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CYCLIC ELEMENT THEORY IN CONNECTED AND
LOCALLY CONNECTED HAUSDORFF SPACES

B. LEHMAN

1.0. Introduction. G. T. Whyburn, in 1926, began the development of
cyclic element theory for Peano continua. This theory proved fruitful in the
study of Peano spaces and a comprehensive development of the theory for
metric spaces was presented in [6]. An excellent history of the theory is to be
found in [4]. In [7] and [5] the generalization of cyclic element theory to more
general spaces was begun. However, in each of these papers only basic defini-
tions were set forth and fundamental results obtained. In this paper, we con-
cern ourselves primarily with connected and locally connected Hausdorfl
spaces, developing the cyclic element theory initiated in [7] and demonstrating
that the theory has many of the applications to connected and locally con-
nected Hausdorff spaces that the classical theory has to Peano spaces. We note
that we generalize many of the results from Chapter IV of [6] and that there-
fore the organization of this paper is closely related to the organization of that
chapter. In fact, we might say that the purpose of this paper is to ‘“‘rewrite”
for connected and locally connected Hausdorff spaces the cyclic element
theory presented in [6].

1.1. Preliminaries. Several of the following definitions are found in [7], and
all are generalizations of definitions stated in [6]. Let M be a connected
topological space. A point p of M is a cut point of M if and only if M — p is
not connected. A point p of M is an end point of M if and only if p has a
local base of open sets with singleton boundaries. Two points a and b of M are
said to be conjugate tn M (‘“‘a is conjugate to b in M’’) if and only if nc point
of M separates a and b in M. For a, b € M, E(a, b) denotes the collection of
all points of M which separate a and b in M. (It follows that ¢ and b are
conjugate if and only if E(a, b) = @). There is a natural (linear) order *‘ <"’ on
E{a, b) \J {a, b} defined by @« < x, x < b for all x € E(a,b); a < b, and if
x,y € E(a,b) then x < y if and only if x € E(a, y). The order < on
E(a, b) \J {a, b} is called the cut point order on E(a,b) \J {a, b}. A subset E
of M is an Ey-set of M if and only if £ is nondegenerate, connected, has no cut
point of itself, and is maximal with respect to these properties. A cyclic element
of M is a subset of M which either consists of a single cut point or end point of
M or is an Eg-set of M. An A-set of M is a closed subset of M such that

Received October 6, 1975 and in revised form, May 12, 1976. The results in this paper are
contained in the author’s Ph.D. dissertation written at lowa State University under the super-
vision of J. L. Cornette.

1032

https://doi.org/10.4153/CJM-1976-101-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1976-101-7

CYCLIC ELEMENT THEORY 1033

M — A is the union of a collection of open sets each bounded by a single point
of 4. If a, b are points of M, C(a, b) denotes the intersection of all 4-sets of M
which contain both a and b, and the set C(a, b) is called the cyclic chain in M
from a to b.

Note. For the rest of this paper, unless stated otherwise, ‘M’ denotes a non-
degenerate connected and locally connected Hausdorff space.

The following results have been established in [7].
a) If a, b € M, then E(a, b) \U {a, b} is closed and compact.
b) If.%7 is a collection of A-sets of M, then M./ = @Poris an A-set of M.

¢) A nonempty closed set 4 is an A-set of M if and only if each component
of M — A has exactly one boundary point.

d) If 4 isan A-set of M, and if Z is a connected subset of M, then 4 M Z is
connected (possibly empty); thus every A-set of M is connected and locally
connected.

e) If ¢ and b are distinct conjugate points of M, then C(a,b) = {p € M : p
is conjugate to both @ and b}, and in this case, C(a, b) is an E¢set of M.
Further, if C is an Eq-set of M and «a, b are distinct points of C, then a and b
are conjugate in M and C = C(a, b).

f) Any two Ej-sets of M have at most one common point.

g) For any two points a, b of M, C(a, b) = E(a, b) \J {a, b} U C, where C
is the union of all Eq-sets of M which meet E(a, b) U {a, b} in exactly two
points.

Further, the next two results were established in [5].

h) If E, and E; are distinct E¢-sets of M and intersect, their intersection is a
cut point of M and E, M E, separates E; — E; and E, — E, in M.

i) lfa,b € M and E is an Ey-set of M, then E meets E(a, b) U {a, b} in at
most two points.

1.2. THEOREM. If a, b € M, then the subspace topology on E(a, b) \J {a, b} is
the order topology relative to the cut point order.

Proof. If E(a, b) = @, then E(a, b) \J {a, b} is discrete with either topology.
Assume then, that E(a, b) # 0. It is well known that in general the order
topology on E(a, b) \J {a, b} is a Hausdorff topology that is weaker than the
subspace topology. (See, for instance [9, p. 206]). It then follows from 1.1-a
that both topologies are compact Hausdorff so are identical.

2.0. Ei-sets and the conjugacy relation. Since we shall have occasion to
refer to several of the results in this section and since they were not stated in
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either [5] or [7] we state them here. However, in many cases we omit the easy
proofs. We note also that most of these results are generalizations of thcorems
that are known for metric spaces (see [6, Chapter IV]).

2.1. LeMMA. If x is an end point of M, S a nondegenerate connected subset of M,
and x € S, then x 1s an end point of S.

2.2. LEMMA. If M has no cut point, then M has no end point.

2.3. LEMMA. If Z 15 a connected subset of M and p and q are conjugate in Z,
then p and q are conjugate in M.

2.4. LEMMA. No Ey-set of M contains an end point of M.

2.5. LEMMA. If A is an A-set of M and C is a component of M — A, then C is
an A-set of M.

Proof. If D is a component of M — C, then 9(D) = 4(C).

2.6. THEOREM. Of the following statements, if a connected subset A of M
satisfies a), then A satisfies b):

a) If E is a cyclic element of M and A (M E is non-degenerate, then I2 C A.

b) If x, vy € A and N C M s an irreductble continuum from x to vy, then
N C A.

Proof. Suppose A is connected and satisfies a). Suppose further that
x,y € A, N is an irreducible continuum from x to vy, and t € N — 4. Since
x,y € 4 and A4 is connected, E(x, v) \J {x, v} C A. Thus if an E,-set £ mects
E(x,y) \J {x, y} in two points, then E M 4 is nondegenerate and so by assump-
tion E C A. It follows that C(x,y) C 4. In M — C(x, v), let C, be the com-
ponent which contains ¢, and let z = 9(C,). Thenz € N.1fz ¢ {x, v}, then x, v
lie in components C,, C, respectively, of M — (C,\J z). But then C, \U z and
C, \J z are A-sets, so x and y belong to (N "N (C,\U z)) U (NN (C, U z2)),
which is a proper subcontinuum of N. Thus z € {x, y} and we may assume
z = x. But now in M — (C,\J z) if D, is the component containing y, then
N M (D, z) is a proper subcontinuum of N and contains x and y. It follows
that N C 4.

2.7. COROLLARY. If E is an Eo-set of M and a, b € E, then E contains every
continuum N C M such that N is an irreducible continuum from a to b.

2.8. COROLLARY. If a and b are conjugate in M and N C M is an wrreducible
continuum from o to b, then every point of N is conjugate to both a and b in M.

2.9. LEMMA. If E., E, are distinct Eq-sets and N s a connected set which meets
E1 and E2, then E1 f\ E2 C N

2.10. LEmMA. If A is an A-set of M and R 1s a component of M — A, then R
meets at most one Eo-set E which meets A.
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Proof. Suppose Ei, E, are distinct Eg-sets which meet both R and 4. Let
{b} = d(R). Then b € E, M E,. But by the above lemma, E, M Ey; C R. This
is a contradiction since b € A.

2.11. LEMMA. Let E be an Eo-set of M and C a component of M — E. Ifb € M
such that either b € E — Cor b ¢ E and 9(C,) # 9(C), where C, is the com-
ponent of M — E containing b, then E C C(a, b) for all a in C.

Proof. 1f b € E — Canda € C,let {t} = 9(C). Thent # band ¢t € E(a, b).
Thus by 1.1-i, E N (E(a, b) \J {a, b}) = {¢t, b} and E C C(a, b). Suppose, then,
that 0 ¢ E and 9(C,) # 9(C). Let z = 9(C,), and a € C. Then C is a com-
ponent of M — tand is disjoint from (£ — t) \U C,, which is connected. Thus
t € E(a,b). Similarly, z € E(a,b). Thus EMN (E(a, b) \J {a, b)) = {t, 3}, so
E C C(a, b).

2.12. THEOREM. If M 1s locally compact and p € M such that p is neither
cut point nor an end point of M, then there is a point q in M distinct from p and
conjugate to p in M.

Proof. Suppose p is not a cut point and is not conjugate to any other point
of M. Let O be any open set such that p € Oand O # M. Let V be a connected
open set such that p € V, Vis compact, and V C O. For each x € 9(V), let G,
be a connected open set containing x such that p ¢ G,. {G,: x € d(V)} covers
the compact set d(1'), so there is a finite subcover G, , ..., G, . Since M — p
is connected and locally compact, for each ¢ =1,...,n — 1, there is a
continuum N; in M — p such that x; %1 € Nio Let N= (M — V)
U U N,\U UM Gy, Then N s closed and p ¢ N. Since M — V C N,
M — NC Vand p € M — N. Let C be the component of M — N such that
p € C. Now C has a boundary point ¢ in N. By assumption, p and ¢ are not
conjugate in M, so there is a point x of M and a separation (U, W) of M — x
such that p € U, ¢ € W. Since C \J ¢ is connected and contains both p and ¢,
x € C;thusx ¢ N.Since N is connected and g € N, N C W. Thus U C M —
N C VCOand d(U) = {x}. It follows that p is an end point of M.

The next theorem follows immediately from 2.12 and 1.1-h.

2.13. THEOREM. If M is locally compact, then every point p of M belongs to
cyclic element of M, and if p is neither a cut point nor an end point of M, then p
belongs to a unique cyclic element of M that is an Eqy-set of M.

3.0. H-sets. In [6, p. 72] Whyburn defined an H-set in a metric semi-locally
connected continuum M to be a connected subset of M which satisfies the
following condition:

(*) If p € H, then there is a cyclic element E of M such that p € E and
ECH.

H-sets were shown to have many of the properties of 4-sets, and the closure of
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an H-set was shown to be an 4-set. However, in the nonmetric setting, it may
be that for some connected set H, every point is contained in a cyclic element £
of M such that E C H, H is not an 4A-set and H fails to have several of the
properties that H-sets were shown in [6] to possess. It is readily seen that in
case M is a metric semi-locally connected continuum, the following definition is
equivalent to that given in [6]. Again we note that many of the results in this
section are generalizations of results established in [6].

3.1. Definttion. A connected subset H of M is an H-set of M if and only if H
satisfies one of the following conditions:

a) H = {p} for p a cut point or an end point of M.

b) H is nondegenerate and if a, b € H, then C(a, b) C H.

Remark. Since for any two points a and b of an A-set 4 of M, C(a, b) is the
intersection of all 4-sets of M which contain a and b, C(a, b) C A. Thus every
nondegenerate A-set is an H-set, as is any A-set which consists of a single cut
point or end point of M. It follows that every cyclic element of M is an H-set
of M.

3.2. THEOREM. If H is an H-set of M and E is an Ey-set of M such that H (M E
1is nondegenerate or contains a non-cut point of M, then E C H and is an Eo-sel
of H.

Proof. If H M E is nondegenerate, let s, t be distinct points of H M E. Then
E = C(s,t) C H. Suppose now that H M E contains a point p that is a non-
cut point of M. Then by 2.4, p is not an end point of M, so H is nondegenerate.
Let x € H such that x # p. If x € E, then E = C(p,x) C H. lf x ¢ E, then
thereisa pointt € Esuchthatt € E(p, x)and E N (E(p, x) I {p, x}) = {p,1}.
Thus E C C(p, x) C H. In either case, E C H. Further, since E is maximal in
M with respect to the properties of being nondegenerate, connected, and
having no cut point of itself, E is maximal in H with respect to these properties;
thus E is an E¢-set of H.

3.3. COROLLARY. Every Eq-set of an H-set of M is an E-set of M.

3.4. CorOLLARY. A nondegenerate, connected subset H of M 1s an H-set of M
if and only if whenever E is an Eq-set of M such that H (M E 1s nondegenerate, then
ECH.

Proof. Necessity is immediate from 3.2. Suppose then that if EMN H is
nondegenerate for an E¢-set £ of M, then £E C H. If a,b € H, since H is con-
nected, E(a, b) \J {a, b} C H. Thus if an Ejy-set E meets E(a, b) \J {a, b} in
two points, H M E is nondegenerate, so by assumption, £ C H. It follows
from 1.1-g that C(a, b) C H, so H is an H-set of M.

3.5. CorROLLARY. If M 1is locally compact, H an H-set of M, and p € H, then
there 1s a cyclic element E of M such that p € E and E C H.
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3.6. CoroLLARY. If H is an H-set of M, x, vy € H, and N 1s an irreducible
continuum from x to y, then N C H.

Proof. We may assume x # y. By 3.2, H satisfies a) of 2.6, so N C H.

3.7. THEOREM. If H s an H-set of M and H C Hy C H, then H, is an H-set
of M. Further, if M is locally compact, then every point of H — H is either a cut
point or an end point of M.

Proof. If H is degenerate, the result is immediate. Suppose then that H is
nondegenerate and x, y € H,. Since H \U {x, y} is connected, E(x, y) \JU {x, v}
is contained in H \U {x, y}. If an E¢-set E of M meets E(x, y) \U {x, y} in two
points, then E must meet H in more than one point since E M (H \J {x, y}) is
connected. It follows from 3.2 that E C H\J {x, v}, so C(x,y) C H\Y
{x, v} C H,. Thus H, is an H-set of M.

The proof of the second part of the theorem is similar to the proof of 6.8,
p. 73 of [6].

3.8. THEOREM. If H s an H-set of M and Z is a connected subset of M, then
H M Z s connected.

Proof. Suppose HMN\ Z # @ and (Z,, Zs) is a separation of H /M Z. Let
2;€ Zy1 =1, 2. Then C(zy, 22) C H, so (C(z1, 22) M Zy, Clz1,22) M Zy) is a
separation of the connected set C(z1, 25) M Z. Thus H M Z is connected.

3.9. COROLLARY. Every H-set in a connected and locally connected Hausdorff
space 15 a connected and locally connected Hausdorff space.

3.10. CoroLLARY. If H is an H-set of M and Z 1is a locally connected (semi-
locally commected) subset of M, then H M Z 1is locally connected (semi-locally
connected).

3.11. TugoreM. If H 1s an H-set of M, then H is an A-set of M.

Proof. Let C be a component of M — H, and suppose p, ¢ are distinct points
of 3(C). Then p, ¢ € H,so Hy = H\J {p, q} is an H-set of M. Since C U {p, ¢}
is connected, Hy M (C\J {p, ¢}) = {p, q} is connected. Since this is a contra-
diction and 8(C) # @, a(C) is a singleton.

The proof of the next result is similar to that of 3.11.

3.12. CoroLLARY. If H s an H-set of M and C is a component of M — H,
then C M H is a singleton.

3.13. CoroLLARY. If H is an H-set of M, C a component of M — H, and
b=CMNH, then C=C\Jband Cisan A-set of M.

Proof. If C is degenerate, then C = {b} and the result follows. If not, then
Int(C) = C — H = C — b, and it follows that d(C) = {b}. If R isa component
of M —C=M-— (CUD), then @ = a(R) C 4(C) = {b}.
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It was proved in [6] that if # is a family of H-sets of a semi-locally connected
metric continuum M, and U is connected, then U is an H-set of M. It is
not difficult to see that this result does not hold in general. We have, however
the following results.

3.14. THEOREM. If H,, H; are H-sets of M and Hy M Hy 5% 0, then H, \J H,
is an H-set of M.

Proof. Since H; N Hy # @, H;\J H, is connected. If H; \U H, is degenerate,
then H,\U Hy = H, = H,sois an H-set of M. Suppose, then, that H; \J H, is
nondegenerate and E is an Egy-set of M such that EMN (H;\U Hs) is non-
degenerate. Since E M (H;\U H,) is connected, either E/M H; or £ M H, is
nondegenerate, so £ C H; or E C H,. The theorem now follows from 3.4.

3.15. CorROLLARY. The union of two intersecting A-sets of M is an A-set of M.

3.16. THEOREM. If 3¢ is a family of H-sets of M such that for every lwo members
A, B of ., there is a finite collection A = Hy, Hy, . .., H, = B such that
HNH  #0,i=0,...,n— 1, then \UX is an H-set of M.

Proof. It is well known that under the hypotheses of the theorem \U# is
connected, (see, for instance, [2, p. 60]). If U is degenerate, the result is
immediate, so assume that \JJ# isnondegenerate. If x,y € U, and 4,B €
such that x € 4, y € B, let Hy, Hy, ..., H, be members of 5 such that
A=Hy B=H,and HHNH,#0,7=0,1,...,n — 1. It follows from
3.14 that U7, H;is an H-set of M, so C(x,y) C Uiy H; C UK.

3.17. THEOREM. If 3 is a family of H-sets of M and NS is nondegenerate or
consists of a single cut point or end point of M, then NH is an H-set of M. If M is
locally compact, then every intersection of H-sets of M is an H-set of M.

Proof. If N is a cut point or an end point of M then NJ# is an H-set of M.
Suppose that NJ# is nondegenerate. Let a € NS, and let x € N such
that @ # x. Then for each H in3#, C(a, x) C H, so C(a, x) C NI. It follows
that NJ# is connected. Similarly, if x, y € N, then C(x, v) C NI, so
NS is an H-set of M.

Now if M is locally compact and p € NJ# such that p is neither a cut point
nor an end point of M, then p belongs to an Ey-set E of M and p € E M H for
all H in . Thus for each H in #°, E C H,so E C N and the result now
follows from the first part.

3.18. THEOREM. If H is an H-set of M, x,y € H and X C M such that x and vy
lie in distinct components of H — X, then x and vy lie in distinct components of
M- X.

Proof. If not, then x and y lie in a component C of M — X. Then C N H is
connected, contains x and y and is contained in H — X; so x and v lie in the
same component of # — X. This is a contradiction.

3.19. CoroLLARY. Every cut point of an H-set of M 1is a cut point of M.
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3.20. CorOLLARY. If H is an H-set of M, A, B C H, and X a closed subset of M
such that X M H separates A and B in H, then X separates A and B in M.

3.21. CorOLLARY. If M 1s locally compact, H an H-set of M, and E a cyclic
element of H, then E 1s a cyclic element of M.

Proof. If E is an Eg-set or a singleton cut point of H, then the result follows
from 3.3 or 3.19. Suppose, then, E = {p}, p an end point of H. If p is neither a
cut point nor an end point of M, then p belongs to an E¢-set E* of M. By 3.2, E*
is an E¢-set of H. But then p is an end point of H belonging to an E,-set of H
and this is a contradiction. Thus p is either a cut point or an end point of M so
E is a cyclic element of M.

3.22. COROLLARY. Let H be an H-set of M. Then every nondegenerate H-set H*
of H is an H-set of M. If M 1s locally compact, then every H-set of H is an H-set
of M.

Proof. If H* is nondegenerate, then so is H. If E is an Ey-set of M such that
E M H* is nondegenerate, then £ M H is nondegenerate, so £ C H and E is an
Eg-set of H. Thus by 3.9 and 3.4, E C H*. It follows that H* is an H-set of M.
Now if M is locally compact and H* is degenerate, then by 3.21, H* is a cut
point or an end point of M.

3.23. CorROLLARY. If A 1s an A-set of M and B is an A-set of A, then B is an
A-set of M.

3.24. COROLLARY. If a, b € M, then C(a, b) contains no proper A-set of itself
which contains both a and b, 1.e., the cyclic chain in C(a, b) from a to b 1is C(a, b).
Further, if t 1s a cut point of C(a,b), then t € E(a, b).

3.25. THEOREM. If H is an H-set of M, and Z 1s any connected and locally
connected subset of M such that H (M Z 1s nondegenerate, then H (M Z 1s an H-set
of Z.

Proof. Let E be an Eg-set of Z such that E M H M Z is nondegenerate. Then
E C E* for some Ey-set E¥ of M. Then E* CH,so ECE*NZ_CHNZ.
Thus H M Z is an H-set of Z.

3.26. COROLLARY. If A is an A-set of M and Z 1is a connected and locally
connected subset of M such that A N\ Z # @, then A M\ Z is an A-set of Z.

3.27. THEOREM. If a,b € M, then a and b are non-cut points of C(a,b), and
if a and b are not conjugate tn M, then C(a, b) — a — b 1s connected.

Proof. Let D be the component of C(a,b) — a such that b € D. Then
D = D\Uqais an A-set of C(a, b) and contains both @ and b. Thus D \U a =
C(a, b), so C(a,b) —a = D, which is connected. Similarly, b is a non-cut
point of C(a, b).

Suppose now that a and b are not conjugate and that (U, V) is a separation
of C(a,b) —a — b. Since C(a, b) — a is connected, {a, b} is an irreducible
closed cutting of C(a, b) and therefore U \U {a, b} is connected. Thus E(a, b) \J
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{a, b} C U\J {a, b}. Now no E¢-set contains both ¢ and b, so if some Eq-set E
meets E(a, b) \JU {a, b} in two points, it meets U. Since E — {a, b} is connected,
E C U U {a, b}. It follows that C(a, b) C U U {a, b}, so V = @. Thus
C(a, b) — a — b is connected.

3.28. THEOREM. Let A be a closed, connected subset of M. Then among the
following statements, a)—c) are equivalent and c) impliesd);if M 1is locally com-
pact, then a)—d) are equivalent and a) implies e).

a) A is an A-set of M.

b) If Cis a component of M — A, then C N\ A is a singleton.

¢) If E 1s a cyclic element of M and A M E is nondegenerate, then E C A.

d) If a, b € A, and N is an trreducible continuum from a to b, then N C A.

e) If p € A, then either p = A or there is a cyclic element E of M such that

p € ECA.

Proof. That a) and b) are equivalent was stated in [7], and that a) implies c)
follows from 3.2 since every nondegenerate A-set of M is an H-set of M.
Suppose that A satisfies c). If 4 is degenerate, then 4 is an A-set of M. If not,
then by 3.4, 4 is an H-set and therefore an A-set since 4 is closed. Thus c)
implies a). That c¢) implies d) is 2.6.

Now assume that M is locally compact. We show that d) implies b). Let C
be a component of M — A and suppose 9(C) contains two points p and gq.
Since 4 is closed, C is a connected, locally connected, and locally compact
Hausdorff space. Let R,, R, be disjoint open sets containing p and g, respec-
tively, such that R, and R, are disjoint continua, and let x, y be points of
R, N Cand R, N C respectively. Let NV, , be an irreducible continuum in R,
from p to x; N,, be an irreducible continuum in R, from ¢ to v, and N, , an
irreducible continuum in C from x to y. Then N, ,\JU N, ,\U N, , is a contin-
uum containing p and ¢ so contains an irreducible continuum N from p to q.
By d), N C A. But this is impossible since then N C N, ,\J N, ,, and these
are disjoint closed sets each of which meets V. Thus € N A contains at most
one point, and since M is connected, C M A is a singleton.

It remains to show that if M is locally compact, a) implies e). If 4 is non-
degenerate, and p is not a cyclic element, then p belongs to an Ey-set E and the
result follows from 3.2.

Remark. 1t was shown in [6] that if M is a locally connected metric con-
tinuum, and 4 is a subcontinuum of M, then all five statements a)—e) are
equivalent. We note that this is not true in general.

4. Nodal sets, nodes and cyclic chains.

4.1. Definition. A closed subset N of a space S is called a nodal set of S if and
only if (V) is at most a singleton.

The next result follows easily from Definition 4.1.
4.2. LEMMA. Let S be a T, topological space and N C S. Then
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a) every singleton is a nodal set of S as are @ and S;

b) if N is a nodal set of S, then S — N 1is a nodal set of S;

c) if S s connected and locally connected, and N is o nonempty nodal set of S,
then N 1s connected;

d) if S is connected, p € S, and (S1, Ss) s a separation of S — p, then S; \J p
and S2 \J p are nodal sets of Sy

e) if S is connected and locally connected, then if N is a nodal set of S, N is an
A-set of S;

f) if A C S, and N is a nodal subset of S, then N (\ A 1s a nodal set of A.

4.3. Definition. A subset N of a connected space .S is called a node of S if and
only if either N = {p} for some end point p of S or N is an Ey-set of .S such that
N is a nodal set of S.

Remark. It is immediate from the definition that if a connected 7T'i-space S
has no cut point, then S is a node of itself and the only nodal subsets of .S are
@, S, and the singletons of S.

The proofs of the next two results are easy.

4.4. THEOREM. Let N be a nondegenerate subset of M. If N = M, then N is «
node of M if and only if M has no cut point. If N # M, then N is a node of M
if and only if N 1s an Eg-set of M and N contains exactly one cut point of M.

4.5. COROLLARY. Every node N of M contains a non-cut pownt of M, and if N
1s nondegenerate, then every point of N distinct from the one boundary point of N
s neither a cut point of M nor an end point of M.

4.6. LEMMA. If N is a nondegenerate nodal subset of M, then either N contains
a cut point of itself or N is an Eq-set and therefore a node of M.

Proof. Suppose N contains no cut point of itself. If N = M, then M contains
no cut point, so N is a node of M. If N £ M, there is a point p of M such that
d(N) = {p}, and (Int N, Ext N) is a separation of M — p. It follows that if
t € M — N, then p separates t and N — p; thus IV is maximal with respect to
being nondegenerate, connected, and having no cut point of itself. Thus N is a
node of M.

4.7. THEOREM. If N1, Ny are distinct, intersecting nodes of M, then neither is
degenerate and their intersection is a cut point of M.

Proof. If N, = {p}, then p is an end point of M and p € N,. But this implies
that N, = {p} = N,. It follows that neither N; nor N, is degenerate and each
is an Eg-set of M. By 1.1-h, N; M N, is a cut point of M.

4.8. THEOREM. If x 15 ¢ non-cut point of M belonging to a node N of M, then N
is a node of every H-set of M containing x.

Proof. Let H be an H-set of M containing x. If N = {x}, then x is an end
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point of M. If H = {x}, then N = H and N is a node of H. If H is non-
degenerate, then by 2.1, x is an end point of H, so again N is a node of H. If N

is nondegenerate, then N is an Eg-set of M and the theorem follows from 3.2
and 4.2.

4.9. THEOREM. If H is an H-set of M and C is a component of M — H, then C
is a nodal A-set.

Proof. By 3.12 and 3.13, C is an A-set and 9(C) = 4(C) = CN H is a
singleton.

4.10. THEOREM. Let N be a node of M and C(x,y) a cyclic chain in M. If
NN Clx, y) contains a non-cut point of M, then one of x and y is a non-cut point
of M that belongs to N.

Proof. By 4.8, N C C(x,y). If N = {p}, then p is an end point of M, so
p ¢ E(x,y) and p belongs to no Egset of M. It follows from 1.1-g that
p € {x,y}. Suppose N is nondegenerate and p ¢ {x,y}. Then N meets
E(x,y) \J {x, y} in two points. But N contains at most one cut point of 3, so
N N {x, y} contains at least one non-cut point of M.

4.11. THEOREM. If a, b are non-cut points of M which belong to distinct nodes
of M, then C(a, b) is a maximal cyclic chain of M; that is, if C(a, b) C C(x, y),
then C(a,b) = C(x, y).

Proof. Suppose C(a,b) C C(x,y) and N, N, are distinct nodes of M
containing « and b respectively. By 4.8, N,\U N, C C(a,b). By 4.10,
x,y € N, U N, and it follows that C(x, y) C C(a, b).

The next result follows from the proof of Theorem 4.11.

4.12. COROLLARY. If a and b are non-cut points of M which belong to distinct
nodes N, and N, respectively, of M and C(a,b) = C(x,y), then x and y are non-
cut points of M and each of N,, Ny contains one of the points x, y and not both.

4.13. THEOREM. If C(a, b) is a cyclic chain in M and N is a node of C(a, b),
thena € Norb € N.

Proof. 1t follows from 3.24 that in C(a, b), if C*(a,d) is the cyclic chain
from a to b, then C*(a, b) = C(a, b). Now N is a node of C(a, d) such that
N M C*(a, b) contains a non-cut point of C(a, b), so by 4.10,a € Norb € N.

4.14. THEOREM. If C(a, b) s a cyclic chain in M, then C(a, b) contains at most
two nodes of itself. Also, if C(a, b) has two nodes, then E(a, b) % @; and if M 1s
locally compact and E(a, b) 5= @, then C(a, b) has two nodes.

Proof. Suppose that C(a, b) has three nodes, Ny, N, and N;. By 3.27, ¢ and b
are non-cut points of C(e, b), and by 4.13, either a or b must lie in two of the
sets N1, No, Nj; but this contradicts 4.7.
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Now suppose that C(a, b) has two nodes, Ny and Ns. Then by 4.13, we may
assume that @ € N;. Since a is not a cut point of C(a, b), a ¢ N2, so b € No.
Then either Ny = {b}, (sobisanend point of C(a,b)),orin C(a,b),b € Int(N,).
In either case E(a, b) # @.

If M is locally compact, then C(a, b) is locally compact. Thus if neither a
nor b belongs to an Eg-set of C(a, b) then by 2.14, each is an end point of
C(a, b), so {a} and {b} are distinct nodes of C(«a, b). If a belongs to an Eg-set
E; of C(a,b), then E; is an Eg-set of M which meets E(a, b) \J {a, b} in
exactly two points, one of which is a. Thus if E(a, ) ## 0,0 ¢ E,, so E; meets
E(a, b) in exactly one point. By 3.24, the set of cut points of C(a, ) is identical
with E(a, b) and it follows that E; is an Eg-set of C(a, b) containing exactly one
cut point of C(a, ). Thus by 4.4, E; is a node of C(a, b). Now if b is an end
point of C(a, ), then N» = {b} is a node of C(a, b) distinct from E;. If not,
then as in the case for «, b belongs to an Ey-set E; of C(a, b) and E- is a node of
C(a, b) distinct from E;.

Thus far we have not demonstrated the existence of nodes in a connected
and locally connected Hausdorff space M. The next theorem assures us of the
existence of nodes in the case that M is a locally connected Hausdorff contin-
uum.

4.15. THEOREM. If M 1is compact, then every nondegenerate nodal subset of M
contains a node of M.

Proof. Let N be a nondegenerate nodal subset of M. If M has no cut point,
then N = M, and N is a node. Assume that M has a cut point. Then M is not a
node and we may assume that N ## M. Assume, further, that IV contains no
nondegenerate node of M. We show that in this case IV contains an end point
of M.

Let p € M such that (V) = {p}. Let Z = {(x, C) : Cis a component of
M — x and C C Int(N)}. Now, (Ext(N), Int(N)) is a separation of M — p,
so there is a component D of M — p such that D C Int(N). D = DU pisa
nondegenerate nodal subset of 3 and D C N. By assumption, D is not a node
of M, so D has a cut point x. Since p is not a cut point of D, x # p. Since D is an
A-set in M, x is a cut point of M. Let (U, V) be a separation of M — x such
that p € U. Since (M — N) U p is connected and contained in M — x,
(M — N)\U p C U. Thus V C Int(N). Let C be a component of M — x such
that C C V. Then (x, C) € &, s0 & # 0.

Define a relation “>" on & by (x1, C1) > (xs, Cy) if and only if C; C C..
Let (x1, C1) € &.Then C; = C; U x;is a nodal subset of M/ and C; C Int(N).
By assumption, C; is not a node of 3/, and it follows as in the above paragraph
that there is a cut point x; of M and a component Cs of M — x, such that
xs € Cy and Cy C Ci. Then (xs, Co) € &, and (x4, C2) > (x1, C1). Thus the
relation > is nonempty, and it is not difficult to show that > is a partial order.
Further, we have shown that (£?, >) has no maximal element.
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Let .# be a maximal chain in (£, >). Since (%, >) has no maximal
element, .# has no maximum element. Let C* = N {C: for some x € M,
(x, C) € MY}. Since {C : for some x € M, (x, C) € A} is simply ordered by
inclusion and M is compact, C* is nonempty and connected. Also, C* = N {C:
for some x € M, (x, C) € A}; for if t € C* and (x,, C1) € A, then since
(x1, C1) is not maximum in 4, there is a member (xs, Cs) of . such that
(%9, C3) > (%1, C1) and t € Co C C;. Thus C* C N{C: for some x € M,
(x,C) ¢ My C N{C:for some x € M, (x,C) € M} = C* Suppose C*
contains a cut point ¢ of M. Let (U, V) be a separation of M — ¢ such that
p €U U (xy,Cy) € M, then M — Cy is connected, and p € M — (;, so
M — Ci C Uand VC Ci. Thus V C C*. Let D* be a component of M — ¢
contained in 17 and consider the pair (¢, D*) of . If (x,c¢) € M then
D* = D*\ Ut C C, (t, D*) > (x, C). But then (¢, D*) € .# and is a maximum
element of .#, and this is a contradiction. Thus no point of C* is a cut point
of M.

Since C* is an intersection of A-sets of M, C* is an A-set of M. Then every
cut point of C* is a cut point of M, so C* has no cut point of itself. If C* is
either nondegenerate or contains a point p which is neither a cut point nor an
end point of M, then for some Eq-set E of M, C* C Eor p ¢ E. In either case,
E = C*. But by assumption, E is not a node of M so contains cut points of M
and this is a contradiction. Thus C* consists of a single end point of M.

4.16. CorROLLARY. If M s compact and has a cut point, then M has at least
two nodes.

4.17. COROLLARY. If M is compact, H is an H-set of M, and C s a component
of M — H, then C contains ¢ point a that is a non-cut point of M belonging to «
node of M.

Proof. Let b = CN H. By 49, C\Ub is a nodal set, so by 4.15, C\U b
contains a node N of M. By 4.5, N contains a non-cut point ¢ of M and since b
is a cut point of M, a € C.

4.18. THEOREM. If M 1is compact, then every point of M belongs to a cyclic
chain C(a, b) of M where a and b are non-cut points of M which belong to nodes
of M, and if M has a cut point, then a and b can be chosen to belong to distinct
nodes of M.

Proof. I{ M has no cut point, the result is immediate; so assume that M has a
cut point and let x € M.

If x belongs to a node Ny of M, let @ be any non-cut point of M belonging
to Ni. Then there is a node N, of M distinct from N,;. Let b be any non-cut
point of M belonging to N». Then ¢ # b and N; C C(a, d), so x € C(a, ).

Suppose now that x belongs to no node of M. We consider two cases.

Case 1. x is a cut point of M. Let (U, V) be a separation of M — x. Then
U\J x and VU x are nodal subsets of M and by 4.15 contain nodes N, and
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N, respectively. By 4.5, N; and N, contain points « and b, respectively, such
that ¢ and b are non-cut points of M. Then a # b and a € C(a, b) N U,
b € Cla,b) M V. Since C(a, d) is connected, x € C(a, b).

Case 2. x is not a cut point of M. Then since x belongs to no node of M, x is
not an end point of M. Let E be the unique Ey-set containing x. Then E is not
a node, so E contains two distinct cut points of M, x; and x.. For eachz = 1, 2,
in M — x;let C; be a component which does not contain £ — x;. Then C;, C,
are distinct components of M — E and a(C;) # 9(Cs). Now for each 7 = 1, 2,
C,; U x; is a nodal subset of M so contains a node N;. Let @ and b be non-cut
points of M belonging to N; and N, respectively. Then by 2.11, E C C(a, b) so
x € C(a,b).

4.19. TarorEM. If M s compact and H is an H-set of M, C a component of
M — H and CN H = {b}; then if x € C, there is a non-cut point a of M such
that @ € C and belongs to a node of M and x € C(a,b) C C\J b.

Proof. If x belongs to a node N of M, then there is a non-cut point @ of M
such that e € N. By 4.8, N C C(a, b) C C\J b. Suppose, then, that x belongs
to no node of M. Again we consider two cases.

Case 1. x is a cut point of M. Let (U, V) be a separation of M — x such that
b€ U. Then HC U. Since VV'\U x is connected and contained in M — H,
V'\Ux C C. Let a be a non-cut point of M belonging to V' \U x. Then C(a, b)
meets both U and V, so x € C(a, ). Since a¢,b € C\J b, C(a,b) C C\J D.

Case 2. x is not a cut point of M. Since x belongs to no node of M, x is not an
end point of M. Now x belongs to an Ey-set E of M. Then £E C C\J b and E
contains two distinct cut points of M. If b € E, let ¢t be a cut point of M
distinct from b. If b ¢ E, let C, be the component of M — E containing b and
let ¢ be a cut point of M in E such that ¢ # 9(C,). Let D be a component of
M — tsuch that b ¢ D. Then D C C and D contains a non-cut point ¢ of M
belonging to a node of M. Now C(a,b) C C\JUb. Further, E C C(a, b) so
x € Cla,b).

4.20. CorOLLARY. If M is compact, A an A-set of M, Ca component of M — A
and b # 3(C), then if x € C, there is a non-cut point a of M belonging to a node
of M such that x € C(a,b) C C\U b.

5.0. Null families. The following definition is to be found in Wilder
(8, p. 106].

Definition. If G is a covering of a space S, then a point set E of S is said to be
of diameter < 9 if some element of ¥ contains E.

5.1. Definition. Let % be a family of subsets of a topological space S. Then
& is called a null family if and only if for every open cover & of S, all buta
finite number of members of # have diameter < .

The next two theorems are easy consequences of Definition 5.1.
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5.2. THEOREM. Every subfamily of a null family of a topological space S is a
null family.

5.3, TueoreM. If % is a mull fomily in a regular space S and
F ={F: FcF}, then#F is a null family.

Remark. In the proof of the next lemma we make use of the following result
which is found in [3]: A space S is locally connected if and only if whenever
X C Sand Cisa component of S — X, then Int(C) = C — X.

5.4. LEMMA. Let H be an H-set of M, € a collection of components of M — H,
p a limit point of \UE such that p ¢ \JE and {po: a € (Z, Z)} a net in UE
converging to p. Then p ¢ H, and if for each a € o/, C, ¢ € such that p, ¢ Cq
and by = Co M H, then by — p. Further, if M is locally compact, p ¢
UIC:Cc F}, and {qu: a € (&7, =)} is a net such that q. € C, for each
a €, then . — p.

Proof. If p ¢ H, there is a component C of M — H such that p € C — H =
Int(C) and C meets no member of %. Since this is a contradiction, p ¢ H.

Now let O be any open set such that p € O, and let V be a connected open
set such that p € V and V C O. There is an o* €.%7 such that if a = a¥,
poa € V. If @ 2 &*, then since p ¢ C,, V meets C, and M — C, so V meets
3(Cy) = by Thus b, — p.

Assume now that M is locally compact, that if C € %, then p ¢ C, and that
{qa : @ € (&7, =)} is a net such that for each a € &, ¢, € C,. Suppose ¢, + p.
Then there is an open set V such that p € V and the net {¢g, : « € (&, =)} is
frequently in M — V. Further, we may assume that I/ is compact.

Let o* € .97 such that if & = o* then pa, be € V. Let Z = {a € &/ 1 a Z o
and g, ¢ V}. By definition of V, & is a cofinal subset of .27 and for each
ac#B, C.Z V. Now {Co:a € H} must be infinite; for otherwise,
P € Uneg Ca = Uacg Ca, so for some o € &, p € C, and this is a contradic-
tion.

Now {po: a € (#, 2)} and (b, : « € (#, =)} are subnets, respectively, of
{pa:a € (&, Z)} and {b,: a € (&, =)}, so each converges to p. For each
a € X, since C, C Vand p, € Co M V, there is a point y, € C, M d(V), and
since for each o € &, C, N H = b, € V, y. ¢ H. Since d(V) is compact, the
net {y, : @ € (#, =)} has a convergent subnet Yag — ¥,y € (V). Then yisa
limit point of Uacg Co. Now if y € G5 for some & € &, theny € G5 — H =
Int Gz. Since V — Cs is open, p € V — G, and the net (b, : o € (Z, =)}
converges to p; forsome y* € Z if v = v*, v € &, then C, # C=. But thereisa
9* € % such that 8* = v* and Yo+ € G5, 80 Cor = (5. Since this is a contradic-
tion, ¥ ¢ Uaeg Ca. It follows from the first part of this proof that y € H and
bag — y. But bog — p. The lemma follows.

5.5. THEOREM. Let M be locally compact, H an H-set of M, p € H, and V an
open set containing p. Let €, = {C: C is a component of M — H and C N
H = p}. Then all but a finite number of members of €, are contained in V.
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Proof. Let ¥ = {C € €, : C  V} and suppose % ,* is infinite. Let G be an
open set containing p such that G C V and G is compact. Then for each C in
% ¥, there is a point yo € CMN d(G) and {yc : C € %,*} is infinite. There is a
point y in 4(G) such that y is a limit point of {yc : C € %,*}. Then v is a limit
point of UC,* and y ¢ U%,*. It follows from 5.4 that y is a limit point of
U{CNH: Ce ¥, ={p},soy = p. This is a contradiction.

5.6. COROLLARY. If M is locally compact, H an H-set of M and F is any
collection of components of M — H with a common boundary point, then F is a
null family.

5.7. COROLLARY. If M is locally compact and & is any collection of Eq-sets
of M such that NE # B, then & is a null family.

Proof. Since N& # @, there is a point p € M such that NE = {p}. Let
E* ¢ &. For each E in & such that E # E* E — E* = E — p is connected
so is contained in a component Cy of M — E*. Further, p is a boundary point
of Cy for each E in &, E # E* By 5.6, {Cp: E € &, E # E* is a null
family. It follows that & is a null family.

5.8. THEOREM. If M is compact, H an H-set of M, and F = {(C: C is a
component of M — HY}, then F is a null family.

Proof. Suppose not. Then there is an open cover % of M and an infinite
collection # ' C % such that no member of # ' is contained in a member of ¥ .
Then for each C € #, Cis nondegenerate and C M H is degenerate, so there is
apoint po € C — H. {pc: C € F'} is infinite and M is compact, so for some
p € M, pis a limit point of {pe: C € F'}.

If p ¢ H, then p belongs to C — H = Int(C) for some component C of
M — H. But then Int(C) is an open set containing p and meeting {p¢: C € F '}
in at most one point and this is a contradiction. Thus p € H.

Since no member of #’ is contained in a member of ¥ and ¥ is an open
cover of M, it follows from 5.5 that only a finite number of members of %’
have p as a boundary point. Thus we may assume that foreach C ¢ ¥, p ¢ C.
Let {pa:a € (&, )} beanetin {pc: C €F'} such that p, — p. For each
a€ (W, 2), let C, €% such that p, € C,. Let G € F such that p € G.
Since for eacha € &, C, Z G, there is a point ¢, € C, — G. Then M, H, ¥, p,
{pa:a € (&, 2)},and {qa : @ € (¥, =)} satisfy the conditions of Lemma 5.4,
s0 g« — p and therefore p € M — G. Since this is a contradiction, the theorem
follows.

5.9. COROLLARY. If M is compact and A is an A-set of M, then # = {C: Cis
a component of M — A} is a null family.

5.10. Definitions. A nondegenerate continuum K in a topological space S is a
continuum of convergence if and only if there is a net {K,: a € (&7, =)} of
continua such that for each « € &7, KN K, = @ and K = lim, K.. A net of
sets {K, : a € (&, =)} is almost distinct (almost pairwise disjoint) if and only if
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for each o € .97 thereisa B € & such that if y € .9 and vy = 8 then K, # K,
(Ke YK, = D).

5.11. LEmMMA. If K 15 a continuum of convergence in a locally compact Hausdorff
space S and (Ko : o € (&, =)} is a net of continua such that K N\ K, = @ and
K = lim, K,, then the net {Ko: a € (&, =)} is almost pairwise disjoint and
thus almost distinct.

Proof. We need only note that for each « € .97, M — K, is open, contains K
and the net is eventually in M — K,.

The proof of the next lemma is easy.

5.12. LEMMA. If K is a continuum of convergence in o connected T1-space S,
then every two points of K are conjugate in S.

5.13. THEOREM. If K 1s a continuum of convergence in M, {K, : a ¢ (Z, =)}
a net of continua such that for each a € o, K, N\ K = @ and K = lim, K., then
there is an Eq-set E of M such that K C E and K = lim,(E M K,).

Proof. Since K is a continuum of convergence, there is an Eq-set E of M such
that K CE. If k€ lim, sup(EMN K,), then k € lim, sup K,, so lim,
sup(E N K,) C K. We show that K C lim, inf(E M K,).

Suppose not, and let & € K — lim,inf(E M K,). Let y € K such that
v 5 k. Then there is an open set O such thatk € 0,y ¢ O, and {a € & : K, N
ENO =0} is cofinal in 7. Let @ = {(a, V, W) :a €. and K, N EN
O=0; Visopen k€ VCO,and K,V 5 @; W is open, y € W, and
K, N\ W = @}. It is easy to see that & = 0.

Define the relation > on & by (a1, Vi, Wi) > (as, Vi, Ws) if and only if
ai = as, Vi C Vs, and W, C W,. Again it is not difficult to show that > is
nonempty and directs &. Also, if we define for 8 = (o, V, W) € &, N(§) = «,
then {Ky@s : 6 € (2, >)} isasubnetof {K,: o € (&7, =)} solim; Kyi) = K.

For each 6 = (o, V, W) € &, let x5 ¢ K.\ V, and y; € K, M W. Then
{xs:0 € (2, >) and {ys: 6 € (&, >)} are nets converging respectively to &
and v, and for each 6 € &, x5 ¢ E.

For each 6 ¢ &, let Cs be the component of M — E such that x; € C;, and
let b, = 9(C;). Since k € E and k = lim; x5, k is a limit point of U {C;:
8 € Dyand k¢ U {Cs: 8 € D). It follows from 5.4 that & = lim;, bs.

If {6 € D : Kyw C Cs is not bounded in &, then y is a limit point of
U{Cs: 8 € D} and the net {b;: 6 € (£, >)} converges to y. Since y # k,
this is a contradiction. Thus for some §* € &, if § > §*, then Ky, Z Cs. Since
for each § c 9, X5 € KN(,s) M Ca, b5 € KN((;) for each § > o*. But b5 € KN(,;) NE
and this yields a contradiction since the net {b; : § € (&, >)} is eventually in
Oandforall s € @, Ky M EMN O = §. The theorem follows.

5.14. COROLLARY. Any continuum of convergence of M is a continuum of
convergence of some single Eq-set of M.
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5.15. COROLLARY. M has no continuum of convergence if and only if every
cyclic element of M has no continuum of convergence.

The proof of the next theorem is similar to that of 4.2 page 71 of [6].

5.16. THEOREM. If M is compact and & = {E C M : E is an Eg-set of M},
then & is a null family.

6.0. Cyclic chain development theorem. In this section we prove a
theorem which is analogous to the Cyclic Chain Approximation Theorem [6,
Theorem 7.1, p. 73].

6.1. THEOREM. If M is compact, then there exist a well-ordered set (7, =), «
net {po 1 a € (&, 2)} of non-cut points of M belonging to nodes of M, and a net
{qu:a € (&7, 2)} in M such that the net of cyclic chains {C(pa, qa) : @ €
&, =)} has the following properties:

a) For each a € ', Hy = Uy<a C(py, qy) 1s an H-set of M.

b) For each o € ., if a is not the first element of ¥, then C(pay ga) M Ha = {qa}.

C) M = UL‘(GM C(pﬂr Qa)-

d). For every open cover G of M, there is an ay € S such that if « = ay and C
is a component of M — H,, then diam C < 4.

Proof. If M has no cut point, we let & = {1}, and let p; and ¢, be any two
distinct points of M. Assume, then, that M has a cut point. Our proof has three
steps. We first define the well-ordered set (27, =) and the net {p,: a €
7, =)}. Next, we define the net {¢,:a € (&, 2)} by induction on .o7.
Finally, we show that the net of cyclic chains C(pa, ¢«) has the properties
a)-d).

1. (7, =) and the net {p, : « € (&7, =)}. Since M has a cut point, M has at
least two nodes. Let 4" be the set of all nodes of M and let (&7, =) be the set of
all ordinals whose cardinal is less than that of 4. Let N* be any (fixed) node of
M and let { N, : « € &/} be an indexing of 4~ — {N*} by &/. For each a € &/,
let p, be a non-cut point of 3 belonging to N,. Then the net {p, : a € (&7, =)}
has been defined.

2. The net {¢o : @ € (&, =)}. Let ¢, be an non-cut point of M belonging to
N*. 1t follows from 4.10 that if 6 € .97, § > 1, then p; ¢ C(p1, ¢1). In M —
C(p1, q1), let Cq be the component which contains p, and define g» = §(Cs).
Then H; = C(p1, ¢1) \J C(p2, g2) is an H-set of M, and it follows from 4.10
that if & > 2, then ps; & C(p1, ¢1) \J C(p2, q2). Since C(ps, g2) C Co\J g,
C(ps, q2) N C(p1, q1) = {2}

Suppose that for some g € .97, 8 = 2, we have defined ¢, for each o € .27,
a < B, in such a way that if 1 < «, then

1. Uyza C(py, gy) is an H-set of M;

2. Clpur g2) N Ao = 10}, (Ha = Usca Clr 02));

3.if 6 €, 5 > a, then p5s ¢ Uyza C(Pay Ga)-

It follows easily from hypotheses 1 and 3 that Hg is an H-set of M and does
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not contain pg. In M — Hj, let Cp be the component which contains pg, and let
gs be the unique point in Cg M Hj. Since both Hg \J gz and C(pg, gs) are H-sets
of M and g¢g belongs to each, their union Us<g C(Pa, o) is by 3.14 an H-set of M.
Also, since C3\J gg is an A-set of M containing pg and g, C(pg, gs) (M Hz C
Cs N\ Hs = {gs}. Further, by 4.10,if 6 ¢ o7, 6 > 8, then p5 ¢ Uazs C(Pu, Ga)-
Thus for each « € &7, ¢, is defined.

3. We now show that {C(pa, ¢a) : a@ € (&, =)} satisfies conditions a)—d). It
follows from the definition of the net {¢a : « € (&7, =)} thata) and b) are satis-
fied. Also, it is not difficult to show that H = Uscy C(Pa, go) is an H-set of M.
Now if Cis a component of M — H, then it follows from 4.19 that C contains a
point p which belongs to a node of M. But H contains every node of 3, and it
follows that M = H.

It remains to show that d) is satisfied. If.o7 is finite, the result is immediate
since then.%Z has a maximum. Suppose, then, that.% is infinite. Then.o/ has no
maximum. Suppose further there is an open cover & of M such that for each
a € .2/ there is a component R, of M — H, such that diam R, > %. For each
a €., let ag € R,. Then {aq: a € (&7, =)} is a net in M so there is a point
a € M and asubnet {dq,: B € (#, >)} converging to a. Let G ¢ % such that
a € G. Now for all 8¢ %, there is a point bs € R,y — G and a subnet
{bgy: 8 € (D, >)} converging to b € M. Now for some a* € o, a,b C Hgn,
and if @ > o*, a €./, then M — H, C M — H, and R, is contain«l in some
component of M — H,«. Since only a finite number of components of M — H,«
have diameter > % and every R, is contained in such a component for a > o*,
it follows that for some component Cof M — Hex, {6 € (&, >) : Ragy C Chis
cofinal in (&, >). But then both « and b are limit points of C,soa, b ¢ C N
H,». This is a contradiction. It follows that if ¢ is any open cover of M, then
for some ay € .7, every component of M — H,, has diameter < %, so if
a > ag then every component of M — H, has diameter < % .
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