and H(x,y) — y2 + x4.

https://doi.org/10.1017/S0004972700015641 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015641


[3] Elliptic integrals 197

Let fi — A 1 / ~ be the quotient space and let [w] denote the equivalence class of
the 1 —form u>.

There is a natural modulus structure on R [h] given by

p(h) M =
with P a polynomial.

It is easily shown that u>i ~ u>2 implies JH=h &i — Jfj=h W2'

LEMMA 1 . The ciasses of the forms Wj = x' ydx,j — 0,1,2 generate the modulus

n.
PROOF:

(i) It is clear that

[xk y2t dx] = [x*k yl dy] = [xk y2t+1 dy) = 0 V f c , ^ N 0 .

(ii) The following relation is easily proved by induction on k,l 6 No

0 j = 3

if Jfe + £ > 0.
(iii)

[a;4*^ y " dy] = if hk+i [wj-i] V fc, ^ G No and j = 1,2,3,

where

and X = - j if ifc + ^ = 0.

This case follows from

d*

and (ii). D

LEMMA 2 . For w G A1 antf degree w = n, we have

where

Pi(fc)6R[&] 1 = 0,1 ,2 , d e g P 0 < [ ^ ] , deg Pi < [ ^ ] - l , i = 1,2.

https://doi.org/10.1017/S0004972700015641 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015641


198 A.M. Urbina, M. Leon de la Barra, G. Leon de la Barra and M. Caiias [4]

PROOF: Let w = £ aijx
iyj ) dx + I £ fcyscV I dy. By Lemma 1,

\i+j=o ) \i+j=o )

[w] =

In order to estimate the degrees of the P{(h) i = 0,1,2 it is enough to cal-
culate the coordinates of the classes [yndx],[x2yn~2dx],[xyn~2dx] if n is odd, and
[x yn~1dx], [yn~1dx], [x2yn~3dx] if n is even, with respect to the basis {[u>Q], [u>{\ [w2]}. D

Let us consider now the real functions

/,-(&)= / «,-,i = 0,1,2.

The following relations are easily proved:

LEMMA 3 . If h^ 0 then

h = 0; I0(h) = |wj(fc); I2(h) = jh I'2{h).

THEOREM 1. Let w e A1 be an n-degree form and h ^ 0. Tien tie number of
positive zeros of the function Iu{h) = JH=hw is at most 2 • [n/2]

PROOF:

/«(fc) = Po{h) Io(h) + Pi(h)h(h) + P2(h)I2(h).

From Lemma 3 we obtain I0(h) = c0h
3/i; I2{h) = c2/is/4 c0, c2 > 0. Then Iw(h) =

h3/4(c0P0(h) + c2/i1/2P2(ft)). with degPo(fc) ^ [n/2] and degP2(A) ^ [n/2] - 1 and
the theorem follows. Q

COROLLARY. The maximum number of periodic trajectories in the period an-
nulus of XH at which a continuous family of limit cycles emerges in the system
Xe = XH + e(P, Q), where H(x,y) = y2 + x* and P, Q are polynomials is at most
2 [n/2], with n= max {deg P, deg Q}.

4. LIMIT CYCLES OF SOME LIENARD'S EQUATIONS

Let now Xc(x,y) = X}j{x,y) + e I J^ a» x*•> 0 ) with H = y2 + x* , be the family
\i=2 )

N . s

corresponding to Lienard's equations x = e/(a;) x — 4zs, where 5Z a> z* — /o / ( u ) ^u-
»=2

We have proved that for e small enough this family has no separatrices in a neigh-
bourhood of the origin and if aj = 0 for all i odd, Xe has a centre at the origin. We
have established the maximum number of small amplitude hmit cycles that bifurcate
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from the origin in term of N and if the coefficients ai,i odd, satisfy certain relations,

this maximun is attained. (Moreover, we have generalised these results for H = y2 + x2n

[7]-)

Now we prove:

THEOREM 2 . The maximun number of periodic orbits in the period annulus of

XJJ at which a continuous family of Hmit cycles emerges in the system Xe is k —

1 forJV = 2Jfe + l,2Jfe + 2 .

P R O O F :

— («, 0) = - / V atx'dy = P0{h) h + P2{h)I206 JH=h 7T5

= h3'4(coPo(h) + c2h}l2P2{h)} co,c2 > 0

where, for k even we have:

> g
and for k odd

(*+l)/2

1=2 i=l

If we make the substitution h = z2 then (dF/de)(x,0) = z*l2Q{z) where 1 <
fc in both cases and (dF/de)(x,0) has at most k — 1 positive zeros. D
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