
Can. J. Math., Vol. XXVIII, No. 5, 1976, pp. 1032-1050 

CYCLIC ELEMENT THEORY IN CONNECTED AND 
LOCALLY CONNECTED HAUSDORFF SPACES 

B. LEHMAN 

1.0. Introduction. G. T. Whyburn, in 1926, began the development of 
cyclic element theory for Peano continua. This theory proved fruitful in the 
study of Peano spaces and a comprehensive development of the theory for 
metric spaces was presented in [6]. An excellent history of the theory is to be 
found in [4]. In [7] and [5] the generalization of cyclic element theory to more 
general spaces was begun. However, in each of these papers only basic defini­
tions were set forth and fundamental results obtained. In this paper, we con­
cern ourselves primarily with connected and locally connected Hausdorff 
spaces, developing the cyclic element theory initiated in [7] and demonstrating 
that the theory has many of the applications to connected and locally con­
nected Hausdorff spaces that the classical theory has to Peano spaces. We note 
that we generalize many of the results from Chapter IV of [6] and that there­
fore the organization of this paper is closely related to the organization of that 
chapter. In fact, we might say that the purpose of this paper is to "rewrite" 
for connected and locally connected Hausdorff spaces the cyclic element 
theory presented in [6]. 

1.1. Preliminaries. Several of the following definitions are found in [7], and 
all are generalizations of definitions stated in [6]. Let M be a connected 
topological space. A point p of M is a cut point of M if and only if M — p is 
not connected. A point p of M is an end point of M if and only if p has a 
local base of open sets with singleton boundaries. Two points a and b of M are 
said to be conjugate in M (ua is conjugate to b in M") if and only if no point 
of M separates a and b in M. For a, b £ M, E(a, b) denotes the collection of 
all points of M which separate a and b in M. (It follows that a and b are 
conjugate if and only if E(a, b) = 0). There is a natural (linear) order " < " on 
E(a, b) KJ {a, b} defined by a < x, x < b for all x £ E(a, b)\ a < b, and if 
x, y £ E(a, b) then x < y if and only if x £ E(a, y). The order < on 
E(a, b) KJ {a, b] is called the cut point order on E(a, b) VJ {a, b}. A subset E 
of M is an £0-set of M if and only if E is nondegenerate, connected, has no cut 
point of itself, and is maximal with respect to these properties. A cyclic element 
of M is a subset of M which either consists of a single cut point or end point of 
M or is an £0-set of M. An ^4-set of M is a closed subset of M such that 
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M — A is the union of a collection of open sets each bounded by a single point 
of A. If a, b are points of M, C{a, b) denotes the intersection of all A -sets of M 
which contain both a and b, and the set C(a, b) is called the cyclic chain in M 
from a to b. 

Note. For the rest of this paper, unless stated otherwise, UM" denotes a non-
degenerate connected and locally connected Hausdorff space. 

T h e following results have been established in [7]. 

a) If a, b £ M, then E(a, b) \J {a, b} is closed and compact. 

b) If s/ is a collection of A -sets of M, then f\s/ = 0 or is an ^4-set of M. 

c) A nonempty closed set A is an A -set of M if and only if each component 
of M — A has exactly one boundary point. 

d) If A is an ^4-set of M, and if Z is a connected subset of M, then i H Z i s 
connected (possibly e m p t y ) ; thus every A -set of M is connected and locally 
connected. 

e) If a and b are distinct conjugate points of M, then C(a, b) = {p £ M : p 
is conjugate to both a and b), and in this case, C(a, b) is an £ 0 -set of M. 
Further , if C is an E0-set of M and a, b are distinct points of C, then a and b 
are conjugate in M and C = C(a, b). 

f) Any two £0-sets of M have a t most one common point. 

g) For any two points a, b of M, C{a, b) = E(a, b) \J {a, b} W C, where C 
is the union of all £0-sets of M which meet E(a, b) U {a, b\ in exactly two 
points. 

Fur ther , the next two results were established in [5]. 

h) If E\ and E2 are distinct £0-sets of M and intersect, their intersection is a 
cut point of M and Ex C\ E2 separates Ei — E2 and E2 — Ei in M. 

i) If a, b G M and E is an E0-set of M, then £ meets E{a, b)\J {a, b] in a t 
most two points. 

1.2. T H E O R E M . If a, b G M, then the sub space topology on E{a, b) \J {a, b) is 
the order topology relative to the cut point order. 

Proof. If E(a, b) = 0, then E(a, b) U {a, b} is discrete with either topology. 
Assume then, tha t E(a, b) ^ 0. I t is well known tha t in general the order 
topology on E(a, b) \J {a, b) is a Hausdorff topology tha t is weaker than the 
subspace topology. (See, for instance [9, p. 206]). I t then follows from 1.1-a 
tha t both topologies are compact Hausdorff so are identical. 

2.0. Eo-sets a n d t h e c o n j u g a c y re la t ion . Since we shall have occasion to 
refer to several of the results in this section and since they were not stated in 
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either [5] or [7] we state them here. However, in many cases we omit the easy 
proofs. We note also that most of these results are generalizations of theorems 
that are known for metric spaces (see [6, Chapter IV]). 

2.1. LEMMA. If x is an end point of M, S a nondegenerate connected subset of M, 
and x Ç S, then x is an end point of S. 

2.2. LEMMA. If M has no cut point, then M has no end point. 

2.3. LEMMA. If Z is a connected subset of M and p and a are conjugate in Z, 
then p and a are conjugate in M. 

2.4. LEMMA. NO E0-set of M contains an end point of M. 

2.5. LEMMA. If A is an A-set of M and C is a component of M — A, then C is 
an A-set of M. 

Proof. If D is a component of M — C, then d(D) = d(C). 

2.6. THEOREM. Of the following statements, if a connected subset A of M 
satisfies a), then A satisfies b): 

a) If E is a cyclic element of M and A P E is non-degenerate, then E C A. 
b) If x, y Ç A and N C M is an irreducible continuum from x to y, then 

N CA. 

Proof. Suppose A is connected and satisfies a). Suppose further that 
x, y Ç A, N is an irreducible continuum from x to y, and t £ N — A. Since 
x, y £ A and A is connected, E(x, y) U {x, y] C A. Thus if an £0-set E meets 
E(x, y) \J {x, y) in two points, then E C\ A is nondegenerate and so by assump­
tion E C A. It follows that C(x, y) C A. In M — C(x, y), let Ct be the com­
ponent which contains /, and let z = d(Ct). Then z G N.li z (f_ {x, y), then x, y 
lie in components Cx, Cy respectively, of M — (Ct W z). But then CX\J z and 
Cy \J z are ,4-sets, so x and y belong to (N Pi ( C , U 2 ) ) U (N P (Cy U z)), 
which is a proper subcontinuum of N. Thus z G {x, y} and we may assume 
z — x. But now in M — (Ct \J z) if Dy is the component containing y, then 
N P (Du U z) is a proper subcontinuum of N and contains x and y. It follows 
that TV C A. 

2.7. COROLLARY. / / E is an E0-set of AI and a, b £ E, then E contains every 
continuum N C M such that N is an irreducible continuum from a to b. 

2.8. COROLLARY. / / a and b are conjugate in M and N C M is an irreducible 
continuum from a to b, then every point of N is conjugate to both a and b in M. 

2.9. LEMMA. If E\, E2 are distinct Eo-sets and N is a connected set which meets 
Ei and £2 , then E\ P E2 C N. 

2.10. LEMMA. If A is an A-set of M and R is a component of M — A, then R 
meets at most one EQ-set E which meets A. 
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Proof. Suppose Ei, E2 are distinct E0-sets which meet both R and A. Let 
{b} = d(R). Then b G Ex C\ E2. But by the above lemma, E1 H £ 2 C R- This 
is a contradiction since b £ A. 

2.11. LEMMA. Z^/ £ ôe aw £ 0 - ^ of M and C a component of M — E. If b £ M 

such that either b(zE— Corb(£E and d(Cb) 9^ d(C), where Cb is the com­
ponent of M — E containing b, then E C C(a, b) for all a in C. 

Proof. If b G E - C a n d a G C, let [t\ = 3(C). Then t ^ b and / G £ ( a , 6). 
T h u s b y l . l - i , £ n (E(a, &) U {a, b}) = {t, b} a n d E C C(a, 6). Suppose, then, 
t ha t b (L E and d(C6) 7̂  d(C) . Let 2 = d(C6) , and a G C Then C is a com­
ponent of M — t and is disjoint from (E — t) \J Cb, which is connected. Thus 
t G E(a,b). Similarly, z G E(a, b). Thus E C\ (E(a,b) U {a,b}) = {t,z}, so 
E C C(a, 6). 

2.12. T H E O R E M . If M is locally compact and p G M such that p is neither a 
cut point nor an end point of M, then there is a point q in M distinct from p and 
conjugate to p in M. 

Proof. Suppose p is not a cut point and is not conjugate to any other point 
of M. Let 0 be any open set such tha t p G 0 and 0 9^ M. Let V be a connected 
open set such tha t p G F, F is compact, and V C 0. For each x G d ( F ) , let Gx 

be a connected open set containing x such tha t p G C^. {G^ : x G 5(F)} covers 
the compact set d ( F ) , so there is a finite subcover G^, . . . , Gx . Since M — p 
is connected and locally compact, for each i = 1, . . . , n — 1, there is a 
cont inuum TV* in M — p such tha t x f , x*+i G TV,. Let N = (M - V) 
W U?Ii TV, U U?=i £*,-. Then TV is closed and £ G TV. Since M - F C TV, 
M - N C V and £ G M - TV. Let C be the component of M - TV such t ha t 
p G C. Now C has a boundary point g in TV. By assumption, p and q are not 
conjugate in M, so there is a point x oî M and a separation (£/, IF) of M - x 
such tha t £> G £/, g G W. Since C U g i s connected and contains both p and g, 
x G C; thus x G TV. Since TV is connected and q G TV, TV C W. T h u s U C M -
N C V C 0 and d(C7) = {x}. I t follows tha t p is an end point of M. 

The next theorem follows immediately from 2.12 and 1.1-h. 

2.13. T H E O R E M . / / M is locally compact, then every point p of M belongs to a 
cyclic element of M, and if p is neither a cut point nor an end point of M, then p 
belongs to a unique cyclic element of M that is an E0-set of M. 

3.0. H - s e t s . In [6, p. 72] Whyburn defined an H-set in a metric semi-locally 
connected continuum M to be a connected subset of M which satisfies the 
following condition: 

(*) If p G H, then there is a cyclic element E of M such tha t p G E and 
E CH. 

H-sets were shown to have many of the properties of A -sets, and the closure of 
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an H-set was shown to be an A -set. However, in the nonmetric setting, it may 
be that for some connected set Hr every point is contained in a cyclic element E 
of M such that E C H, H is not an A -set and H fails to have several of the 
properties that H-sets were shown in [6] to possess. It is readily seen that in 
case M is a metric semi-locally connected continuum, the following definition is 
equivalent to that given in [6]. Again we note that many of the results in this 
section are generalizations of results established in [6]. 

3.1. Definition. A connected subset H of M is an H-set of M if and only if H 
satisfies one of the following conditions: 

a) H = {p} for p a cut point or an end point of AT. 
b) H is nondegenerate and if a, b £ H, then C{a, b) C H. 

Remark. Since for any two points a and b of an A -set A of M, C(a, b) is the 
intersection of all A -sets of M which contain a and b, C(a, b) C A. Thus every 
nondegenerate A -set is an H-set, as is any A -set which consists of a single cut 
point or end point of AT. It follows that every cyclic element of AT is an H-set 
of AT. 

3.2. THEOREM. If His an H-set of M and E is an Eo-set of AT such that H C\ E 
is nondegenerate or contains a non-cut point of AT, then E C H and is an Eo-set 
ofH. 

Proof. If H r\ E is nondegenerate, let s, t be distinct points of H P\ E. Then 
E = C(s, t) C H. Suppose now that H C\ E contains a point p that is a non-
cut point of M. Then by 2.4, p is not an end point of AT, so H is nondegenerate. 
Let x G H such that x •=£ p. If x <E E, then E = C(p, x) C H. If x g £ , then 
there is a point / G EsuchthaU Ç E(£, x ) a n d £ H (E(p, x) VJ {£, x}) = {p,t}. 
Thus E C C(p, x) C TJ. In either case, E C H. Further, since E is maximal in 
AT with respect to the properties of being nondegenerate, connected, and 
having no cut point of itself, E is maximal in H with respect to these properties; 
thus £ is an E0-set of H. 

3.3. COROLLARY. Every Eo-set of an H-set of M is an EQ-set of AT. 

3.4. COROLLARY. A nondegenerate, connected subset H of M is an H-set of M 
if and only if whenever E is an EQ-set of M such that H f~\ Eis nondegenerate, then 
ECH. 

Proof. Necessity is immediate from 3.2. Suppose then that if E C\ H is 
nondegenerate for an £0-set E of M, then E C H. If a, b £ H, since H is con­
nected, E(a, b) VJ {a, b} C H. Thus if an £0-set E meets E(a, b) KJ {a, b} in 
two points, H P\ E is nondegenerate, so by assumption, E C H. It follows 
from 1.1-g that C(a, b) C H, so H is an H-set of AT. 

3.5. COROLLARY. If M is locally compact, H an H-set of AT, and p Ç / / , then 
there is a cyclic element E of M such that p £ E and E C H. 
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3.6. COROLLARY. If H is an H-set of M} x, y Ç H, and N is an irreducible 
continuum from x to y, then N C H. 

Proof. We may assume x ^ y. By 3.2, H satisfies a) of 2.6, so N C H. 

3.7. THEOREM. If H is an H-set of M and H C H0 C ÏÏ, then H0 is an H-set 
of M. Further, if M is locally compact, then every point of H — H is either a cut 
point or an end point of M. 

Proof. If H is degenerate, the result is immediate. Suppose then that H is 
nondegenerate and x, y £ H0. Since H U {x, y} is connected, E(x, y) VJ {x, y} 
is contained in H U {x, y). If an E0-set E oî M meets E(x, y) VJ {x, y) in two 
points, then E must meet H in more than one point since E P (H \J {x, y) ) is 
connected. It follows from 3.2 that E (Z H \J {x, y}, so C(x, y) C H VJ 
{x, y} C Ho. Thus H0 is an H-set of M. 

The proof of the second part of the theorem is similar to the proof of 6.8, 
p. 73 of [6]. 

3.8. THEOREM, i j H is an H-set of M and Z is a connected subset of M, then 
H Pi Z is connected. 

Proof. Suppose H Pi Z 9^ 0 and (Zi, Z2) is a separation of H C\ Z. Let 
%i G Z^ i = 1, 2. Then C(zi, 22) C H, so (C(zi, 22) P Zi, C(zi, z2) P Z2) is a 
separation of the connected set C(zi, z2) P Z. Thus H C\ Z is connected. 

3.9. COROLLARY. Every H-set in a connected and locally connected Hausdorff 
space is a connected and locally connected Hausdorff space. 

3.10. COROLLARY, i j H is an H-set of M and Z is a locally connected (semi-
locally connected) subset of M, then H P Z is locally connected (semi-locally 
connected). 

3.11. THEOREM. / / H is an H-set of M, then H is an A-set of M. 

Proof. Let C be a component of M — H, and suppose p, q are distinct points 
of d(C). Then p, q G H, so H0 = H U {p, q} is an if-set of M. Since C \J {p, q) 
is connected, H0 P ( C U {£, g}) = {£, g} is connected. Since this is a contra­
diction and d(C) 9e 0, d(C) is a singleton. 

The proof of the next result is similar to that of 3.11. 

3.12. COROLLARY. If H is an H-set of M and C is a component of M — H, 
then C C\ H is a singleton. 

3.13. COROLLARY. If H is an H-set of M, C a component of M — H, and 
b = C P ÎÏ, then C — C\J b and C is an A -set of M. 

Proof. If C is degenerate, then C = {b} and the result follows. If not, then 
Int(C) — C — H = C — b, and it follows that d(C) = {b}. If R is a component 
of M - C = M - ( C U i ) , then 0 ^ d(R) C d(C) = {6}. 
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It was proved in [6] that if ffl is a family of H-sets of a semi-locally connected 
metric cont inuum M, and KJ^f is connected, then U ^ i s an H-set of M. I t is 
not difficult to see tha t this result does not hold in general. We have, however 
the following results. 

3.14. T H E O R E M . If HU H2 are H-sets of M and Hxr\H2^ 0, then Hl \J H2 

is an H-set of M. 

Proof. Since Hi Pi H2 ^ 0, Hi U H2 is connected. If Hi VJ H2 is degenerate, 
then Hi KJ H2 = Hi = H2 so is an H-set of M. Suppose, then, t ha t Hi U H2 is 
nondegenerate and E is an Eo-set of M such t ha t E P (Hi U H2) is non-
degenerate. Since E P (ifi U iï*2) is connected, either E C\ Hx or E, C\ H2 \s 
nondegenerate, so E (Z Hi or E ÇL H2. The theorem now follows from 3.4. 

3.15. COROLLARY. The union of two intersecting A-sets of M is an A-set of M. 

3.16. T H E O R E M . If ^f is a family of H-sets of M such that for every two members 
A, B of ffl, there is a finite collection A — Ho, Hi, . . . , Hn = B such that 
Ht P Hi+1 ^ 0, i = 0, . . . , n - 1, then \J^ is an H-set of M. 

Proof. I t is well known tha t under the hypotheses of the theorem \jffl is 
connected, (see, for instance, [2, p . 60]). If U ^ is degenerate, the result is 
immediate, so assume tha t \jffl is nondegenerate. If x, y G U^, and A,B G Jf7 

such t ha t x G A, y G B, let HQ, Hu . . . , Hn be members of ^f such t h a t 
A = H0, B = Hn, and Ht P Hi+i F^ 0, i = 0, 1, . . . , n - 1. I t follows from 
3.14 t ha t \JU Ht is an H-set of M, so C(x, y) C U?=i # * C U ^ . 

3.17. T H E O R E M . If J^f is a family of H-sets of M and f~)Jlf is nondegenerate or 
consists of a single cut point or end point of M, then Ç\ffl is an H-set of M. If M is 
locally compact, then every intersection of H-sets of M is an H-set of M. 

Proof. If Ç\ffl is a cut point or an end point of M then C\3rif is an H-set of M. 
Suppose t ha t C\^ is nondegenerate. Let a G C\^, and let x G C\^ such 
t ha t a 9^ x. Then for each H in J f , C(a, x) C H, so C(a, x) C P l ^ - I t follows 
t ha t C\^f is connected. Similarly, if x, y G Ç\tâ\ then C(x, y) C C\^f, so 
C\J? is an H-set of if . 

Now if M is locally compact and p G P ^ 7 such t ha t p is neither a cut point 
nor an end point of M, then p belongs to an £ 0 - se t E of M and p G E P i f for 
all i f in J ^ . T h u s for each H in J f , E (Z H, so E (Z C\ffl and the result now 
follows from the first par t . 

3.18. T H E O R E M . If His an H-set of M,x, y G H and X C M such that x and y 
lie in distinct components of H — X, then x and y lie in distinct components of 
M - X. 

Proof. If not, then x and y lie in a component C of M — X. Then C P H is 
connected, contains x and y and is contained in H — X; so x and y lie in the 
same component of H — X. This is a contradiction. 

3.19. COROLLARY. Every cut point of an H-set of M is a cut point of M. 
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3.20. COROLLARY. If His anH-setof M, A,B C.H, and X a closed subset of M 
such that X C\ H separates A and B in H, then X separates A and B in M. 

3.21. COROLLARY. If M is locally compact, H an H-set of M, and E a cyclic 
element of H, then E is a cyclic element of M. 

Proof. If E is an £0-set or a singleton cut point of if, then the result follows 
from 3.3 or 3.19. Suppose, then, E = {p}, p an end point of H. If p is neither a 
cut point nor an end point of M, then p belongs to an £0-set £* of M. By 3.2, E* 
is an £0-set of H. But then p is an end point of H belonging to an £0-set of H 
and this is a contradiction. Thus p is either a cut point or an end point of M so 
£ is a cyclic element of M. 

3.22. COROLLARY. Let H be an H-set of M. Then every nondegenerate H-set H* 
of H is an H-set of M. If M is locally compact, then every H-set of H is an H-set 
of M. 

Proof. If H* is nondegenerate, then so is H. If E is an £0-set of M such that 
E Pi H* is nondegenerate, then £ H if is nondegenerate, so E C H and E is an 
£0-set of H. Thus by 3.9 and 3.4, £ C H*. It follows that H* is an H-set of M. 
Now if M is locally compact and H* is degenerate, then by 3.21, H* is a cut 
point or an end point of M. 

3.23. COROLLARY. If A is an A-set of M and B is an A-set of A, then B is an 
A-set of M. 

3.24. COROLLARY. If a, b £ M, then C(a, b) contains no proper A-set of itself 
which contains both a and b; i.e., the cyclic chain in C{a, b) from a to b is C(a, b). 
Further, if t is a cut point of C(a, b), then t G E(a,b). 

3.25. THEOREM. / / H is an H-set of M, and Z is any connected and locally 
connected subset of M such that H C\ Z is nondegenerate, then H C\ Z is an H-set 
ofZ. 

Proof. Let E be an £0-set of Z such that E f~\ H C\ Z is nondegenerate. Then 
E CE* for some £0-set £* of M. Then £* C H, so E C E* H Z C H H Z. 
Thus if Pi Z is an H-set of Z. 

3.26. COROLLARY. If A is an A-set of M and Z is a connected and locally 
connected subset of M such that A C\ Z 7e 0, then A C\ Z is an A-set of Z. 

3.27. THEOREM. If a, b G M, then a and b are non-cut points of C(a, b), and 
if a and b are not conjugate in M, then C(a, b) — a — b is connected. 

Proof. Let D be the component of C(a, b) — a such that b G D. Then 
D = D U a is an A -set of C(a, b) and contains both a and b. Thus D U a = 
C{a, b), so C(a, b) — a = D, which is connected. Similarly, b is a non-cut 
point of C(a, b). 

Suppose now that a and b are not conjugate and that (U, V) is a separation 
of C(a, b) — a — b. Since C(a, b) — a is connected, {a, b] is an irreducible 
closed cutting of C(a, b) and therefore U U {a, b} is connected. Thus £ (a, b) U 
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{a, b) C U^J {a, b}. Now no £0-set contains both a and b, so if some £0-set E 
meets £ (a, b) U {a, b} in two points, it meets U. Since E — {a, 6} is connected, 
EC U U {a, 6}. It follows that C(a, 6) C C/ U {a, 6}, so V = 0. Thus 
C(a, b) — a — b is connected. 

3.28. THEOREM. Let A be a closed, connected subset of M. Then among the 
following statements, a)-c) are equivalent and c) implies d) ; if M is locally com­
pact, then a)-d) are equivalent and a) implies e). 

a) A is an A-set of M. 
b) If C is a component of M — A, then C C\ A is a singleton. 
c) If E is a cyclic element of M and A C\ E is nondegenerate, then E C A. 
d) If a, b Ç A, and N is an irreducible continuum from a to b, then N C A. 
e) If p £ A, then either p = A or there is a cyclic element E of M such that 

P G EC A. 

Proof. That a) and b) are equivalent was stated in [7], and that a) implies c) 
follows from 3.2 since every nondegenerate A -set of M is an H-set of M. 
Suppose that A satisfies c). If A is degenerate, then A is an A -set of M. If not, 
then by 3.4, A is an H-set and therefore an A -set since A is closed. Thus c) 
implies a). That c) implies d) is 2.6. 

Now assume that M is locally compact. We show that d) implies b). Let C 
be a component of M — A and suppose d(C) contains two points p and q. 
Since A is closed, C is a connected, locally connected, and locally compact 
Hausdorff space. Let Rp, RQ be disjoint open sets containing p and q, respec­
tively, such that Rp and RQ are disjoint continua, and let x, y be points of 
RP C\ C and RqC\ C respectively. Let NPtX be an irreducible continuum in Rv 

from p to x; NQtV be an irreducible continuum in RQ from q to y, and NXtV an 
irreducible continuum in C from x to y. Then NPiX U NXtV U NQtV is a contin­
uum containing p and q so contains an irreducible continuum N from p to g. 
By d), N C A. But this is impossible since then N C NPtX \J NQtV, and these 
are disjoint closed sets each of which meets N. Thus C C\ A contains at most 
one point, and since M is connected, C C\ A is a singleton. 

It remains to show that if M is locally compact, a) implies e). If A is non-
degenerate, and p is not a cyclic element, then p belongs to an £0-set E and the 
result follows from 3.2. 

Remark. It was shown in [6] that if M is a locally connected metric con­
tinuum, and A is a subcontinuum of M, then all five statements a)-e) are 
equivalent. We note that this is not true in general. 

4. Nodal sets, nodes and cyclic chains. 

4.1. Definition. A closed subset N of a space S is called a nodal set of S if and 
only if d(N) is at most a singleton. 

The next result follows easily from Definition 4.1. 

4.2. LEMMA. Let S be a 7\ topological space and N C S. Then 
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a) every singleton is a nodal set of S as are 0 and S; 
b) if N is a nodal set of S, then S — N is a nodal set of S; 

c) if S is connected and locally connected, and N is a nonempty nodal set of S, 
then N is connected; 

d) if S is connected, p £ S, and (Si, S2) is a separation of S — p, then S\ U p 
and S2\J p are nodal sets of S; 

e) if S is connected and locally connected, then if N is a nodal set of S, N is an 
A -set of S; 

f) if A d S, and N is a nodal subset of S, then N C\ A is a nodal set of A. 

4.3. Definition. A subset N of a connected space S is called a node of S if and 
only if either N = {p} for some end point p of S or À7 is an E0-set of S such tha t 
N is a nodal set of S. 

Remark. I t is immediate from the definition tha t if a connected TVspace S 
has no cut point, then 5 is a node of itself and the only nodal subsets of S are 
0, S, and the singletons of S. 

The proofs of the next two results are easy. 

4.4. T H E O R E M . Let N be a nondegenerate subset of M. If N = M, then N is a 
node of M if and only if M has no cut point. If N 9^ M, then N is a node of M 
if and only if N is an Eo-set of M and N contains exactly one cut point of M. 

4.5. COROLLARY. Every node N of M contains a non-cut point of M, and if N 
is nondegenerate, then every point of N distinct from the one boundary point of N 
is neither a cut point of M nor an end point of M. 

4.6. LEMMA. If N is a nondegenerate nodal subset of M, then either N contains 
a cut point of itself or N is an Eo-set and therefore a node of M. 

Proof. Suppose N contains no cut point of itself. If N = M, then M contains 
no cut point, so N is a node of M. If TV 9e M, there is a point p of M such tha t 
d(N) = {p}, and ( Int N, Ext N) is a separation of M - p. I t follows tha t if 
t Ç M — N, then p separates t and N — p; thus N is maximal with respect to 
being nondegenerate, connected, and having no cut point of itself. T h u s TV is a 
node of M. 

4.7. T H E O R E M . / / TVi, TV2 are distinct, intersecting nodes of M, then neither is 
degenerate and their intersection is a cut point of M. 

Proof. If TVi = [p], then p is an end point of M and p G TV2. But this implies 
t ha t N2 = {p} = TVi. I t follows tha t neither Ni nor N2 is degenerate and each 
is an Eo-set of M. By 1.1-h, iVi H N2 is a cut point of M. 

4.8. T H E O R E M . If x is a non-cut point of M belonging to a node N of M, then N 
is a node of every H-set of M containing x. 

Proof. Let H be an H-set of M containing x. If N = {x}, then x is an end 
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point of M. If H = {xj, then N = H and TV is a node of 72". If H is non-
degenerate, then by 2.1, x is an end point of if, so again N is a node of H. If TV 
is nondegenerate, then N is an Eo-set of AT and the theorem follows from 3.2 
and 4.2. 

4.9. T H E O R E M . If 77 is an H-set of M and C is a component of M — H, then C 
is a nodal A-set. 

Proof. By 3.12 and 3.13, C is an ,4-set and d(C) = d(C) = C H H is a 
singleton. 

4.10. T H E O R E M . Let N be a node of M and C(x, y) a cyclic chain in M. If 
N r\ C{x, y) contains a non-cut point of M, then one of x and y is a non-cut point 
of M that belongs to N. 

Proof. By 4.8, N C C(x, y). If N = {p}, then p is an end point of M, so 
p d E(x,y) and p belongs to no Eo-set of M. I t follows from 1.1-g tha t 
p Ç {x, 3;}. Suppose N is nondegenerate and p $ {x,y}. Then N meets 
E(x, y) U {x, y) in two points. But N contains a t most one cut point of M, so 
N C\ {x, y} contains a t least one non-cut point of M. 

4.11. T H E O R E M . If a, b are non-cut points of M which belong to distinct nodes 
of M, then C(a, b) is a maximal cyclic chain of M; that is, if C(a, b) C C(x, y), 
then C(a, b) = C(x, y). 

Proof. Suppose C(a, b) C C(x, y) and Na, Nb are distinct nodes of M 
containing a and b respectively. By 4.8, Na VJ Nb C C(a, b). By 4.10, 
x, y G Na U Nb and it follows tha t C(x, 3;) C C(a, b). 

The next result follows from the proof of Theorem 4.11. 

4.12. COROLLARY. If a and b are non-cut points of M which belong to distinct 
nodes Na and Nb, respectively, of M and C(a,b) = C(x, y), then x and y are non-
cut points of M and each of Na, Nb contains one of the points x, y and not both. 

4.13. T H E O R E M . If C(a, b) is a cyclic chain in M and N is a node of C(a, b), 
then a G N or b Ç N. 

Proof. I t follows from 3.24 tha t in C(a, b), if C*(a, b) is the cyclic chain 
from a to b, then C*(a, b) = C(a, b). Now N is a node of C(a, b) such t ha t 
N C\ C*(a, b) contains a non-cut point of C(a, b), so by 4.10, a £ N or b G N. 

4.14. T H E O R E M . If C(a, b) is a cyclic chain in M, then C(a, b) contains at most 
two nodes of itself. Also, if C(a, b) has two nodes, then E(a, b) ^ 0; and if M is 
locally compact and E(a, b) y^ 0, then C(a, b) has two nodes. 

Proof. Suppose t ha t C(a, b) has three nodes, iVi, iV2, and iV3. By 3.27, a and b 
sere non-cut points of C(a, b), and by 4.13, either a or b mus t lie in two of the 
sets Ni, N2, 7V3; bu t this contradicts 4.7. 
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Now suppose tha t C(a, b) has two nodes, Ni and N2. Then by 4.13, we may 
assume tha t a £ Ni. Since a is not a cut point of C(a, b), a d N2, so H N2. 
Then either N2 = {b}, (so b is an end point of C(a, &)), or in C(a, b),b £ Int(7V2). 
In either case £ ( a , 6) ^ 0. 

If M is locally compact, then C(a, b) is locally compact. Thus if neither a 
nor b belongs to an E0-set of C(a, b) then by 2.14, each is an end point of 
C(a, b), so {a} and {b} are distinct nodes of C(a, b). If a belongs to an E0-set 
Ei of C(a, b), then Ei is an £0-set of M which meets E(a, b) VJ {a, b) in 
exactly two points, one of which is a. Thus if E(a, b) ^ 0, b d Ei, so E\ meets 
E(a, b) in exactly one point. By 3.24, the set of cut points of C(a, b) is identical 
with E(a, b) and it follows tha t E\ is an EQ-set of C(a, b) containing exactly one 
cut point of C(a, b). Thus by 4.4, Ei is a node of C(a, b). Now if b is an end 
point of C(a, b), then N2 = {b} is a node of C(a, b) distinct from Ex. If not, 
then as in the case for a, b belongs to an E0-set E2 of C(a, b) and £ 2 is a node of 
C(a, b) distinct from E\. 

Thus far we have not demonstrated the existence of nodes in a connected 
and locally connected Hausdorff space M. The next theorem assures us of the 
existence of nodes in the case tha t M is a locally connected Hausdorff contin­
uum. 

4.15. T H E O R E M . If M is compact, then every nondegenerate nodal subset of M 
contains a node of M. 

Proof. Let N be a nondegenerate nodal subset of M. If M has no cut point, 
then N = M, and N is a node. Assume tha t M has a cut point. Then M is not a 
node and we may assume tha t N ^ M. Assume, further, t ha t N contains no 
nondegenerate node of M. We show tha t in this case N contains an end point 
of M. 

Let p e M such tha t d(N) = {p}. Let S? = {(x, C) : C is a component of 
M - x and C C Int(iV)}. Now, (Ext(N), Int(iV)) is a separation of M - p, 
so there is a component D oi M — p such tha t D C Int(iV). D = D U £ is a 
nondegenerate nodal subset of M and D ÇL N. By assumption, Z) is not a node 
of if, so D has a cut point x. Since £ is not a cut point of 5 , x ^ £. Since 5 is an 
A -set in M, x is a cut point of ikf. Let (£/, V) be a separation of M — x such 
tha t p (z U. Since (Jkf — N) KJ p is connected and contained in i f — x, 
(M - N) VJ p C Î7. Thus F C Int(iV). Let C be a component of M - x such 
tha t C C V. Then (x, C) G ^ \ so ^ ^ 0. 

Define a relation " > " on SP by (xi, Ci) > (x2, C2) if and only if C\ C C2. 
Let (xi, Ci) G ^ . Then Ci = Ci U Xi is a nodal subset of M and Ci C Int( iV). 
By assumption, Ci is not a node of M, and it follows as in the above paragraph 
tha t there is a cut point x2 of M and a component C2 of M — x2 such tha t 
x2 G Ci and C2 C Ci. Then (x2, C2) G ^ , and (x2, C2) > (xx, Ci). Thus the 
relation > is nonempty, and it is not difficult to show tha t > is a partial order. 
Fur ther , we have shown tha t ( ^ , > ) has no maximal element. 
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Let Ji be a maximal chain in [SP, > ) . Since {0*, > ) has no maximal 
element, ^é has no maximum element. Let C* = Pi {C : for some x G AT, 
(x, C) G ^ } . Since {C : for some x G AT, (x, C) G ^#} is simply ordered by 
inclusion and AT is compact, C* is nonempty and connected. Also, C* = Pi { C : 
for some x G AT, (x, C) G =^} ; for if / G C* and (xi, d) G ^ , then since 
(xi, C\) is not maximum in ^Jé, there is a member (x2, C2) of *Jt such that 
(x2, C2) > (xb Ci) and / G C2 C d . Thus C* C P {C : for some x G AT, 
(x, C) G ^ } C P \C : for some x G AT, (x, C) G ^ } = C*. Suppose C* 
contains a cut point t of AT. Let (U, V) be a separation of M — t such that 
p G [/. If (xi, Ci) G ^ , then M — Ci is connected, and p G A/ — Ci, so 
AT - d C t/ and F C Ci. Thus F C C*. Let D* be a component of M - t 
contained in V and consider the pair (/, D*) of SP. If (x, c) G *Jt then 
D* = D*U t C C, (t, D*) > (x, C). But then (t, D*) G ̂ a n d is a maximum 
element of *Jt, and this is a contradiction. Thus no point of C* is a cut point 
of M. 

Since C* is an intersection of A -sets of AT, C* is an ^4-set of AT. Then every 
cut point of C* is a cut point of AT, so C* has no cut point of itself. If C* is 
either nondegenerate or contains a point p which is neither a cut point nor an 
end point of AT, then for some £0-set E of AT, C* C E or p G E. In either case, 
E = C*. But by assumption, E is not a node of AT so contains cut points of AT 
and this is a contradiction. Thus C* consists of a single end point of AT. 

4.16. COROLLARY. If M is compact and has a cut point, then M has at least 
two nodes. 

4.17. COROLLARY. If M is compact, H is an H-set of AT, and C is a component 
of M — H, then C contains a point a that is a non-cut point of M belonging to a 
node of AT. 

Proof. Let b = C C\ R. By 4.9, C U H s a nodal set, so by 4.15, C\J b 
contains a node N of AT. By 4.5, TV contains a non-cut point a of AT and since b 
is a cut point of AT, a G C. 

4.18. THEOREM. If M is compact, then every point of M belongs to a cyclic 
chain C(a, b) of M where a and b are non-cut points of M which belong to nodes 
of AT, and if M has a cut point, then a and b can be chosen to belong to distinct 
nodes of AT. 

Proof. If AT has no cut point, the result is immediate; so assume that AT has a 
cut point and let x G AT. 

If x belongs to a node Ni of AT, let a be any non-cut point of AT belonging 
to Ni. Then there is a node N2 of AT distinct from Ni. Let b be any non-cut 
point of AT belonging to N2. Then a ^ 6 and iVi C C(a,b), so x G C(a,b). 

Suppose now that x belongs to no node of AT. We consider two cases. 
Case 1. x is a cut point of AT. Let (U, V) be a separation of M — x. Then 

U W x and V \J x are nodal subsets of AT and by 4.15 contain nodes Ni and 
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iV2 respectively. By 4.5, JVi and N2 contain points a and b, respectively, such 
t ha t a and b are non-cut points of M. Then a ^ b and a G C(a, b) C\ [/, 
5 Ç C(a, b) C\ V. Since C(a, b) is connected, x G C(a, 6). 

Case 2. x is not a cut point of M. Then since x belongs to no node of M, x is 
not an end point of M. Let E be the unique E0-set containing x. Then E is not 
a node, so E contains two distinct cut points of M, Xi and x2. For each i = 1,2, 
in M — Xi let Ci be a component which does not contain E — xt. Then d , C2 

are distinct components of M — E and d ( d ) ^ d(C2) . Now for each i = 1,2, 
C j U x i i s a nodal subset of M so contains a node Nt. Let a and 5 be non-cut 
points of M belonging to Nt and N2, respectively. Then by 2.11, £ C C(a, b) so 
x G C(a, b). 

4.19. T H E O R E M . 7/ M is compact and H is an H-set of M, C a component of 
M — H and C C\ H = {b}\ then if x G C, there is a non-cut point a of M such 
that a G C and belongs to a node of M and x G C(a,b) C C^J b. 

Proof. If x belongs to a node N of M, then there is a non-cut point a oi M 
such t ha t a G iV. By 4.8, N C C(a, 6) C C U 6. Suppose, then, t h a t x belongs 
to no node of M. Again we consider two cases. 

Case 1. x is a cut point of M. Let (£/, V) be a separation of M — x such t ha t 
b £ U. Then H (Z U. Since F U x is connected and contained in M — H, 
V U x C C Let a be a non-cut point of M belonging to V W x. Then C(a, b) 
meets both U and V, so x £ C(a, &)• Since a, b £ C U &, C(a, b) (Z C^J b. 

Case 2. x is not a cut point of AT. Since x belongs to no node of M, x is not an 
end point of M. Now x belongs to an £ 0-set E of M. Then E (Z C VJ b and £ 
contains two distinct cut points of M. If b G £ , let / be a cut point of M 
distinct from £>. If b G E, let C& be the component of M — E containing b and 
let t be a cut point of M in £ such tha t t ^ d(Cb). Let IP be a component of 
M — t such tha t b (I D. Then D (Z C and D contains a non-cut point a oî M 
belonging to a node of M. Now C(a, b) C C U &. Fur ther , E (Z C(ayb) so 
x G C(a, 6). 

4.20. COROLLARY. 7/ M i s compact, A an A-set of M, C a component of M — A 
and b 9^ d(C), then if x G C, there is a non-cut point a of M belonging to a node 
of M such that x G C(a, b) C C KJ b. 

5.0. N u l l f a m i l i e s . T h e following definition is to be found in Wilder 
[8, p . 106]. 

Definition. If ^ is a covering of a space 5 , then a point set E of 5 is said to be 
of diameter < S^ if some element of @ contains E. 

5.1. Definition. Let J^ be a family of subsets of a topological space S. Then 
J^ is called a M / / family if and only if for every open cover & of 5 , all bu t a 
finite number of members of J^~ have diameter < *@. 

The next two theorems are easy consequences of Definition 5.1. 
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5.2. THEOREM. Every subfamily of a null family of a topological space S is a 
null family. 

5.3. T H E O R E M . If ^~__ is a null family in a regular space S and 

# ~ = {F : F G J ^ , thenS^ is a null family. 

Remark. In the proof of the next lemma we make use of the following result 
which is found in [3]: A space S is locally connected if and only if whenever 
X C S and C is a component of S — X, then In t (C) = C — X. 

5.4. LEMMA. Let H be an H-set of M, ré a collection of components of M — H, 

p a limit point of U ^ such that p d {J& and {pa : a G Çsx?, ^ )} a net in U ^ 
converging to p. Then p G H, and if for each a G sf, Ca G *$ such that pa G Ca 

and ba = Ca H H, then ba —> p. Further, if M is locally compact, p G 
U {C : C G c€\, and {qa : a G (se, ^ ) } is a net such that qa G Ca for each 

a G sé, then qa —> >̂. 

Proof, lî p G i î , there is a component C of i f — H" such t ha t £> G C — H = 

In t (C) and C meets no member of ^ . Since this is a contradict ion, p G H. 

Now let 0 be any open set such t ha t p G 0, and let F be a connected open 
set such tha t p G F and F C 0. There is an a* G ̂  such t h a t if a ^ a*, 
>̂a G V. If a ^ a*, then since p (L Ca, V meets Ca and M — Ca so F meets 
d(Ca) = ba. T h u s ba —> p. 

Assume now tha t M is locally compact , t ha t if C G ^ , then p G C, and tha t 
{qa : a G (J^, ^ )} is a net such t ha t for each a G se, qa G C«. Suppose qa -/^ p. 
Then there is an open set V such t ha t p G V and the net {g« : a G (J^ , ^ )j is 
frequently in M — V. Fur ther , we may assume tha t V is compact . 

Let a* G se such tha t if a ^ a* then p a , 6a G F . L e t ^ = {a f j / : a ^ a* 
and ça G F}. By definition of F, J* is a cofinal subset of se and for each 
a ^ Se, Ca (Z V- Now {Ca : a G ^ } must be infinite; for otherwise, 
P £ Ua<E^ Ca = U«ç^ Ca, so for some a ^ Se, p ^_ Ca and this is a contradic­
tion. 

Now {pa : a G (Se, è ) } and {&« : « G ( ^ , è ) } are subnets , respectively, of 
{pa : « G ( ^ , è ) } and {5a : « G ( ^ , ^ ) J , so each converges to p. For each 
a G ^ , since Ca (Z ^ and >̂a G Ca H F, there is a point 3>a G Ca C\ d(V), and 
since for each a G ^ , Ca C^ H = ba G F, j« Î 5 . Since d(V) is compact , the 
net {ya : a G ( ^ , è )} has a convergent subnet yap —> y, y G d(V). Then y is a 
limit point of Uae® Ca. Now if y G C^ for some a ^ Se, then 3; G C^ — H = 
In t Co-. Since F — C- is open, £ G F — C-, and the net {ba : a G («S ,̂ ^ ) } 
converges to £ ; for some 7* G ^ if 7 ^ 7*, 7 G Se, then Ca ^ C-. Bu t there is a 
d* G ^ such tha t 5* ^ 7* and 3^* G C-, so C«* = C-. Since this is a contradic­
tion, y G U«(E^ Ca> I t follows from the first pa r t of this proof t ha t y G H and 
bap —> 3/. Bu t &a/3 —» £. T h e lemma follows. 

5.5. T H E O R E M . Let M be locally compact, H an H-set of M, p G S, and V an 
open set containing p. Let ^v = {C : C is a component of M — H and C P\ 
H = p\. Then all but a finite number of members of ^v are contained in V. 
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Proof. Lettf* = {C £ &p: C (£ V) and suppose %* is infinite. Let G be an 
open set containing p such tha t G C V and G is compact. Then for each C in 
^ / , there is a point }/c Ç C H d(G) and {^c : C G ^ * j is infinite. There is a 
point y in 6(G) such tha t y is a limit point of {yc : C Ç ^ / } . Then 3/ is a limit 
point of UCp* and 3/ g U^V". I t follows from 5.4 tha t 3/ is a limit point of 
U {Cr\H : Ce &p*} = {p\, so y = p. This is a contradiction. 

5.6. COROLLARY. If M is locally compact, H an H-set of M and # ~ is any 
collection of components of M — H with a common boundary point, then &~ is a 
null family. 

5.7. COROLLARY. If M is locally compact and S* is any collection of Resets 
of M such that Ç\S =̂  0, then S is a null family. 

Proof. Since C\S ^ 0, there is a point p G M such tha t Ç\$ = {p}. Let 
E* G (f. For each E in (f such tha t E y^ E*, E — E* = E — p is connected 
so is contained in a component CE of M — E*. Fur ther , p is a boundary point 
of C# for each £ in $, E 7^ E*. By 5.6, {C# : E G S, E 9^ £*} is a null 
family. I t follows tha t S is a null family. 

5.8. T H E O R E M . 7/ M is compact, H an H-set of M, and ^ = {C : C is a 
component of M — H}, then ^ is a null family. 

Proof. Suppose not. Then there is an open cover *& of M and an infinite 
c o l l e c t i o n ^ ' C ^ such tha t no member of ^ ' is contained in a member of S^. 
Then for each C G ̂ ' , C is nondegenerate and C C\ His degenerate, so there is 
a point pc G C — H. {pc • CG •^r /} is infinite and M is compact, so for some 
p € M, p is a limit point of {£ c : C G ^ " ' } . 

li p & H, then £ belongs to C — H = I n t (C) for some component C of 
M — H. But then In t (C) is an open set containing p and meeting {pc : C G ^~'} 
in a t most one point and this is a contradiction. Thus p G H. 

Since no member of ^ ' is contained in a member of ^ and & is an open 
cover of M, it follows from 5.5 tha t only a finite number of members of J^~' 
have p as a boundary point. T h u s we may assume tha t for each C G ̂ " ' , p Q C. 
Let {£« : a G ( j / , è )} be a net in {pc : C G ̂ " ' j such tha t pa -> £. For each 
a G ( J / , è ) , let Ca G ̂  such tha t pa G C«. Let G G ^ such tha t p G G. 
Since for each a G <$ ,Ca ÇLG, there is a point ga G Ca — G. Then ikf, H,^f, p, 
{pa : a £ (s/, ^ ) } , a n d { q a : a G ( ^ , ^ ) ) satisfy the conditions of Lemma 5.4, 
so qa —* p and therefore p G M — G. Since this is a contradiction, the theorem 
follows. 

5.9. COROLLARY. If AI is compact and A is an A-set of M, then&~ = { C : C is 
a component of M — A] is a null family. 

5.10. Definitions. A nondegenerate continuum K in a topological space 5 is a 
continuum of convergence if and only if there is a net {Ka : a G ( ^ , è ) } of 
continua such t ha t for each a G se, K C\ Ka = 0 and i£ = lima i£a . A net of 
sets {Ka : a: G (&^, à )} is almost distinct (almost pairwise disjoint) if and only if 
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for each a G s/ there is a /3 G s/ such tha t if y G s/ and 7 ^ / 3 then i£a ^ i£7 

(KanKy = 0). 

5.11. LEMMA. If Kis a continuum of convergence in a locally compact Hausdorff 
space S and {Ka : a G ( $ / , è )î ^ & we/ 0/ continua such that K P Ka = 0 and 
K = lima i£a , tfftew /&e net {Ka : a d (&/, ^)} is almost pairwise disjoint and 
thus almost distinct. 

Proof. We need only note t ha t for each a G j / , M — Ka is open, contains K 
and the net is eventually in M — i£«. 

The proof of the next lemma is easy. 

5.12. LEMMA. If K is a continuum of convergence in a connected Ti-space S, 
then every two points of K are conjugate in S. 

5.13. T H E O R E M . If K is a continuum of convergence in M, {Ka : a G (s$, ^ )} 
a net of continua such that for each a G se, Ka P K = 0 and K = lim« Ka, then 
there is an EQ-set E of M such that K C E and K = l i m a ( £ Pi Ka). 

Proof. Since K is a cont inuum of convergence, there is an E0-set E of M such 
t ha t K C E. If k G lima s u p ( £ P i£ a ) , then & G lima sup i£a , so lima 

s u p ( £ P i£a) C K. We show tha t i£ C lima inf (E P Ka). 
Suppose not, and let k G K — lima inf (E P i£ a ) . Let y £ K such t h a t 

y F^ &. Then there is an open set 0 such t h a t k £ 0,y $_ Ô, and {a G ^ : Ka P 
£ P 0 = 0} is cofinal in j / . Let ^ = {(a, F , W) : a G j / and i£a P £ P 
0 - 0 ; F is open, fe G F C 0, and i£a P F 9* 0; IF is open, 3; G W, and 
i£« P IF ^ 0}. I t is easy to see t h a t ^ ^ 0. 

Define the relation > on 2$ by («i, Fi , IFi) > (a2, V2, W2) if and only if 
«i è «2, Vi C F2, and IFi C 1F2. Again it is not difficult to show t h a t > is 
nonempty and directs 2). Also, if we define for 8 = (a, V, W) G &, N(8) = a, 
then{KN(b) : 8 G (2, >)} is a subnet of {Ka : a G («*/, è )} so lim« KN(Ô) = K. 

For each ô = (a, F , W) G ^ , let xb£ KaC\ F , and 3/5 G # « P IF. Then 
{xs : <5 G ( i^ , > ) } and {3/5 : ô G ( ^ , > ) } are nets converging respectively to k 
and y, and for each ô G ^ , xô G E. 

For each 5 G ^ , let C5 be the component of M — E such t h a t x& G C«, and 
let &5 = d(C§). Since k £ E and & = lima X5, & is a limit point of U {C5 : 
ô G Q\ and k G U {Cs : ô G ^ } . I t follows from 5.4 t ha t k = lim« 6«. 

If {ô G ^ : î A (̂ô) C CB is not bounded in 2iï, then 3; is a limit point of 
U \C5 : 5 G «^} and the net {&s : 5 G ( ^ , > ) } converges to y. Since ^ ^ ^, 

this is a contradiction. T h u s for some 5* G ^ , if ô > ô*, then i ^ s ) (£ C«. Since 
for each ô G ^ , ^5 G ^AT(Ô) P Cg, &Ô G KN(6) for each ô > ô*. Bu t ô8 G î 7v(ô) P -E 
and this yields a contradiction since the net {bt : ô G C©\ > )} is eventual ly in 
0 and for all ô G ^ , A^ ( ô ) P E P O = 0. T h e theorem follows. 

5.14. COROLLARY. Any continuum of convergence of M is a continuum of 
convergence of some single Eo-set of M. 
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5.15. COROLLARY. M has no continuum of convergence if and only if every 
cyclic element of M has no continuum of convergence. 

T h e proof of the next theorem is similar to t ha t of 4.2 page 71 of [6]. 

5.16. T H E O R E M . If M is compact and S = {E C M : E is an E0-set of M}, 
then $ is a null family. 

6.0. Cycl ic c h a i n d e v e l o p m e n t t h e o r e m . In this section we prove a 
theorem which is analogous to the Cyclic Chain Approximation Theorem [6, 
Theorem 7.1, p . 73]. 

6.1. T H E O R E M . If M is compact, then there exist a well-ordered set Ç$f, ^ ), a 
net {pa : a G (sé\ ^ )} of non-cut points of M belonging to nodes of M, and a net 
{qa : a G (se', ^ ) } in M such that the net of cyclic chains {C(pa,qa) ' a G 
(^/, ^ ) } has the following properties: 

a) For each a G £&, Ha = U7<« C(pyi qy) is an H-set of M. 
b) For each a G se, if a is not the first element of 9$, then C(pa, qa) f~^ïïa = {qa\. 
c) M = Ua^C(pa,qa). 
d). For every open cover ^ of M, there is an % G ^ / such that if a ^ a# and C 

is a component of M — Ha, then diam C < &. 

Proof. If M has no cut point, we l e t j / = {1}, and let p1 and qi be any twTo 
distinct points of M. Assume, then, t ha t M has a cut point. Our proof has three 
steps. We first define the well-ordered set (stf, ^ ) and the net {pa : a G 
(s/, ^ ) } . Next, we define the net {qa : a G (stf, è ) } by induction on se. 
Finally, we show tha t the net of cyclic chains C(pa, qa) has the properties 
a ) - d ) . 

1. (se, ^ ) and the net {pa : a G (s/, =)}• Since M has a cut point, M has a t 
least two nodes. Le t /K ' be the set of all nodes of M and let (se, ^ ) be the set of 
all ordinals whose cardinal is less than tha t of y\T. Let N* be any (fixed) node of 
M and let \Na : a G s/} be an indexing of ^ — {N*} by j / . For each a G j / , 
let pa be a non-cut point of M belonging to Na. Then the net {pa : a G (se, ^ )} 
has been denned. 

2. T h e net [qa : a G (s/, ^ )}. Let q1 be an non-cut point of M belonging to 
TV*. I t follows from 4.10 tha t if ô G J / , 8 > 1, then ps G C(pu qx). In M -
C(pi, qi), let C2 be the component which contains p2 and define q2 = <5(C2). 
Then Hz = C(£i, qi) \J C(p2, q2) is an H-set of Af, and it follows from 4.10 
tha t if Ô > 2, then ps G C(£i, ci) U C(p2, q2). Since C(p2 , ç2) C C 2 U g2, 
C(^2 , ^2) H C(pi, qi) = {q2}. 

Suppose tha t for some /3 Ç j / , /3 ^ 2, we have defined qa for each a £ S%?, 
a < /3, in such a way tha t if 1 < a, then 

1. U7^« C(^>7, qy) is an i7-set of M\ 
2. C(£ a , gtt) H 5 a = {qa}, (lia = U7<« C(p7f g 7 ) ) ; 
3. if Ô G J / , ô > a, then £5 G U7^a C(£a , 5a). 
I t follows easily from hypotheses 1 and 3 tha t H$ is an H-set of AI and does 
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not contain pp. In M — Hp, let Cp be the component which contains pp, and let 
qp be the unique point in Cp C\ Hp. Since both Hp U qp and C(pp, qp) are H-sets 
of M and qp belongs to each, their union Ua^s C(pa, qa) is by 3.14 an H-set of M. 
Also, since Cp U (//? is an ^4-set of M containing pp and qp, C(pp, qp) C\ Hp C 
CpC\ Hp = {qp}. Fur ther , by 4.10, if Ô £ j / , Ô > p, then p8 (? U a ^ C(A*> ga). 
T h u s for each a Ç S0, qa is defined. 

3. We now show tha t {C(pa, qa) '• ex G (<^/, è )) satisfies conditions a ) - d ) . I t 
follows from the definition of the net {qa : a £ (&/, ^ )J t ha t a) and b) are satis­
fied. Also, it is not difficult to show tha t H = U«ç^ C(pa, qa) is an H-set of M. 
Now if C is a component of M — H, then it follows from 4.19 t ha t C contains a 
point p which belongs to a node of M. But H contains every node of M, and it 
follows tha t M = H. 

I t remains to show tha t d) is satisfied. If .90 is finite, the result is immedia te 
since t h e n J ^ has a maximum. Suppose, then, t h a t J ^ is infinite. Then J^/ has no 
maximum. Suppose further there is an open cover ^ of M such t ha t for each 
a G sé there is a component Ra of M — Ha such tha t diam Ra > &. For each 
a G «£/, let aa £ i^a. Then {aa : a £ ( ^ , ^ )} is a net in iUT so there is a point 
a 6 Af and a subnet {aa/3 : /3 G (-^, » ) } converging to a. Let G £ ^ such tha t 
a £ G. Now for all /3 £ ^ , there is a point &̂  G i?«3 — G and a subnet 
i ^ : b G ( ^ , > ) } converging to b G If. Now for some a* G j / , a, fc G #«*, 
and if a > a*, a G J ^ , then M — Ha (Z M — Ha* and i?a is contained in some 
component of M — Ha*. Since only a finite number of components of M — Ha* 
have diameter > & and every Ra is contained in such a component for a > a*, 
it follows tha t for some component C oî M — Ha*, {ô G ( ^ , > ) : i ^ g C C] is 
cofinal in ( ^ , > ). But then both a and b are limit points of C, so a, b G C H 
i3«*. This is a contradiction. I t follows tha t if & is any open cover of M, then 
for some 0% G - ^ , every component of M — ifa^ has diameter < ^ , so if 
a > a<g then every component of M — Ha has diameter < @. 
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