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Abstract
Objective: To present an overview of how artificial intelligence (AI) could be used
to regulate eating and dietary behaviours, exercise behaviours and weight loss.
Design: A scoping review of global literature published from inception to 15
December 2020 was conducted according to Arksey and O’Malley’s five-step
framework. Eight databases (CINAHL, Cochrane–Central, Embase, IEEE Xplore,
PsycINFO, PubMed, Scopus andWeb of Science) were searched. Included studies
were independently screened for eligibility by two reviewers with good interrater
reliability (k= 0·96).
Results: Sixty-six out of 5573 potential studies were included, representing more
than 2031 participants. Three tenets of self-regulation were identified – self-
monitoring (n 66, 100 %), optimisation of goal setting (n 10, 15·2 %) and self-
control (n 10, 15·2 %). Articles were also categorised into three AI applications,
namely machine perception (n 50), predictive analytics only (n 6) and real-time
analytics with personalised micro-interventions (n 10). Machine perception
focused on recognising food items, eating behaviours, physical activities and esti-
mating energy balance. Predictive analytics focused on predicting weight loss,
intervention adherence, dietary lapses and emotional eating. Studies on the last
theme focused on evaluating AI-assisted weight management interventions that
instantaneously collected behavioural data, optimised prediction models for
behavioural lapse events and enhance behavioural self-control through adaptive
and personalised nudges/prompts. Only six studies reported average weight
losses (2·4–4·7 %) of which two were statistically significant.
Conclusion: The use of AI for weight loss is still undeveloped. Based on the current
study findings, we proposed a framework on the applicability of AI for weight loss
but cautioned its contingency upon engagement and contextualisation.
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In 2016, theWHO estimated that 39% of the global adult pop-
ulation were overweight and predicted an increase to 50% by
2030(1,2). Excessive fat accumulation is a major public health
concern that increases one’s risk of cardiometabolic multi-
morbidity and mortality by up to two and twenty-three times,
respectively(3–5). Concurrently, the yearly cost of treating
obesity and its consequential diseases was estimated to reach
US$1·2 trillion by 2025(6). While pharmacotherapy (e.g., orli-
stat) and surgical interventions (e.g., bariatric surgery) have
been effective and prompt in inducing weight loss, individuals
often experience subsequent weight regain due to poor

lifestylehabits(7). Therefore, cheaper and safer diet andexercise
programmes remain the preferred method for weight loss
where up to 55% ofweight loss programme participants could
lose≥5%of their initial bodyweightwithin a year(8). However,
studies have shown that weight loss often culminates after 6
months and individuals often regain up to 100% of their initial
weight within 5 years(9,10). Failure to sustain weight loss has
been attributed to the poor adherence to behaviour change
plans(9), lack of motivation(11), knowledge(12), coping skills
and self-efficacy(13), and central toweight loss failure is the lack
of self-regulation(14,15).
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Self-regulation refers to the self-monitoring and self-
control of automatic thoughts, emotions and behaviours
to achieve a long-term goal (e.g., weight loss)(16).
Common self-regulation strategies for behaviour change
include identifying discrepancies between current behav-
iours and future goals(17), self-monitoring of behaviour
and behavioural outcomes(18), action planning(19), goal set-
ting(20), habit change(21) and behavioural substitution(22).
However, as compared to old habits which are largely auto-
matic and effortless, such strategies are intentional, effortful
and cognitively demanding(23). This often leads to the tem-
poral erosion of behaviour change adherence, causing a
well-known yo-yo weight effect (weight increases back
to baseline)(24). Therefore, individuals trying to lose weight
often attempt to either increase self-regulation capacity
through sheer willpower(25) or reduce the self-regulation
effort needed through weight-loss mobile apps(26), clinical
weight management programmes(27) and commercial
weight-loss programmes(28). However, such methods are
often expensive, resource-intensive and unsustainable(29).
An emerging strategy to tackle this problem of poor self-
regulation is to apply artificial intelligence (AI)(30).

AI refers to the mimicry of human intelligence through
machine learning to attain and apply knowledge and skills
for processes such as pattern recognition and decision-
making. The popularity of AI stems from its potential to
solve real-world problems with rationality, efficiency, cost-
effectiveness and accuracy. In obesity research, AI has been
used to examine aetiologies(31), perform risk profiling(32),
standardise diagnosis (decision support system)(33), personal-
ise weight management programmes(34), perform remote
monitoring(32) and predict prognoses(35). However, to the
authors’ best knowledge, there are limited academic publica-
tions that explored the use of AI to improve behaviour change
self-regulation for weight loss(36).

Therefore, we conducted a scoping review to present
an overview of the possible applications of AI to regulate
eating and dietary behaviours, exercise behaviours and
weight loss. Unlike a systematic review that aims to
answer a specific research question, a scoping review
aims to map out the ‘breath, nature and extent of research’
done on a topic without dwelling into the literature or
assessing its methodological quality(37). This aims to pro-
vide a comprehensive collection of articles on a specific
topic, elucidate research gaps in their underexplored
aspects and inform the worth of conducting a systematic
review. In 2017–2018, approximately 45 % of middle-aged
adults (40–59 years old), 43 % of older adults and 40 % of
younger adults were obese(38). This indicates that weight
management should begin at a younger age before the
onset of obesity and chronic diseases, which commonly
occurs during middle-age due to a slower metabolism,
increased food consumption and an increasingly seden-
tary lifestyle(39–41). Therefore, the literature search was
narrowed down to adults from 18–64 years old to enhance
the focus and clarity of this inquiry.

Methods

This scoping review was structured according to the five-
step framework by Arksey and O’Malley, and results were
presented according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for scop-
ing reviews (PRISMA-ScR) guidelines (online supplemen-
tary material, Supplemental Table S1)(42,43).

Step 1: Identifying the research question
We used the Population, Intervention, Comparison and
Outcomes (PICO) acronym to develop our research ques-
tion, ‘what is known about the potential of AI for weight
loss and weight-related behaviour change’.

Step 2: Identifying relevant studies
Studies were first searched across eight electronic data-
bases (CINAHL, Cochrane–Central, Embase, IEEE Xplore,
PsycINFO, PubMed, Scopus and Web of Science) for
papers published from inception till 22 July 2020. Initial
search terms such as ‘artificial intelligence’ and ‘weight loss’
were iteratively derived from the PICO framework and
medical subject heading through multiple rounds of data-
base searching by the HSJC in consultation with LY. The
final search terms used were ‘artificial intelligence’;
‘machine learning’; ‘computational intelligence’; ‘computer
heuristics’; ‘expert system’; ‘fuzzy logic’; ‘knowledge bases’;
‘natural language processing’; ‘neural networks’; ‘weight
loss’; ‘weight management’ and ‘weight control’ (see online
supplementary material, Supplemental Table S2 for search
terms used in different databases). Upon mapping the
existing studies into three broad categories, we found that
weight-related changes were centralised around diet and
exercise. Therefore, we conducted another search for liter-
ature published up till 15 December 2020 using additional
keywords such as ‘diet’, ‘eating’, ‘physical activity’, ‘seden-
tary’ and ‘exercise’.

Step 3: Study selection
After the database searching, duplicate articles were
removed and the remaining titles and abstracts were
screened for eligibility. Full texts of the articles were inde-
pendently screened for eligibility by HSJC and WHDA
where discrepancies were resolved through discussions.
Studies were included if they described the use of AI for
weight loss or weight loss-related behaviour change in
adults aged 18–64 years. Studies were excluded if they:
(1) did not describe the use of AI (e.g., purely data scrap-
ing); (2)were grey literature including conference, opinion,
protocol or technical/theoretical papers; (3) were on peo-
ple undergoing surgery (e.g., bariatric surgery) or with
underlying diseases (excluding pre-diabetes) that affect
weight status; (4) were unrelated to self-regulation and
(5) were not written in the English language. Additional
studies were then identified using forward and backward
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reference searching of the included articles. The search
process and results are shown in Figs 1 and 2.

Step 4: Charting the data
Data extraction was performed according to a form devel-
oped by HSJC, which was pilot tested on five articles and
refined accordingly before use. Information extracted
was categorised under the headers – author, year, country,
type of publication, study design, aim, population, sample
size, age, sex, BMI, self-regulation tenets (e.g., self-
monitoring), AI functions (e.g., recognise eating behav-
iours), AI features (e.g., gesture recognition and predictive
analytics), weight loss-related behaviours (e.g., dieting),

machine learning techniques, data collection methods
and important results. The resultant information was then
charted as shown in Fig. 3.

Step 5: Collating, summarising and reporting the
results

Study characteristics
As shown in Fig. 1, 1132 potential articles were retrieved
from the first database search, 851 titles and abstracts were
screened, 278 full-text articles were assessed and twenty-
eight articles were included. As shown in Fig. 2, 4441
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Fig. 1 (colour online) PRISMA 2009 flow diagram for first search
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articles were retrieved from the second database search,
3959 titles and abstracts were screened, ninety-six full-text
articles were assessed and sixty-five articles were included.
The kappa statistic (k) indicated good interrater reliability
(k = 0·96) where discrepancies were resolved upon discus-
sion. During the screening of full-text articles, two articles
were unable to be retrieved even after seeking help from
the university librarian and hence were excluded(44,45).
Two separate journal articles included in this review were
published from the same dissertation(46–48). Among the
sixty-five included articles, one reported two studies and
hence a total of sixty-six studies were presented in this

scoping review. Representing more than 2031 participants,
56·1 % of the studies were from the USA, 87·9 % were
experimental studies, 81·8 % had a sample size of < 100
participants, 89·4 % included participants from both sexes
and 56·1 % reported the baseline BMI of the participants
(Table 1). Study characteristics are detailed in online sup-
plementary material, Supplemental Table S3.

Self-regulation of weight loss-related behaviours
Three tenets of self-regulation were identified, namely
self-monitoring (n 66, 100%), optimisation of goal setting
(n 10, 15·2 %)(26,49–55) and self-control (n 10, 15·2 %)(26,49–51).
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Fig. 2 (colour online) PRISMA 2009 flow diagram for second search
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Details on the use of AI for the self-regulation of weight loss-
related behaviours are shown in Table 2. Of the studies on
enhancing self-monitoring, twenty-nine (43·9 %)were on eat-
ing behaviours(58–76), seven (10·6 %) were on energy
intake(34, 77–82), thirty-three (50%) were on physical activ-
ity(26,51–55,60,74,81–105) and nine (13·6 %) were on energy
expenditure(83,85,92,94–97,100,101). Of the studies on optimising
goal setting, five were on optimising eating behaviour goals
(e.g., eating at a certain time of the day and energy
intake)(48,49,53) and six were on optimising physical activity
goals (e.g., type of physical activity and energy expendi-
ture)(26,51–55). Of the ten studies on self-control, five were
on controlling eating behaviours(48,49,107), three were on con-
trolling physical activity performance(26,52,54) and twowere on
both(51,53). Only six of these studies reported weight loss of
which two were significant(26,107). With only 15·2 % of the
included studies examining strategies to exert self-control
over weight-related behaviours, more research is needed to
explore the potential of AI on improving weight-related
behavioural changes for weight loss.

Functions of artificial intelligence in
self-regulation of weight loss-related behaviours
We categorised the included articles into three AI applica-
tions, namelymachine perception (n 50), predictive analytics
only (n 6)(47,55,82,105,107,111) and real-time analytics with per-
sonalised micro-interventions (n 10)(26,49–54,107) (Fig. 3).
Briefly, machine perception refers to the use of machine
learning to detect, extract features, classify and interpret
(recognise) information that is received through wearable/
non-wearable devices – akin to our vision (camera), proprio-
ception (gestures) and audition (sound)(112).Predictive analy-
sis refers to the use of historic data and statistical methods
(e.g., data mining and modelling) to predict future events.
Studies on predictive analytics focused on building predictive
models based on behaviour data (eating and exercise), nutri-
tion, goal achievement rates, anthropometric data, perspec-
tives (e.g., blog posts) and ecological factors to predict
weight loss and behaviour lapses. Real-time analytics refers
to the instantaneous analysis of past and present data to
train, test and optimise predictive models and provide
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real-time analytics with 

personalized micro-
interventions (1 subject)
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Fig. 3 (colour online) Data mapping of AI features used for different self-regulation components (n 66)
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corresponding prompts of behavioural lapse risks and recom-
mendations as micro-interventions. Only one of the studies
explored the use of all three AI applications in enhancing
weight loss(51). A summary of the AI features, instruments/
sensors used, sensing domains and their corresponding func-
tions relevant to weight management is shown in Table 3.

Machine perception: self-monitoring
Studies on machine perception were focused on exam-
ining the use of machine learning techniques to recog-
nise (1) food items/groups (e.g., fruits or meat)/types
(e.g., liquid or solid), (2) eating behaviours/habits
(e.g., eating behaviour lapses), (3) physical activities
types (e.g., aerobic and strength-training exercises)/
intensity (e.g., sedentary to vigorous exercise)/habits
and (4) estimate energy balance (energetic intake and
output) (Table 2). The studies reported recognition
accuracies ranging from 69·2 to 99·1 %. Machine
recognition techniques used in the included studies

were gesture (n 32)(51,56,58,60–62,64,65,70,74,81,83–93,95–104),
image (n 14)(34,63,66–68,74,76,78–80,88,93,94,101), sound
(n 7)(57–59,69,71–73), speech (n 2)(75,77)and wireless signal
(n 1)(113) recognition. Four studies used both gesture
and image recognition(74,88,93,101) while one used ges-
ture and sound recognition(58). Wearable sensors were
used in all the included studies on machine perception
except those that used image and wireless signal recog-
nition (which use cameras and Wi-Fi receivers). Energy
intake was mostly estimated using image and speech
recognition(34,75–80) while the other AI recognition tech-
niques were used to detect eating behaviours and food
types. Gesture/image recognition was mainly used to
detect and estimate physical activity and energy
expenditure(83,85,92,94–97,100,101) while the other AI tech-
niques were used only for physical activity recognition.

Predictive analytics: goal setting and action planning
optimisation
Six studies showed the use of AI to predict weight loss (n 1)(82),
adherence to personalised physical activity goals (n 2)(55,105),
dietary lapses (n 2)(47,107) and episodes of emotional eating
(n 1) (Table 2). Only one study collected primary data using
the ecological momentary assessment (EMA), which was also
the only one that reported a mean dietary lapse frequency of
3·5 per week. EMA refers to the ‘repeated sampling of subjects’
current behaviours and experiences in real-time, in subjects’
natural environments’. None of the studies examined the appli-
cability of these predictivemodels to stimulateweight loss. The
sample sizes of the included studies on predictive analytics
ranged from 12 to 210, of which only 83·3% of the studies
reported their participants’ BMI. Mean BMI of these studies
ranged from 22·1 to 33·6 kg/m2, which were higher than those
studies onmachineperception andhence possiblymore appli-
cable to overweight adults. 83·3%of the articles reportedmean
ages that ranged from22·1 to55·2 years old, one study included
only female participants and the proportion of females in the
remaining studies ranged from 77 to 91·7%. Two studies
explicitly reported the recruitment of only adults who were
overweight, which elucidates the unique weight loss trajectory
in one who is overweight although it does not indicate strate-
gies that are effective in weight loss(47,82).

Real-time analytics and personalised
micro-interventions: self-control
Ten studies evaluated the use of AI-assisted weight manage-
ment interventions that instantaneously optimise prediction
models for behavioural risk profiling (e.g., low, medium
and high risk) and enhance behavioural self-control through
adaptive and personalised messages/feedback/prompts
(Table 4). The interventionswere all delivered through smart-
phone apps, namely OnTrack (used in three of the included
studies)(48–50), Sweetech app(26), Calfit app(54), Lark’s AI health
coach app(53), Think Slim app(106), SmartCare app(51),
MyBehaviour(52) and one without a name. In general, the
mobile app interventions used either wrist-worn activity

Table 1 Study characteristics (n 66)*

Study characteristics n %

Country of study
USA 37 56·1
Canada 3 4·5
Finland 2 3·0
France 1 1·5
Germany 1 1·5
Greece 1 1·5
Switzerland 2 3·0
The Netherlands 1 1·5
UK 5 7·6
China (including one study from Hong Kong) 6 9·1
South Korea 2 3·0
Taiwan 2 3·0
India 1 1·5
Saudi Arabia 1 1·5
Australia 1 1·5

Study design
RCT 8 12·1
Experimental (lab-based, quasi-experimental, pretest-
posttest)

50 75·8

Observational 6 9·1
Secondary data analysis 2 3·0

Sample size
< 100 54 81·8
100–300 5 7·6
Not reported 8 12·1

Sex
All females 1 1·5
All males 0 0
Both sexes 59 89·4
Not reported 7 24

Mean age (years old):
20–30 19 28·8
31–40 7 10·6
41–50 3 4·5
50–60 5 7·6
Not reported† 28 42·4

Baseline BMI (kg/m2)
Reported 37 56·1
Not reported 30 45·5

*One included article consisted of two studies; hence, the total number of studies is 66.
†Includes ten studies that provided age ranges.
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Table 2 Functions of AI in self-regulation of weight management in healthy and overweight populations (n 66)

Author, year
Self-regulation use
case AI features AI functions Data collection instrument Data type Important results

Alshurafa
et al., 2015

Self-monitoring (eating
behaviour)

Gesture recognition To distinguish between food
types

Necklace piezoelectric
sensor (vibration sensor)

Skin motion when swal-
lowing

Successfully distinguished
between liquids and solids
(F-measure >90%), hot and
cold drinks (F-measure
> 90%) and between solid
food types (F-measure
∼80%)

Amft et al.,
2008

Self-monitoring (eating
behaviour)

Gesture and sound
recognition

To recognise dietary activities
using on-body sensors

On-body sensors:
(1) to detect arm move-
ments: inertial motion
sensors (three-dimen-
sional acceleration, gyro-
scope and
magnetometers) at the
wrist and upper back
(integrated into a jacket);
(2) to detect chewing:
ear microphone located
inside the ear canal to
detect bone-conducted
food breakdown sounds
and (3) to detect swal-
lowing: collar sensor
containing surface
electromyography
(EMG) electrodes and a
stethoscope microphone

Arm movements, chew-
ing cycle sounds and
swallowing

Four intake gestures from arm
movements and two food
groups from chewing cycle
sounds were detected and
identified with a recall of
80–90% and a precision of
50–64%. The detection of
individual swallows resulted
in 68% recall and 20% pre-
cision. Sample-accurate
recognition rates were 79%
for movements, 86% for
chewing and 70% for swal-
lowing

Amft et al.,
2009

Self-monitoring (eating
behaviour)

Sound recognition To evaluate the prediction of
food weight in individual
bites using an ear-pad
chewing sound sensor

Ear-pad chewing sound
sensor

Chewing cycles and food
type

Sound-based chewing recog-
nition achieved recalls of
80% at 60–70% precision.
Food classification of chew-
ing sequences had an aver-
age accuracy of 94%.
Mean weight prediction
error was lowest for apples
(19·4%) and the largest for
lettuce (31%)

Arif et al., 2017 Self-monitoring (physi-
cal activity)

Gesture recognition Recognise physical activity
type

Rotation forest classifier Inertial measurement
units (IMUs) placed at
wrist, chest and ankles

Accurately (98%) identified
seventeen physical activ-
ities ranging from ambula-
tion to activities of daily
living

Aswani et al.,
2019

Self-monitoring (eating
behaviour; physical
activity), optimise
goal setting

Predictive analytics To predict weight loss based
on subject characteristics,
step count, energy intake
and counselling sessions

Bayesian classification Secondary data Predictive modelling frame-
work was competitive in
terms of prediction accuracy
with linear SVM, logistic
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Table 2 Continued

Author, year
Self-regulation use
case AI features AI functions Data collection instrument Data type Important results

regression and decision tree
models, which further justi-
fied the use of the utility-
maximising framework and
its ability to capture ‘irra-
tional’ discounting in the
decision-making of individ-
uals participating in the
intervention

Aziz et al.,
2020

Self-monitoring (physi-
cal activity and
energy expenditure)

Gesture recognition To estimate energy expendi-
ture during sitting, standing
and treadmill walking using
a smartwatch

LG Urbane Android smart-
watch: tri-axial acceler-
ometer, gyroscope and
magnetometer

Physical movement The activity-based models
provided 7% better energy
expenditure estimation than
the traditional acceleration-
based models

Bastian et al.,
2015

Self-monitoring (physi-
cal activity)

Gesture recognition To discriminate between eight
activity classes (lying,
slouching, sitting, standing,
walking, running and
cycling) in a laboratory con-
dition and walking the
streets, running, cycling and
taking the bus in free-living
conditions

Hip-worn triaxial acceler-
ometer

Physical movement The performances of the labo-
ratory-calibrated algorithm
decreased for several activ-
ities when applied to free-
living data. Recalibrating the
algorithm with data closer to
real-life conditions improved
the detection of overall sit-
ting (sensitivity: laboratory
model 24·9%; recalibrated
model 95·7%).

Bi et al., 2016 Self-monitoring (eating
behaviour)

Sound recognition To monitor
and recognise food intakes in
daily life

High-fidelity microphone is
worn on the subject’s
neck near the jaw

Acoustic signals The accuracy of food-type rec-
ognition by AutoDietary is
84·9%, and those to clas-
sify liquid and solid food
intakes are up to 97·6 and
99·7%, respectively.

Bouarfa et al.,
2014

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition Energy expenditure estimation
under free-living conditions

A single ear-worn activity
recognition (eAR) sensor
(built-in triaxial acceler-
ometer)

Physical movement In free-living settings, ten dif-
ferent types of physical
activities (i.e., lying down,
standing, computer work,
vacuuming, going up and
downstairs, slow walking,
brisk walking, slow running,
fast running and cycling)
were predicted

Chung et al.,
2018

Self-monitoring (eating
behaviour and physi-
cal activity)

Gesture recognition To detect the patterns of tem-
poralis muscle activities dur-
ing food intake and other
physical activities

A glasses-type device with
an in-built EMG or piezo-
electric strain sensor
and attaching them
directly onto human skin

Skin movement The average F1 score of the
classification among the
featured activities was
91·4%.

Dijkhuis et al.,
2018

Self-monitoring (physi-
cal activity), optimise
goal setting

Predictive analytics To predict the likelihood of a
user to achieve a daily per-
sonal step goal

Wrist-worn activity tracker,
the Fitbit Flex

Physical activity In 80% of the individual
cases, the random forest
algorithm was the best per-
forming algorithm
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Table 2 Continued
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Dobbins et al.,
2017

Self-monitoring (physi-
cal activity)

Gesture recognition To distinguishing physical
activity

Tri-axial accelerometers
and a heart-rate monitor

Physical movement The results showed an
improvement in recognition
accuracy as compared with
existing studies, with accu-
racies of up to 99% and
sensitivities of 100%

Dong et al.,
2014

Self-monitoring (eating
behaviour)

Gesture recognition To automatically detect peri-
ods of eating (free-living
condition)

iPhone 4 (accelerometer
and gyroscope) placed
inside a pouch, wrapped
snugly around the fore-
arm

Wrist motion (linear and
rotational)

Results show an accuracy of
81% for detecting eating at
1 s resolution

Ermes et al.,
2008

Self-monitoring (physi-
cal activity)

Gesture recognition To recognise sports performed
by the subjects

3-D accelerometers on hip
and wrist and GPS infor-
mation

Physical movement The total accuracy of the
activity recognition using
both supervised and unsu-
pervised data was 89% that
was only 1% unit lower
than the accuracy of activity
recognition using only
supervised data. The accu-
racy decreased by 17% unit
when only supervised data
were used for training and
only unsupervised data for
validation.

Everett et al.,
2018

Self-monitoring (physi-
cal activity), self-con-
trol (physical activity),
optimise goal setting

Real-time analytics
with personalised
micro-interven-
tions

Automatically translate various
raw mobile phone data into
insights about user’s life
habits. Provide personal-
ised, contextual, just-in-
time, just-in place recom-
mendations (tailored mes-
sages)

Phone accelerometer Physical movement Physical activity increased by
2·8 metabolic equivalents of
task (MET) – hours per
week, weight reduced by
1·6 kg (P< 0·001) (˜2%).
BMI declined by 0·6 kg/m2

(P< 0·001), and waist cir-
cumference was reduced by
1·4 cm (P< 0·01)

Fontana et al.,
2014

Self-monitoring (eating
behaviour)

Gesture recognition To objectively monitor inges-
tive behaviour in free-living

A jaw motion sensor, a
hand gesture sensor
and an accelerometer
(integrated into a device
and wirelessly interface
to a smartphone)

Jaw and hand motion The system was able to detect
food intake with an average
accuracy of 89·8%

Forman et al.,
2018

Self-monitoring (eating
behaviour), self-con-
trol (eating behav-
iour), optimise goal
setting

Real-time analytics
with personalised
micro-interven-
tions

Predict dietary lapses and
deliver a targeted interven-
tion designed to prevent the
lapse from occurring

Ensemble methods (com-
bining weighted vote of
predictions from random
forest, Logit. Boost,

Ecological momentary
assessment (EMA) 6
times a dayþ ad hoc
entry of lapse event

Of the twenty-one possible
triggers, 29% of interven-
tion triggers were based on
time of day, 16·7% based
on low motivation and 10%
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Bagging, Random
Subspace, Bayes Net)

based on fatigue. The
remaining eighteen triggers
were identified as risk fac-
tors < 10% of the time.
There was a reduction in
unplanned lapses.
Participants averaged a
3·13% weight loss

Forman et al.,
2019a

Self-monitoring (eating
behaviour), self-con-
trol (eating behav-
iour), optimise goal
setting

Real-time analytics
with personalised
micro-interven-
tions

Predict dietary lapses and
deliver a targeted interven-
tion designed to prevent the
lapse from occurring

Ensemble methods (e.g.,
combining weighted vote
of predictions from
Random Forest, Logit.
Boost, Bagging,
Random Subspace,
Bayes Net)

EMA 6 times a dayþ ad
hoc entry of lapse
event

Weight Watcher (WW) þ
OnTrack (OT) participants
reported an average of
29·72 (SD= 29·11) lapses
during the 10-week study
period, and the frequency
decreased through time.
Weight losses were greater
for WWþOT (M= 4·7%,
SE= 0·55) than for WW
(M= 2·6%, SE= 0·80)

Forman et al.,
2019b

Self-monitoring (eating
behaviour), self-con-
trol (eating behav-
iour), optimise goal
setting

Real-time analytics
with personalised
micro-interven-
tions

Predict dietary lapses and
deliver a targeted interven-
tion designed to prevent the
lapse from occurring

Reinforcement learning
algorithm

Physical activity mea-
sured in minutes of
moderate-to-vigorous
physical activity
(MVPA) using Fitbit
Flex or a similar type
of Fitbit wrist-worn
activity tracker

Proposed system achieved
weight losses equivalent to
existing human coaching
programmes (non-optimised
(NO)= 4·42%, individually
optimised (IO)= 4·56%,
group-optimised
(GO)= 4·39%) at roughly
one-third the cost (1·73 and
1·77 coaching hours/partici-
pant for IO and GO, v. 4·38
for NO)

Fullerton et al.,
2017

Self-monitoring (physi-
cal activity)

Gesture and image
recognition

To recognise activity and sub-
category activity types
through the use of multiple
body-worn accelerometers
in a free-living environment

Nine body-worn acceler-
ometers for a day of free
living

Physical movement The recognition accuracy of
97·6%. Controlled and free-
living testing provided highly
accurate recognition for
sub-category activities
(> 95·0%). Decision tree
classifiers and maximum
features demonstrated to
have the lowest computing
time

Goldstein
et al., 2018

Self-monitoring (eating
behaviour)

Predictive analytics Predict dietary lapses Ensemble methods (com-
bining weighted vote of
predictions from random
forest, Logit. Boost,
Bagging, Random
Subspace, Bayes Net)

EMA 6 times a dayþ ad
hoc entry of lapse
event

Participants responded to an
average of 94·6% of EMA
prompts (range= 85·2–
98·9 %) and compliance
remained relatively stable
throughout the study
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Goldstein
et al., 2020

Self-monitoring (eating
behaviour), self-con-
trol (eating behav-
iour) optimise goal
setting

Real-time analytics
with personalised
micro-interven-
tions

To measure dietary lapses
and relevant lapse triggers
and provide personalised
intervention using machine
learning

Decision tree EMA 6 times a dayþ ad
hoc entry of lapse
event

Average of 4·36 lapses per
week (SD= 1·46).
Participants lost an average
of 2·6% of their starting
weight at mid-treatment and
3·4% at end-of-treatment

Hegde et al.,
2017

Self-monitoring (physi-
cal activity)

Gesture recognition To propose an insole-based
activity monitor –
SmartStep, designed to be
socially acceptable and
comfortable

Insole-based sensor sys-
tem: contains a 3D
accelerometer, a gyro-
scope

The wrist sensor was worn
on the wrist of the domi-
nant hand like a wrist-
watch

The ActivPal (AP), a com-
mercially available posi-
tional sensor module
worn on the thigh as a
criterion measure during
the free-living study. It
classifies individuals’
activities into periods
spent sedentary, stand-
ing and stepping

Physical movement The overall agreement with
ActivPAL was 82·5% (com-
pared with 97% for the lab-
oratory study). The
SmartStep scored the best
on the perceived comfort
reported at the end of the
study

Hezarjaribi
et al., 2018

Self-monitoring (energy
intake)

Speech recognition To facilitate nutrition monitor-
ing using speech recogni-
tion and text mining

Smartphone microphone Speech Speech2Health achieves an
accuracy of 92·2% in com-
puting energy intake

Hossain et al.,
2020

Self-monitoring (eating
behaviour)

Image recognition To detect and count bites and
chews automatically from
meal videos

Video recorder Video images Mean accuracy of
85·4% ± 6·3% concerning
manual annotation was
obtained for the number of
bites and 88·9% (± 7·4%)
for the number of chews

Hua et al.,
2020

Self-monitoring (physi-
cal activity)

Gesture recognition To classify nine different
upper extremity exercises

Triaxial IMU Physical movement (kin-
ematics)

Random forest models with
flattened kinematic data as
a feature had the greatest
accuracy (98·6%). Using
the triaxial joint range of
motion as the feature set
resulted in decreased accu-
racy (91·9%) with faster
speeds

Huang et al.,
2017

Self-monitoring (eating
behaviour)

Gesture recognition Recognise eating behaviour
and food type

On-board real-time deci-
sion algorithm; chewing
detection algorithm;
decision trees

Electromyography
embedded in wearable
glasses connected to
the smartphone

96% accuracy in detecting
chewing and classifying five
types of food
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Jain et al.,
2018

Self-monitoring (physi-
cal activity)

Gesture recognition To classify activities using
built-in sensors of smart-
phones

The phone kept in the front
pocket of the subject’s
trousers, built-in acceler-
ometer and gyroscope
sensor

Physical movement Average activity classification
accuracy achieved using
the proposed method was
97·12%

Jiang et al.,
2020

Self-monitoring (energy
intake)

Image recognition To develop a deep model-
based food recognition and
dietary assessment system
to study and analyse food
items from daily meal
images (e.g., captured by
smartphone)

Existing datasets Images The system was able to rec-
ognise food items accu-
rately with top-1 accuracy of
71·7% and top-5 accuracy
of 93·1%

Juarascio
et al., 2020

Self-monitoring (eating
behaviour)

Predictive analytics To detect changes in HRV to
in turn detect the risk of
experiencing an emotional
eating episode in an eco-
logically valid setting

Empatica E4 wrist-sensor
(photoplethysmography:
non-invasive the optical
measurement that can
derive cardiovascular
features from light
absorption of the skin)
and EMA six prompts
per day (participants
were also instructed to
self-report immediately
following an emotional
eating episode and
answer the same
questions)

Heart rate variability
(HRV)

Support vector machine
(SVM) models using fre-
quency-domain features
achieved the highest classi-
fication accuracy (77·99%),
sensitivity (78·75%) and
specificity (75·00%), though
were less accurate at classi-
fying episodes (accuracy
63·48%, sensitivity 62·68%
and specificity 70·00%) and
did not meet acceptable
classification accuracy

Kang et al.,
2019

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To predict the energy expendi-
ture of physical activities

AirBeat system: built-in
patch-type sensor mod-
ule for wireless monitor-
ing of heart rate,
exercise index, ECG
and a three-axial accel-
eration motion detector

Physical movement, HR,
exercise index, ECG,
humidity, and tempera-
ture

RMSE of 0·1893 and R2 of
0·91 for the energy expendi-
tures of aerobic and anaero-
bic exercises

Kim et al.,
2015

Self-monitoring (physi-
cal activity)

Gesture and image
recognition

To recognise sedentary
behaviour

Two accelerometers (waist
over the right hip and
right thigh) and a wear-
able camera (around the
neck using a lanyard)

Physical movement ActivPAL showed the most
accurate estimate of total
sedentary time with MAPE
of 4·11% and percentage of
bias of –3·52%

Korpusik et al.,
2017

Self-monitoring (energy
intake)

Speech recognition To automatically extract food
concepts (nutrients and
energetic intake) from a
user’s spoken meal descrip-
tion

Amazon Mechanical Turk
(AMT) where Turkers
were to record ten meal
descriptions

Speech 83% semantic tagging accu-
racy

Kyritsis et al.,
2019

Self-monitoring (eating
behaviour)

Gesture recognition To automatically detect in-
meal food intake cycles
using the inertial signals
(acceleration and orientation

Off-the-shelf smartwatch
(acceleration and orien-
tation velocity)

In-meal bite detection Achieved the highest F1
detection score (0·913 in the
leave-one subject-out
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velocity) from an off-the-
shelf smartwatch

experiment) as compared
with existing algorithms

Lin et al., 2012 Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To recognise physical activ-
ities and their corresponding
energy expenditure

Motion sensors and an
ECG sensor

Physical movement and
ECG

Recognition accuracies using
decision trees in the cross-
validations ranged from
95·52 to 97·70%

Lin et al., 2019 Self-monitoring (physi-
cal activity, energy
expenditure)

Image recognition To estimate energy expendi-
ture of physical activity in
gyms

Kinect for XBOX 360 sen-
sors (depth and motion
sensing)

Physical movement
(Kinect skeletal data)

The measured and predicted
metabolic equivalents of
task exhibited a strong posi-
tive correlation

Liu et al., 2012 Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To recognise the physical
activity

Two triaxial accelerome-
ters (at hip and wrist),
and one ventilation sen-
sor secured to the abdo-
men (AB) at the level of
the umbilicus

Ventilation (abdomen),
motion (hip), motion
(wrist)

Correctly recognised the thir-
teen activity types 88·1% of
the time, which is 12·3%
higher than using a hip
accelerometer alone. Also,
the method predicted
energy expenditure with a
root mean square error of
0·42 MET, 22·2% lower
than using a hip accelerom-
eter alone

Liu et al., 2015 Self-monitoring (physi-
cal activity and
energy expenditure),
self-control (eating,
physical activity),
optimise goal setting

Gesture recognition
and real-time
analytics with per-
sonalised micro-
interventions
(1 subject)

To recognise physical activity
and provide health feedback

Android phone with built-in
accelerometer and mag-
netometer

Nine basic daily physical
activities: walking, jog-
ging, ascending and
descending stairs,
bicycling, travelling up
in an elevator, travel-
ling down in an eleva-
tor, using an escalator
and remaining station-
ary

Achieved an average recogni-
tion accuracy of 98·0% with
a minimised energy
expenditure

Liu et al., 2018 Self-monitoring (eating
behaviour)

Image recognition To recognise food items Camera on smartphones Food type (1) outperformed existing work
in terms of food recognition
accuracy (top-1: 77·5%;
top-5: 95·2%); (2) reduced
response time that is equiv-
alent to the minimum of the
existing approaches and (3)
lowered energy consump-
tion which is close to the
minimum of the state of the
art

Lo et al., 2020 Self-monitoring (eating
behaviour)

Image recognition To estimate the portion size of
food items consumed

Camera Portion size (often com-
monly seen food cat-
egories including
burger, fried rice,

Mean accuracy of up to
84·68%
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pizza, etc. Each cat-
egory has twenty food
models with different
shape geometries and
portion size)

Lopez-Meyer
et al., 2010

Self-monitoring (eating
behaviour)

Image recognition To describe the detection of
food intake by a support
vector machine classifier
trained on-time history of
chews and swallows

Videotaped by a cam-
corder to capture subject
activity

Chewing and swallowing The highest accuracy of
detecting food intake (94%)
was achieved when both
chews and swallows were
used as predictors

Mo et al., 2012 Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To estimate energy expendi-
ture

Wireless wearable multi-
sensor integrated mea-
surement system
(WIMS): two triaxial
accelerometers, worn at
the hip and wrist

Body motion and breath-
ing

Under free-living conditions,
WIMS correctly recognised
the activity intensity level
86% of the time

Montoye et al.,
2016

Self-monitoring (physi-
cal activity)

Gesture recognition To recognise physical activity
type

Oxycon Mobile portable
metabolic analyser and
four accelerometer-
based activity monitors

Physical movement Overall classification accuracy
for assessing activity type
was 66–81% for accelerom-
eters mounted on the hip,
wrists and thigh, which
improved to 73–87% when
combining similar activities
into categories. The wrist-
mounted accelerometers
achieved the highest accu-
racy for individual activities
(80·9–81·1%) and activity
categories (86·6–86·7%);
accuracy was not different
between wrists. The hip-
mounted accelerometer had
the lowest accuracy (66·2%
individual activities, 72·5%
activity categories)

Päßler et al.,
2014

Self-monitoring (eating
behaviour)

Sound recognition To recognise chewing sounds Microphones applied to the
outer ear canal

Chewing sound Precision and recall over 80%
were achieved by most of
the algorithms

Parkka et al.,
2010

Self-monitoring (physi-
cal activity)

Gesture recognition To automatically recognise the
physical activity

Nokia wireless motion
bands 3-D accelerome-
ter

Physical movement Overall accuracy was 86·6
and 94·0% after classifier
personalisation

Pouladzadeh
et al., 2014

Self-monitoring (energy
intake)

Image recognition To estimate food energy and
nutrition

The built-in camera of
smartphones or tablets

Food size, shape, colour
and texture. Food por-
tion was estimated
based on the area

Accuracies in detecting single,
non-mixed and mixed foods
were 92·21, 85 and 35–
65%, respectively

Pouladzadeh
et al., 2015

Self-monitoring (eating
behaviour)

Sound recognition To estimate food energy and
nutrition using a cloud-

Built-in camera of smart-
phones or tablets

Food size, shape, colour
and texture. Food

By using a cloud computing
system in the classification
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based support vector
machine (SVM) method

portion was estimated
based on the area

phase and updating the
database periodically, the
accuracy of the recognition
step has increased in single
food portion, a non-mixed
and mixed plate of food
compared with LIBSVM

Rabbi et al.,
2015

Self-monitoring (physi-
cal activity), self-con-
trol (physical activity),
optimise goal setting

Real-time analytics
with personalised
micro-interven-
tions

To automatically (1) track
physical activity, (2) analyse
activity and food logs to
identify frequent and nonfre-
quent behaviours and (3)
generate personalised sug-
gestions that ask users to
either continue, avoid or
make small changes

Accelerometer and GPS,
smartphone food logging

Four most common
daily physical activities –
walking, running, sta-
tionary (sitting or
standing) and driving

Physical activity increased by
2·8 metabolic equivalents of
task (MET) – hours per
week (SD 6·8; P= 0·02)

Rachakonda
et al., 2020

Self-monitoring (energy
intake)

Image recognition To automatically detect, clas-
sify and quantify the objects
from the plate of the user

A camera attached to
glasses

Food type, amount, time
of eating

The iLog model has produced
an overall accuracy of 98%
with an average precision of
85·8%

Sazonov et al.,
2010

Self-monitoring (eating
behaviour)

Sound recognition To detect acoustical swallow-
ing

Throat microphone located
over laryngopharynx

Swallowing sounds Average weighted epoch rec-
ognition accuracy for intra-
visit individual models was
96·8% which resulted in
84·7% average weighted
accuracy in detection of
swallowing events

Sazonov et al.,
2012

Self-monitoring (eating
behaviour)

Gesture recognition To detect periods of food
intake based on chewing

Piezoelectric strain gauge
sensor

Jaw movement Classification accuracy of
80·98% and a fine time res-
olution of 30 s

Sazonov et al.,
2016

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To describe the use of a
shoe-based wearable sen-
sor system (SmartShoe)
with a mobile phone for
real-time recognition of vari-
ous postures/physical activ-
ities and the resulting EE

Five force-sensitive resis-
tors (integrated into a
flexible insole) and an
accelerometer

Physical movement Results showed a classifica-
tion accuracy virtually identi-
cal to SVM (∼95%) while
reducing the running time
and the memory require-
ments by a factor of > 103

Spanakis
et al., 2017a

Self-monitoring (eating;
emotions)

Predictive analytics Analyse individual states of a
person status (emotions,
location, activity, etc.) and
assess their impact on
unhealthy eating

Classification decision
trees; hierarchical
agglomerative clustering

EMA 10 times a dayþ ad
hoc entry of lapse
event

Participants were clustered
into six groups based on
their eating behaviour and
specific rules that discrimi-
nate which conditions lead
to healthy v. unhealthy
eating
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Spanakis
et al., 2017b

Self-monitoring (eating;
emotions), self-con-
trol (eating)

Real-time analytics
with personalised
micro-interven-
tions

Analyse user-specific data,
highlight most discriminating
patterns that lead to unheal-
thy eating behaviour and
providing feedback (person-
alised warning messages
before a possible unhealthy
eating event)

Classification decision
trees and hierarchical
agglomerative clustering

EMA 6 times a dayþ ad
hoc entry of lapse
event

Participants reported on aver-
age 3·6 eating events
(SD= 1·1) per day

Stein et al.,
2017

Self-monitoring (eating;
physical activity;
emotions), self-con-
trol (eating; physical
activity), optimise
goal setting

Real-time analytics
with personalised
micro-interven-
tions

Predict dietary lapses and pro-
vide adaptive semi-individu-
alised feedback to users
regarding their eating
behaviour

Used a previously used
algorithm which used
decision tree

Chatbot Percentage of healthy meals
increased by 31% of total
meals logged at baseline to
67% within 21 weeks; the
percentage of unhealthy
meals decreased by 54%.
Users averaged 2·4 kg or
2·4% weight loss, and
75·7% (53/70) of users lost
weight in the programme

Tao et al.,
2018

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture and image
recognition

To estimate energetic
expenditure

Camera, two wearable
accelerometers

Physical movement, HR,
exercise index, humid-
ity and temperature

The fusion of visual and iner-
tial data reduces the estima-
tion error by 8 and 18%
compared with the use of
visual-only and inertial sen-
sor only, respectively, and
by 33% compared with a
MET-based approach

Thomaz et al.,
2015

Self-monitoring (eating) Sound recognition Recognise eating behaviour
(chewing and biting sound
from ambient noises)

SVM; nearest neighbours
and random forest

Wrist-worn audio record-
ing device

Detected eating with 86·6%
accuracy

Vathsangam
et al., 2011

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To estimate energy expendi-
ture during treadmill walking

Inertial measurement unit
(IMU): triple-axis accel-
erometer, triaxial gyro-
scopes

Physical movement Combining accelerometer and
gyroscope information leads
to improved accuracy com-
pared with using either sen-
sor alone

Vathsangam
et al., 2014

Self-monitoring (physi-
cal activity, energy
expenditure)

Gesture recognition To detect physical activity
using different features

Phone-based triaxial accel-
erometer

Physical movement Feature combinations corre-
sponding to sedentary
energy expenditure, seden-
tary heart rate and sex
alone resulted in errors that
were higher than speed-
based models and nearest-
neighbour models. Size-
based features such as
BMI, weight and height pro-
duced lower errors. Weight
was the best individual
descriptor followed by
height.
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Walker et al.,
2014

Self-monitoring (eating
behaviour)

Sound recognition To automatically detect inges-
tion

Throat microphone located
over laryngopharynx

Eating sound > 94% of ingestion sounds
are correctly identified with
false-positive rates around
9% based on 10-fold cross-
validation

Wang et al.,
2019

Self-monitoring of
weight loss progress

Predictive analytics Predict weight loss based on
socio temporal context

Linear regression; stochas-
tic gradient descent
(SGD)

Secondary data Weight loss can be predicted
based on temporal-social
information

Yunus et al.,
2019

Self-monitoring (energy
intake)

Image recognition To automatically estimate food
attributes such as ingre-
dients and nutritional value

Existing image datasets Food type and portion Results showed the top 1
classification rate of up to
85%

Zhang et al.,
2017

Self-monitoring (eating
behaviour)

Gesture and image
recognition

To detect eating Wrist-worn sensor
(Microsoft Band 2-accel-
erometer and gyro-
scope) and an HD
webcam camera

Eating and non-eating
gestures

Results showed a correlation
between feeding gesture
count and energetic intake
in unstructured eating
(r= 0·79, P-value= 0·007)

Zhang et al.,
2018

Self-monitoring (physi-
cal activity)

Wi-Fi signal recog-
nition

To recognise general physical
activity

The software platform, a
signal transmitter and a
signal receiver

Wi-Fi signal Results showed a recognition
rate of the general presence
of physical activity of
99·05%, an average recog-
nition rate of 92% when
detecting four common
classes of activities

Zhou et al.,
2019

Self-monitoring (physi-
cal activity)

Predictive analytics Predict exercise lapse SVM; logistic regression Secondary data Discontinuation prediction
score (DiPS) makes accu-
rate predictions on exercise
goal lapse based on short-
term data. The most predic-
tive features were steps and
physical activity intensity

Zhou et al.,
2020

Self-monitoring (physi-
cal activity), self-con-
trol (physical activity),
optimise goal setting

Real-time analytics
with recommen-
dations

Adaptively compute personal-
ised step goals that are pre-
dicted to maximise future
physical activity for each
participant based on all the
past steps’ data and goals
of each participant

Behavioural analytics algo-
rithm (BAA)

Phone accelerometer Participants in the intervention
group had a decrease in
mean (SD) daily step count
of 390 (490) steps between
run-in and 10 weeks, com-
pared with a decrease of
1350 (420) steps among
control participants (n 30;
P= 0·03). The net differ-
ence in daily steps between
the groups was 960 steps
(95% CI 90, 1830 steps)
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trackers, smartphone in-built accelerometers or EMA to track
one’s physical activity. Manual food logging and EMA were
commonly used to track one’s dietary habits (e.g., type,
amount and triggers of food intake). Resultant data were then
used to train the app’smachine learning technology to recom-
mend optimised goals and action plans for better self-control,
adherence and success in weight loss and weight loss main-
tenance. More details on each intervention are shown in
Table 4. Intervention duration ranged from 3 to 16weeks
of which 50% of the studies reported the inclusion of run-
in periods of 1–2 weeks to collect baseline user data and
assess user technological uptake and adherence(48–50,54,106).
Of the ten studies on real-time analytics, one used
Chatbots(53) and five used EMA(47–50,106). EMA frequency
ranged from six to ten times a day and the number of EMA
questions ranged from15 to 21 questions. Commonquestions
were on timing (e.g., morning; afternoon; night), location
(e.g., home; work), emotions (e.g., sadness; boredom; stress),
activity (e.g., watching television; socialising) physical state/
internal cue (e.g., hunger; cravings; fatigue) and situational
triggers (e.g., visual food temptation/availability). The remain-
ing three studies collected data on step count using acceler-
ometers and food intake using manual logging through
smartphone apps.

Three studies(26,53,54) focused on only improving physi-
cal activity, four studies focused on only improving dietary
behaviours(48–50,106) and three studies(29,51,52) focused on
both. All five studies(29,48,49,50,53) on dietary lapse preven-
tion reported percentage increases in dietary adherence,
but only one study reported statistically significant results
(P < 0·05), suggesting mixed findings(50). Two of the three
studies on preventing exercise lapses reported significant
(P < 0·05) increases in step count and metabolic equivalent
task(26,53). This could be attributed to the personalisation of
goals that were coherent with each users’ lifestyle habits

based on the information retrieved from their calendar
apps (indicates availability for exercise) and health app
(indicates activity patterns)(26). Weight loss outcomes
ranged from an average of 2·4 –4·7 %(29,48–50,106) of which
only two were statistically significant (P < 0·05)(26,50).
Three studies reported the use of Bluetooth enabledweigh-
ing machines that synchronise weight data to the users’
phone apps, while the rest used manually-input weight.

Sixty percentage of the studies were randomised con-
trolled trials, while the rest adopted observational and
quasi-experimental designs. One study only recruited
adults who were overweight, while the rest also included
healthy adults(106). The study sample sizes ranged from 8
to 181 participants, with mean ages ranging from 28·3 to
56·6 years old, 47–86·0% of females and a mean BMI of
27·3–37·0 kg/m2. Three studies reported model accuracies
ranging from 69·2 to 83·8% in predicting dietary lapses,
which is lower than those in the studies on machine per-
ception(48–50). This could be due to the inclusion of volatile
complex human behavioural factors such as dietary lapse
triggers into the prediction models that could have affected
the model accuracies. Retention/completion rate ranged
from 44 to 86% in eight of the nine studies, indicating vary-
ing levels of adherence(26,48,49,50,53,54,106). Five studies
assessed user acceptability/satisfaction using short surveys
and validated instruments, namely Technology Acceptance
Model Scales and Validated System Usability
Scale(26,29,49,50,53). However, the cut-off score to indicate
acceptable acceptability/satisfaction was unclear.

Machine learning techniques
Classifiers used included decision trees (n 5)(51,64,86,99,106),
random forests (n 8)(47,49,50,56,72,74,90,94), rotational forests
(n 1)(81), Bayesian (n 8)(47,49,50,73,82,84,86,110), k-nearest

Table 3 Summary of AI features (that uses machine learning), instruments/sensors, sensing domains and functions about weight
management

AI features Instruments/sensors Sensing domains

Gesture recognition Accelerometer(26,49,50,29,48,51,52,55,61,62,65,81–92,95,96,98,99,101,103,104),
magnetometers(51,81,83,90,102) and gyroscope(61,65,81,82,89–91,102)

(built-into smartphones kept in front pocket or worn on the ear,
wrist, hip or leg)

Inertia: arm, hand-to-mouth, jaw
movement (bite detection), physical
activity

Five force-sensitive resistors(100) Pressure
Heart rate monitor (patch-type sensor or built-in smartphone/
smartwatch)(86), photoplethysmography(107), electrocardiogram(95),
ventilation sensor(96)

Physiological: cardiovascular parame-
ters mainly heart rate, ventilation

Piezoelectric sensor(56,60,70,97), electromyography (EMG) electrodes
(temporal muscle activity during mastication)(58,60,64)

Swallowing movement (jaw and skin),
chewing cycle and food type

Global positioning system (GPS)(52,87) Location
Image recognition Video recorder(63,68) Images of food item/group/type

Camera(34,66,67,74,78,79,93,94) Images of food size, shape, colour,
portion and texture

Sound recognition Ear microphone (worn on one’s inner ear, outer ear, wrist, neck near
the jaw/throat)(58,59,69,71,73)

Chewing sound (bone-conducted food
breakdown sounds)

Speech recognition Microphone (smartphone in-build microphone)(75) Verbal food description or nutrition label
Wireless signal recog-
nition

Signal receiver(109) Wireless signals

2010 HSJ Chew et al.

https://doi.org/10.1017/S1368980021000598 Published online by Cambridge University Press

https://doi.org/10.1017/S1368980021000598


Table 4 Details of studies that used real-time analytics with personalised micro-interventions (n 10)

Author, year Intervention

Intervention
duration; run-in
period* Subjective data Objective data Feasibility and acceptability Accuracy

Everett et al.,
2018

Sweetech app – uses machine learn-
ing to automatically translate raw
data streams originating from the
patient’s mobile phone and into
insights about the individual’s life
habit and provides personalised,
contextual, just-in-time, just-in-place,
recommendations

12 weeks, NR Demographic information, past medi-
cal history and medications. 4-item
Physical Activity States of

Change Questionnaire

Weight: digital body weighing
scale (Bluetooth)

Waist circumference: flexible
measuring tape

Phone accelerometer

86% retention;
Validated System Usability Scale:
median 78%;

74% would like to use the Sweetch
app; 83% found the app easy to
use; 72% found the functions of the
app well integrated, 89% felt that
most people could learn to use the
app very quickly and 77% felt confi-
dent

using the app

NR

Forman et al.,
2018

OnTrackþ dietary weight loss pro-
gramme called Weight Watcher
(WW) – uses machine learning algo-
rithm to automatically build models
of lapse behaviour, predict lapses
before they occur and delivers
micro-interventions (messages)
when lapse risk is high

8 weeks;
2 weeks

Behavioural risk factors and lapse
behaviour (21: affect, boredom, hun-
ger, cravings, tiredness, unhealthy
food availability, temptations,
missed meals/snacks, self-efficacy
(confidence), motivation, socialising
(with or without food present), TV,
negative interpersonal interactions,
healthy food presence, cognitive
load, food cues (advertisements),
hours of sleep, exercise, alcohol
consumption, planning food intake,
time of the day

Height and weights: cali-
brated scale and stadiom-
eter

85·1% completed; 70·15% opened
risk alerts; Technology Acceptance
Model Scales (TAMS): M= 6·14,
SD = 1·58 (app was easy to use);
minimal technical issues (M= 2·91
out of 7, SD = 1·24); Participants
rated the app as moderately

useful (M= 4·64, SD = 1·58) and enjoy-
able (M= 4·37, SD= 1·62), with a
somewhat positive behavioural
intention

to use (M= 4·48, SD= 1·86)

72% accuracy,
70% sensitivity
and 72% speci-
ficity, 80% nega-
tive predictive
value

Forman et al.,
2019a

OnTrackþWW 10weeks;
2 weeks

Behavioural risk factors and lapse
behaviour (seventeen potential
lapse triggers, i.e., affect, boredom,
hunger, cravings, tiredness, unheal-
thy food availability, temptations,
missed meals/snacks, self-efficacy,
socialising, watching TV, negative
interpersonal interactions, cognitive
load, food cues/advertisements,
hours of sleep, alcohol consump-
tion, and planning food intake. Time
of day, automatically measured,
served as an 18th trigger.)

Weight: Yumani Smart Scale
(Bluetooth)

64·4% completed; 46·9% opened risk
alerts; TAMS: M= 4·70, SD = 1·52

69·2% sensitivity;
83·8% specificity

Forman et al.,
2019b

AI-optimised interventions include indi-
vidually optimised (i.e., at each of
the 24 intervention points, partici-
pants receive the intervention with
the highest reward score for them
so far, except when the system is
‘exploring’) or group-optimised (i.e.,
interventions are assigned based on
the highest possible total reward

16 weeks; NR Energy intake: participants logged all
food and beverages using the Fitbit
mobile phone application

Weigh: Yumani Smart Scale
(Bluetooth)

Physical activity: measured
in minutes of moderate-to-
vigorous physical activity
(MVPA) using a wrist-worn
activity tracker

A short survey of coaches: the portal
was easy to use (M= 3·33 out of 4)
and able to effectively carry out the
remote coaching (M= 3·33 out of 4);

76·5% reported that the contact fre-
quency was satisfactory

NR
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Table 4 Continued

Author, year Intervention

Intervention
duration; run-in
period* Subjective data Objective data Feasibility and acceptability Accuracy

scores, across all interventions
assigned, given a predetermined
amount of total intervention time
across all participants for the day)

Liu et al., 2015 SmartCare – an energy-efficient long-
term physical activity tracking sys-
tem that follows users’ physical
activity habits and gives personal-
ised quantitative health assessment
and health regime suggestion

4 weeks; NR Users’ daily physical activities and
body type: nine basic daily physical
activities: walking, jogging, ascend-
ing and descending stairs, bicycling,
travelling up in an elevator, travelling
down in an elevator, using

an escalator, and remaining stationary

Smartphone built-in acceler-
ometer and magnetometer

NR 98% accuracy in
physical activity
recognition

Rabbi et al.,
2015

MyBehaviour – (1) uses a combination
of automatic and manual logging to
track physical activity (e.g., walking,
running, gym), user location, and
food, (2) automatically analyse activ-
ity and food logs to identify frequent
and nonfrequent behaviours and (3)
generate personalised suggestions
that ask users to either continue,
avoid or make small changes to
existing behaviours to help users
reach behavioural goals

3 weeks, NR Activity tracking and manual food log-
ging either by selecting food items
from a database or directly input
energy information from nutrition
labels. (Users can take photos of
food as reminders to input energy
intake)

Accelerometer and GPS According to the suggestion-rating sur-
vey, participants in the experimental
group had a significantly higher
intention to follow personalised sug-
gestions than those in the control
group in following generic sugges-
tions

NR

Goldstein et al.,
2020

Two OnTrack versions – OnTrack-
short (OT-S) (8 lapse trigger ques-
tions at each EMA survey) and
OnTrack-long (OT-L) (17 lapse trig-
gers questions at each EMA sur-
vey). When an EMA survey was
completed, the algorithm classified
responses as no risk (when a pre-
diction was ‘no lapse’), low risk
(probability of lapse> 40%),
medium risk (probability of lapse
between 40 and 70%) or high risk
(probability of lapse> 70%)

10 weeks;
2 weeks

Seventeen lapse triggers: affect,
sleep, fatigue, hunger, motivation to
adhere to a diet, cravings, boredom,
temptation, cognitive load, confi-
dence, socialising, television, nega-
tive interpersonal interactions,
presence of tempting foods, food
advertisements, planning food, alco-
hol, time/

NR 84·3% completed;
65·4% average EMA survey adher-
ence in OT-S and 60·5% in OT-L

79·8% accuracy of
lapse prediction
(79·7% in
OT-S v. 79·9% in
OT-L); 74·5%
sensitivity in
OT-S v. 77·7% in
OT-L; 83·1%
specificity (84·4%
in OT-S v. 81·7%
in OT-L)

Spanakis et al.,
2017b

Think Slim – uses machine learning to
predict unhealthy eating behaviour
and allow users to report potential
unhealthy eating promoting factors
(emotions, activities, etc.). Emphasis
is given to providing feedback
before possible unhealthy eating
events (i.e., warn users in the
appropriate time manner using a
classification algorithm) and to

8 weeks; 1 week Fifteen lapse triggers: date, food crav-
ing, seven emotions each measured
on ten-point VAS scale (worried,
angry/annoyed, stressed/tense/
relaxed/at ease. Cheerful/happy,
sad/depressed, bored), specific
craving, location, activity, specific
eating, thoughts regarding eating,
food intake image/

NR 70·5% completed NR
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Table 4 Continued

Author, year Intervention

Intervention
duration; run-in
period* Subjective data Objective data Feasibility and acceptability Accuracy

construct groups of eating behaviour
profiles (using a clustering algo-
rithm)

Stein et al., 2017 Lark’s AI health – uses machine learn-
ing to power a Chatbot that mimic
health professionals’ empathetic
health counselling

16 weeks; NR Weight loss, meal quality, physical
activity and sleep data were col-
lected through user input

Data points were user-entered values
for age, gender, height, weight,
dietary intake, with self-reported
anthropometric data and Web-
reported diet intake/

Sleep and physical activity,
partly through automatic
detection by the user’s
mobile phone. User
engagement was
assessed by duration and
amount of app use

44·0% active users by end of the
intervention;

In-app user trust survey: average
scores for satisfaction, disappoint-
ment if not offered and health out-
come were

7·9, 8·3 and 6·73

NR

Zhou et al., 2020 CalFit app – mobile phone app which
delivers daily step goals using push
notifications and allows real-time
physical activity monitoring

10 weeks;
1 week

Socio-demographic information, self-
reported medical history, Barriers to
Being Active Quiz (twenty-one ques-
tions on a ten-point Likert scale on
seven sub-areas: lack of time, social
influence, lack of energy, lack of
willpower, fear of injury, lack of skill,
and lack of resources), International
Physical Activity Questionnaire –
Short Form/

Phone accelerometer 77·5% retention NR

NR, not reported; IMU, inertial measurement unit.
*Included within intervention;

https://doi.org/10.1017/S1368980021000598 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1368980021000598


neighbour (n 5)(86,85,88,91,103), clustering (n 1)(106) and support
vector machines (n 14)(60,68,70,71,73,78,79,86,91,96,97,100,105,107).
Deep learning classifying techniques used were convolu-
tional neural network (n 7)(65,66,76,77,80) of which two were
region-based convolutional neural network(34,65), artificial
neural network (n 4)(62,87,92,98), generalised regression
neural network (n 1)(95), probabilistic neural network(51),
hiddenMarkovmodel (n 4)(59,69,101,109) and natural language
processing (n 2)(75,77). One study used reinforcement learn-
ing(29), five used liner/logistic regression(83,89,94,100,102) and
other classifiers with more unique machine learning algo-
rithms include multi-armed bandit(52), radial basis function
network(95), behavioural analytics algorithm(54) and
Sojourn(93).

Discussion

Through this systematic scoping review, we found and
included sixty-six studies that showed the potential uses
of AI in regulating eating and dietary behaviours, exercise
behaviours and weight loss. We conceptualise the AI
use cases as (1) machine perception to enhance self-
monitoring efficiency; (2) predictive analysis to optimise
weight loss goal setting and action planning and (3) real-
time analytics and personalised micro-interventions to pre-
vent behavioural lapses. In general, the third themes
seemed to be the most homogeneous where all studies
described the use of a mobile phone app to monitor eat-
ing/dietary/exercise behaviours, optimise goal setting
based on real-time data and delivery nudges/prompts to
recommend a healthier behaviour. Predictive analytics
was conducted on a wide variety of variables such as step
count, energy intake, dietary lapse triggers, emotions and
heart rate variability. It is noteworthy that we only found
six studies that focused only on predictivemodelling which
could explain the heterogeneity. Machine perception was
the most diverse with various recognition techniques that
could be used to estimate energy intake and output.
However, the accuracy of recognition technology and
tracking device (e.g., in recognising food items and
tracking heart rates), ease of data collection (e.g., syncing
from various devices to a common data storage server for
computing), degree of automaticity (i.e., risk of privacy
infringement), user uptake (i.e., how adherent are the users
to question prompts or machine-generated recommenda-
tions), machine learning modules (e.g., steps to prepare
and analyse data and selecting the most suitable model
for different datasets) and the comprehensiveness of such
techniques (e.g., the number of food types that can be rec-
ognised) remains challenging. This hinders the practical
implementation of AI into weight management pro-
grammes in a free-living condition, which could explain
why most of the included studies are at the machine per-
ception stage and only ten are real-life use cases for weight
management. Readers should note that heterogeneity tests

such as Q and I2 were not conducted and the aforemen-
tioned observation was derived iteratively through perusal.

Participants in the studies on real-time analytics and
micro-interventions were generally older (seven of eight
studies reported mean age of 40–57 years old) and had a
higher BMI (27–37 kg/m2) than the other included studies.
While variables such as gender/sex/are well-known to
influence the outcomes of weight management pro-
grammes due to differences in body image(111), food intake
choices(112), self-monitoring and self-control(113), we did
not find studies that examined such differences. Future
studies could include a subgroup analysis based on gender
to identify gender-specific target variables that could
enhance weight management outcomes. While all studies
ascertained the benefits of AI in facilitating behavioural
self-regulation, only two out of ten interventional studies
showed statistically significant weight loss post-interven-
tion. This could be due to the difference in intervention
effects on a general compared with an overweight popula-
tion(114,115). Another reason could be due to the short inter-
ventional programme that lasted from 3 to 16 weeks, where
clinically significant weight loss (> 5 % of initial body
weight) is normally observed between 6–9 months post-
intervention(116). On the other hand, mixed findings could
also be attributed to an underpowered sample size of 43
and 55 in the studies that showed significant weight loss
results as compared with the rest that ranged from 52 to
181(29,48,49,50). It is also possible that micro-interventions
in the form of prompting affect different behaviours differ-
ently. For example, increasing physical activity may require
prompts/reminders/cues to motivate an action while such
prompts could have a counter-productive effect on reduc-
ing unhealthy eating as it cues the action of unhealthy eat-
ing(117). Therefore, although we recognise the potential of
AI in enhancing the completeness and convenience of
behaviour change self-monitoring and self-control, its addi-
tional efficiency cannot be established as yet. Moreover, the
majority of the studies were on machine perception while
only ten were on real-time analytics with micro-interven-
tions. This suggests that we are still in the infancy stage
of applying AI on self-regulating weight loss-related behav-
iours as studies are still focused on building accurate and
valid behaviour self-monitoring systems before testing its
effectiveness in predicting and promoting weight loss.

Machine perception
One obvious advantage of using wearable sensors for
machine perception is its potential to enhance the com-
pleteness and accuracy of data collection as it reduces
respondents’ self-reporting burden, a contributing factor
of underreporting shown in up to 30 and 50 % of adults
of normal and overweight(58,110). This is commonly
achieved through the automatic collection of objective
behavioural data, eliminating the common barriers of
adherence such as poor motivation, time constraints and

2014 HSJ Chew et al.
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negative moods(118). However, none of the studies on
machine perception evaluated its effects on weight loss
nor behaviour change and most of the studies did not
assess the accuracy of food energy estimations. This could
be due to the focus on building an accurate and reliable
machine perception system before assessing its validity
on specific weight-related estimations. Nevertheless, stud-
ies have shown that off-loading the need for manual log-
ging (e.g., keeping a food diary, taking pictures and
scanning barcodes) reduces user burden and increases
self-monitoring adherence(119,120). Of note, research has
shown that the frequency rather than accuracy of self-
monitoring is more significant in weight loss(121). Future
studies could examine the efficiency and accuracy of
triangulating gesture data with image and sound in self-
monitoring for weight loss and actual weight loss.

Several limitations were reported including the lower
accuracy of classifiers trained at a group rather than individ-
ual level(62,110) and assessing in a laboratory rather than
free-living conditions(65,84,95). Food recognition techniques
by detecting chewing and swallowing gestures may be
accurate enough to discriminate between hard and soft
food items but not the exact food type especially for liquids
that do not need chewing(64,70,78). This would affect the
accuracy of energy intake estimations and non-optimal rec-
ommendations were given. In terms of usability, the use of
certain wearable devices such as placing electrodes over
one’s skin surface for electromyography may not be com-
fortable and applicable in a free-living condition. Some of
the devices also required the user to switch them on and off
before and after an eating episode, placing a certain
amount of burden on the users. Physical activity may also
bemisclassified when one performs different types of exer-
cises within the same assessment time frame(88,93). Lastly,
sample sizes were small and were comprised of mostly
healthy young adults and hence models may not be repre-
sentative of the entire population, although the data points
collected were enough to develop an accurate
model(89,93,97,98,104). Future studies could take note of these
limitations and address them when possible.

Predictive analytics
Positive dietary outcome expectations have been shown to
significantly correlate with body fat loss(122), weight loss
and weight loss maintenance in obese individuals(123).
Studies included in this category predicted weight loss based
on self-reported or accelerometer-measured exercise inten-
sity (e.g., step count and duration), self-reported diet type
(i.e., fat content and food items), the researcher measured
anthropometrics, adherence to counselling interventions
and socio-demographic profile (i.e., age and sex). Other pre-
dictors include weight energy consumption(124,125), initial
body composition (mainly fat percentage), social interaction
on social media, negatively worded emotional blog
posts(126,127), the historical success rate in diet and exercise

goal achievement and food item consumed (eating poultry
was found to be associatedwith better goal commitment than
eating porcine). These studies used clustering, decision trees,
bag of visual words approach and linguistic inquiry andword
count to classify the data obtained. One study included the
temporal closeness of weight loss-related blog posts (i.e.,
timestamp) and frequency of virtual social interaction (e.g.,
commenting on friends’ posts) into the predictive models
to improve the accuracy of weight loss prediction(127).
Another study developed an algorithm based on the utility-
maximising framework to consider the irrationalities in
human behaviour change in its weight loss predictive
model(84). The inclusion of such behavioural concepts could
inform the future development of predictive models of public
health nutrition and weight loss.

However, despite the strong influence of situational and
environmental factors on behavioural self-regulation, only
one study included the influence of such factors using EMA
in its predictive model(48). EMA has been shown to enhance
the reliability and validity of data collected by reducing the
risk of recall bias and reflect human responses in real-world
settings(128). Exercise lapses were predicted by the number of
weeks one has participated in a weight loss intervention and
the average daily steps in comparison to that of the previous
week(47,105). On the other hand, dietary lapses were predicted
by food type (e.g., oil, pork, fruits) and self-reported EMA fac-
tors such as boredom, motivation, cognitive load and tempt-
ing food availability(50,129). In a study on 469 overweight and
obese participants who attended a behavioural weight loss
programme, negative affect and social situations were identi-
fied as dietary lapse triggers at 9 months into the programme
while affect, urges and situational dietary adherencewere sig-
nificantly associated with weight loss 12months into the pro-
gramme(130). Neither affect, negative physical state, urges and
temptations, time pressure, nor social situation was signifi-
cantly associated with physical activity(130). Suggestively, the
predictors of physical activity and dietary adherence differ
and future research and interventions should consider exam-
ining such differences to develop target and efficient
intervention.

Real-time analytics and micro-interventions
Three studies reported significant improvements in partici-
pants’ diet and exercise lapse prevention after undergoing a
micro-intervention that involved behavioural lapse self-
monitoring through smartphone app nudges/prompts(26,50,53).
This coincideswith a study that found a 1%decrease in the risk
of exercise lapsewith every additional 10min of physical activ-
ity, suggesting that prior event/experience with self-regulation
success increases the likelihood of preceding adherence(131).
Only two studies reported a statistically significant weight loss
inparticipantswhounderwentAI-assistedweight loss interven-
tion. The randomised controlled trial with the largest sample
size (n 181) only found a significant interventional effect when
its interaction with diet type was considered(49). Concurrently,

Artificial intelligence for weight loss 2015
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this study reported the lowest completion rate of 62·9% as
compared with the two aforementioned studies with higher
completion rates of 86%(26) and 97·7%(50). Given that larger
sample sizes reflect higher generalisability of results, this dis-
crepancy suggests that interventional prompts could only be
effective in inducing weight loss if the users react and adhere
to theweight loss prompts and recommendations. This is espe-
cially when studies have shown that prompts and reminders
could be deemed annoying and reduce app utilisation.
Future studies should also note issues on legitimacy, privacy,
the effort required and an ability to monitor behaviours and
goals automatically in real-time(132).

Potential mechanism of how artificial intelligence
can be used to improve self-regulation for weight
loss and weight-related behaviour changes
Through this review, we highlight that a large gap in the
evidence on how AI can assist in weight loss self-regulation
is the lack of integration and synthesis of all three AI func-
tion categories. Therefore, we conceptualised the potential
use of AI in self-regulation for weight loss based on the cur-
rent findings and present it in Fig. 4. Thismechanism is akin
to how humans make behavioural decisions by firstly using
our senses to detect and recognise certain behaviours, trig-
gers and outcomes. Next, information is processed and
learned in the brain by drawing linkages between past
behaviours and current outcomes to anticipate future out-
comes. Lastly, anticipations are updated based on new
information while the brain decides and self-regulates
behavioural outputs to achieve the desired goal(133).

There are several research gaps. Firstly, intervention
effectiveness should consider the influence of sex, age
and comorbidities which are well-known primary predic-
tors of body weight. Secondly, future studies on AI-assisted
weight loss interventions could consider the influence of an
obesogenic environment that presents one with various
temptations and sets one up for self-regulation failure.
Moreover, affect, habit strength and motivation have been
well-established to be significant predictors of behaviour
change and could be considered in future studies. It is note-
worthy that data could be stored and retrieved from a cloud
(on-demand data centres over the internet) or edge com-
puting (near the source, e.g., smartphone) devices to allow
machine learning algorithms to optimise and personalise
existing weight loss predictive models(134).

Limitations
Firstly, the lack of Chinese database could have limited our
search results on the use of AI, especially when China has
been rapidly developing their technological capabilities in
recent years. Future studies could examine the use of AI in
studies published in other languages to facilitate further dis-
cussions on the potential of AI in self-regulation for weight
loss. Next, as this scoping review aimed to present the
potential of AI to enhance self-regulation for weight man-
agement, a broad and comprehensive scope of the review
was needed. Therefore, although some AI applications
were tested on small samples of a mixture of adults who
were both healthy and overweight, such articles were
included due to the consideration of feasibility that they
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are still at their infancy of development. Lastly, our search
results could be limited to the AI applications published in
academic journals and not those which have gone straight
to consumer use.

Conclusion

In summary, the current study elucidated the potential use of
AI to improveweight loss through a proposed framework that
includes machine perception, predictive analytics and real-
time analytics with micro-interventions. However, this is con-
tingent upon other situational, environmental and emotional
factors that have to be accounted for in the AI architectures.
Future studies could compare the effectiveness of AI-assisted
self-regulation weight loss programmes and existing behav-
iour change programmes to assess the resource efficiency
of AI-assisted interventions.
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