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Abstract. We improve several recent results in the asymptotic integration theory of nonlinear ordinary

differential equations via a variant of the method devised by J. K. Hale and N. Onuchic The results are

used for investigating the existence of positive solutions to certain reaction-diffusion equations.

1 Introduction

Consider the Emden–Fowler like differential equation

(1.1) x ′ ′ + q(t)xλ
= 0, t ≥ t0 ≥ 1,

where λ > 1, the functional coefficient q : [t0, +∞) → [0, +∞) is continuous and

with (eventual) isolated zeros, and xλ
= |x|εx for λ = 1 + ε.

In 1955, F. V. Atkinson published a spectacular result on the oscillation of equa-

tion (1.1) with a proof relying on asymptotic integration theory via the Picard itera-

tions.

Theorem 1.1 ([4, Theorem 1]) A necessary and sufficient condition for the oscillation

of (1.1) is given by

(1.2)

∫ +∞

tq(t)dt = +∞.

The sufficiency part of Theorem 1.1 consisted of a demonstration of the following

claim.

Claim 1.2 If Atkinson’s hypothesis (1.2) does not hold, meaning that we can take

([4, p. 646])

(1.3) η = λ

∫ +∞

t0

tq(t)dt < 1,
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then the boundary value problem

{

x ′ ′ + q(t)xλ
= 0, t ≥ t0,

limt→+∞ x(t) = 1, limt→+∞ x ′(t) = 0

has at least one solution.

In recent years, Theorem 1.1 has been considered by several investigators ([7, 9,

14]). We would like hereafter to improve upon the conclusions of [14] and of some

other recent work. Precisely, we shall give a different proof of Theorem 1.1 by con-

trolling the behavior of the derivative x ′(t) for the solutions of (1.1). This type of

analysis has been performed in different circumstances by Coffman and Wong [5,

Theorems 1, 3] and in a general setting by Hale and Onuchic [12].

Some of the classical continuations of Atkinson’s theorem are given in [13,17,18].

Our main motivation comes from a problem on the existence of positive smooth

solutions to the semi-linear elliptic partial differential equation

(1.4) ∆u + f (x, u) + g(|x|)x · ∇u = 0, x ∈ GA,

where GA = {x ∈ R
n : |x| > A} and n ≥ 3. One can find different conclusions

regarding (1.4) in the contributions [1, 2, 6, 10].

2 Local Theory for the Asymptotic Integration of Equation (1.1)

We shall analyze in the following the asymptotic features of some of the (non-

oscillatory) solutions of (1.1) using the Hale-Onuchic results [12].

By local theory we mean those results in whose hypotheses the behavior of the non-

linearity of a differential equation is described on a given family of functions (with

these functions we compare either the solution we are looking for or other functional

quantities associated with the solution) and not throughout its entire domain of ex-

istence.

The conclusions of such results are based on an observation made by Dubé and

Mingarelli [7, Eq. (2.1)], according to which one can combine the Hale-Onuchic

(difficult) hypotheses with a (local) Lipschitz restriction imposed on the nonlinear-

ity of the differential equation. In this way, the functional analysis involved in the

investigation is greatly simplified.

The first local theorem improves upon the results in [14, Theorem 1].

Theorem 2.1 Set M ∈ R and let α, β : [t0, +∞) → R be continuous functions

absolutely integrable over [t0, +∞), with α(t) ≤ β(t) for all t ≥ t0 and such that

limt ′→+∞ α(t ′) = limt ′→+∞ β(t ′) = 0.

Given the sets

CM =

{

u ∈ C([t0, +∞), R) : M −

∫ +∞

t

β(s)ds ≤ u(t)

≤ M −

∫ +∞

t

α(s)ds for all t ≥ t0

}
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and

D =

{

v ∈ C
(

[t0, +∞), R
)

: α(t) ≤ v(t) ≤ β(t) for all t ≥ t0

}

,

assume that

(2.1) α(t) ≤

∫ +∞

t

f
(

s, u(s), v(s)
)

ds ≤ β(t), t ≥ t0,

for all u ∈ CM and v ∈ D, where the function f : [t0, +∞)× R
2 → R is continuous. As

a plus,
∣

∣ f
(

t, u2(t), v2(t)
)

− f
(

t, u1(t), v1(t)
) ∣

∣ ≤ k1(t)
∣

∣u2(t)−u1(t)
∣

∣ + k2(t)
∣

∣v2(t)− v1(t)
∣

∣

for all u1,2 ∈ CM , v1,2 ∈ D and t ≥ t0. Here, the functions k1,2 : [t0, +∞) → [0, +∞)

are continuous and there exists a number ζ > 0 such that

χ = ζ

∫ +∞

t0

k1(t)dt +

∫ +∞

t0

(t−t0)k1(t)dt +

∫ +∞

t0

k2(t)dt +
1

ζ

∫ +∞

t0

(t−t0)k2(t)dt < 1.

Then the boundary value problem

(2.2)











x ′ ′ + f (t, x, x ′) = 0, t ≥ t0 ≥ 0,

limt→+∞ x(t) = M

α(t) ≤ x ′(t) ≤ β(t), t ≥ t0,

has a unique solution.

Proof Define the distance d between the elements v1 and v2 of the set D by the for-

mula

d(v1, v2) = ‖v1 − v2‖L1((t0,+∞),R) + ζ sup
t≥t0

{|v1(t) − v2(t)|}.

The dominated convergence theorem (see [11, pp. 20–21]) ensures that the metric

space S = (D, d) is complete.

We introduce the operator T : D → C([t0, +∞), R) via the formula

T(v)(t) =

∫ +∞

t

f

(

s, M −

∫ +∞

s

v(τ )dτ , v(s)

)

ds, v ∈ D, t ≥ t0.

The restriction (2.1) shows that T(D) ⊆ D, since M−
∫ +∞

(·)
v(s)ds ∈ CM for all v ∈ D.

Claim 2.2 The operator T : D → D is a contraction with coefficient χ.

In fact, we have

ζ|T(v2)(t) − T(v1)(t)| ≤ ζ

∫ +∞

t

k1(s)

∫ +∞

s

|v2(τ ) − v1(τ )|dτds

+

∫ +∞

t

k2(s)
[

ζ|v2(s) − v1(s)|
]

ds

≤

[

ζ

∫ +∞

t0

k1(s)ds +

∫ +∞

t0

k2(s)ds

]

d(v1, v2)
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and
∫ +∞

t

|T(v2)(s) − T(v1)(s)|ds

≤

∫ +∞

t

(s − t)k1(s) ×

∫ +∞

s

|v2(τ ) − v1(τ )|dτds

+
1

ζ

∫ +∞

t

(s − t)k2(s)
[

ζ|v2(s) − v1(s)|
]

ds

≤

[
∫ +∞

t0

(s − t0)k1(s)ds +
1

ζ

∫ +∞

t0

(s − t0)k2(s)ds

]

d(v1, v2).

Now,

∫ +∞

t

∣

∣T(v2)(s) − T(v1)(s)
∣

∣ds + ζ
∣

∣T(v2)(t) − T(v1)(t)
∣

∣ ≤ χd(v1, v2)

for all v1,2 ∈ D and t ≥ t0, which validates the claim.

Denote with v0(t) the fixed point of operator T in D. Then the function x(t) ≡
M −

∫ +∞

t
v0(s)ds is the solution we are looking for.

The next result is a variant of [7, Theorem 2.1].

Theorem 2.3 Let g : [t0, +∞) → [0, +∞) be a continuous function, integrable over

[t0, +∞) and such that limt→+∞ g(t) = 0. Assume that f (t, x, x ′) = f (t, x) is contin-

uous, nonnegative-valued and such that

∫ +∞

t

f
(

s, u(s)
)

ds ≤ g(t), u ∈ XM , t ≥ t0,

∫ +∞

t0

g(t ′)dt ′ ≤ M,

where

XM =

{

u ∈ C
(

[t0, +∞), R
)

: 0 ≤ u(t) ≤ M for all t ≥ t0

}

.

Suppose further that there exists the continuous function k : [t0, +∞) → [0, +∞)

subjected to η =
∫ +∞

t0
(t − t0)k(t)dt < 1 and

∣

∣ f
(

t, u2(t)
)

− f (t, u1(t))
∣

∣ ≤ k(t)
∣

∣u2(t) − u1(t)
∣

∣ , t ≥ t0, u1,2 ∈ XM .

Then, the equation from (2.2) will have a solution x(t) with the asymptotic profile

given by

lim
t→+∞

x(t) = M, 0 ≤ x ′(t ′) ≤ g(t ′), t ′ ≥ t0.

Proof Take α = 0, β = g, k1 = k, k2 = 0 and ζ ∈ (0, 1) with the property that

(2.3) ζ < (1 − η)

(
∫ +∞

t0

k(t)dt

)−1

.

Since χ = ζ
∫ +∞

t0
k(t)dt + η < 1, the conclusion follows readily from Theorem

2.1.
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In its essence, the Hale–Onuchic “philosophy” of asymptotic integration of non-

linear differential equations reduces to transforming the boundary value problem

into the existence problem of a fixed point to an integral operator T, a common fact

in this field, and to identifying an invariant set (D, XM , etc.,) in which one can use,

with minimal effort, a fixed point theorem. This is why in a Hale–Onuchic type of

approach, the verification of the hypotheses of such a (fixed point) theorem is quite

easy, the weight leaning upon the formula of the integral operator (associated with

an intermediate integro-differential problem), respectively upon the detection of in-

variant sets. Some authors, maybe too drastic in this respect, exclude the verification

of the hypotheses of the fixed point theorem from the investigation; see e.g., [8, p. v].

Atkinson’s original claim is improved in the following.

Theorem 2.4 Assume that (1.3) holds. Then, there exists p > 1 such that, for all

c ∈ (0, 1], equation (1.1) has at least one solution x(t) defined in [t0, +∞) with the

property that

(2.4)
c

p
≤ x(t) ≤ c, t ≥ t0.

The asymptotic profile of the solution is given by x(t) = c + o(1), respectively x ′(t) =

o(t−1) when t → +∞.

Proof We shall use Theorem 2.1. So, fix the numbers p > 1, ζ ∈ (0, 1) in order for

(2.3) and
∫ +∞

t0

tq(t)dt <
1

λ
≤

p − 1

p
< 1

to hold.

Define the functions

α(t) =

(

c

p

)λ ∫ +∞

t

q(s)ds, β(t) = cλ

∫ +∞

t

q(s)ds, t ≥ t0.

Also, introduce k1 = k = λq, k2 = 0.

We have

(2.5)

∫ +∞

t0

β(t)dt = cλ

∫ +∞

t0

(t − t0)q(t)dt ≤ c

∫ +∞

t0

tq(t)dt < c

(

1 −
1

p

)

.

According to [14, p. 183], and taking into account (2.5), the double inequality

(2.1) follows from the estimates

α(t) =

∫ +∞

t

q(s)
( c

p

)λ

ds ≤

∫ +∞

t

q(s)

(

c −

∫ +∞

s

β(τ )dτ

)λ

ds

≤

∫ +∞

t

q(s)
[

u(s)
]λ

ds =

∫ +∞

t

f
(

s, u(s)
)

ds, u ∈ Cc,
(

M = c ∈ (0, 1]!
)

≤

∫ +∞

t

q(s)

(

c −

∫ +∞

s

α(τ )dτ

)λ

ds ≤ cλ

∫ +∞

t

q(s)ds = β(t)
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for all t ≥ t0.

Consequently, by applying Theorem 2.1 we establish the existence of a solution

with the formula x(t) ≡ c−
∫ +∞

t
v0(s)ds of the boundary value problem (2.2), where

v0 is the fixed point of operator T in D.

The estimate (2.4) is a by-product of (2.5). More precisely,

c

p
≤ c

[

1 −

∫ +∞

t0

(t − t0)q(t)dt

]

≤ c − cλ

∫ +∞

t0

∫ +∞

t ′
q(s)dsdt ′

≤ c −

∫ +∞

t

β(t ′)dt ′ ≤ c −

∫ +∞

t

v0(t ′)dt ′ = x(t) ≤ c, t ≥ t0.

The proof is complete.

Remark 2.5 We impose this restriction upon c just to make use of (1.3). Elsewhere,

in the spirit of [5], fix C such that

C > λ(C − |c|) > 0, Cλ

∫ +∞

t0

t|q(t)|dt ≤ C − |c|.

Then, the operator T : C → X2(t0; 1) (see [3, p. 4]), where

T(u)(t) = c −

∫ +∞

t

(s − t)q(s)[u(s)]λds, and

C =
{

u ∈ X2(t0; 1) : |u(t)| ≤ C for all t ≥ t0

}

,

is a contraction of coefficient λ
C−|c|

C
. Its fixed point in C is the solution we are looking

for.

The following theorem has been announced in [16, Theorem 2.3].

Theorem 2.6 Consider t0 ≥ 1, a, b ≥ 0, c ∈ (0, 1] and the bounded continuous

functions α, β : [t0, +∞) → [0, +∞) such that α(t ′) ≤ β(t ′) for all t ′ ≥ t0.

Introduce the set Fa,b,c by the formula

Fa,b,c =

{

u ∈ C([t0, +∞), R) : at + b + t

∫ +∞

t

α(s)

s1+c
ds ≤ u(t)

≤ at + b + t

∫ +∞

t

β(s)

s1+c
ds for all t ≥ t0

}

and assume that

α(t) ≤
1

t1−c

∫ t

t0

f (s, u(s))ds ≤ β(t), u ∈ Fa,b,c, t ≥ t0,
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where the function f : [t0, +∞) × R → [0, +∞) is continuous. As a plus,

∣

∣

∣
f
(

t, u2(t)
)

− f
(

t, u1(t)
)

∣

∣

∣
≤

k(t)

t

∣

∣u2(t) − u1(t)
∣

∣

for all u1,2 ∈ Fa,b,c and t ≥ t0. Here, the function k : [t0, +∞) → [0, +∞) is continuous

and such that ς =
1
c

∫ +∞

t0
k(t)dt < 1.

Then the boundary value problem

(2.6)











x ′ ′ + f (t, x) = 0, t ≥ t0,

x(t) ≥ b, t ≥ t0

x(t) = at + O(t1−c), when t → +∞

has a unique solution x(t) with the property that

(2.7) α(t) ≤ t c
[ x(t) − b

t
− x ′(t)

]

≤ β(t), t ≥ t0.

Proof Introduce the set G by the formula

G =

{

v ∈ C
(

[t0, +∞), R
)

: −t−cβ(t) ≤ v(t) ≤ −t−cα(t) for all t ≥ t0

}

.

The distance between the elements v1 and v2 of the set D has the formula

d(v1, v2) = sup
t≥t0

{

t c|v1(t) − v2(t)|
}

,

and the metric space S = (G, d) is complete.

We define the operator T : G → C([t0, +∞), R) taking into account the comments

in [15, Theorem 8]. Precisely,

T(v)(t) = −
1

t

∫ t

t0

s f

(

s, as + b − s

∫ +∞

s

v(τ )

τ
dτ

)

ds, v ∈ G, t ≥ t0.

It is easy to notice that T(G) ⊆ G, since the mapping t 7→ at + b − t
∫ +∞

t
v(s)

s
ds

belongs to Fa,b,c for all v ∈ G.

The estimates given by

t c
∣

∣T(v2)(t) − T(v1)(t)
∣

∣ ≤
1

t1−c

∫ t

t0

sk(s)

∫ +∞

s

|v2(τ ) − v1(τ )|

τ
dτds

≤
1

ct1−c

∫ t

t0

s1−ck(s)ds · d(v1, v2) ≤
1

c

∫ t

t0

k(s)ds · d(v1, v2)

show that the operator T is a contraction of coefficient ς in S.

By denoting with v0 its fixed point, where v0 ∈ G, the solution we are looking for

has the formula x(t) ≡ at + b − t
∫ +∞

t
v0(s)

s
ds.
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Remark 2.7 We notice that, in the circumstances of Theorem 2.6, if we assume

that limt→+∞ t1−cα(t) = limt→+∞ t1−cβ(t) = d ∈ [0, +∞), all the elements of

the set Fa,b,c, and, in particular, the solutions of problems (2.6) and (2.7), have the

asymptotic profile u(t) = At + B + o(1) as t → +∞, where A = a and B = b + d.

Moreover,
∫ +∞

t0
s f (s, u(s))ds = d for all u ∈ Fa,b,c.

Corollary 2.8 Set t0, λ ≥ 1, a, b ≥ 0, c ∈ (0, 1] and ε ∈ (0, 1). Assume that the

continuous function q : [t0, +∞) → [0, +∞) satisfies the conditions

λ(a + ε)λ−1Ic < c and
b

t0
+ (a + ε)λ Ic

ct c
0

< ε,

where Ic =
∫ +∞

t0
tλ+cq(t)dt.

Then, equation (1.1) admits the solution x : [t0, +∞) → [b, +∞) with the asymp-

totic profile x(t) = at + O(t1−c) as t → +∞ for which

aλ ·
1

t

∫ t

t0

sλ+1q(s)ds ≤
x(t) − b

t
− x ′(t) ≤ (a + ε)λ ·

1

t c

∫ t

t0

sλ+cq(s)ds

in [t0, +∞).

Proof Introduce the functions

α(t) =
aλ

t1−c

∫ t

t0

sλ+1q(s)ds, β(t) = (a + ε)λ

∫ t

t0

sλ+cq(s)ds, t ≥ t0.

Obviously, β(t) ≤ (a + ε)λIc in [t0, +∞).

We have that

α(t) ≤
1

t1−c

∫ t

t0

sq(s)

[

as + b − s

∫ +∞

s

v(τ )

τ
dτ

]λ

ds

≤
1

t1−c

∫ t

t0

sq(s)

(

as + b + s

∫ +∞

s

‖β‖∞
τ 1+c

dτ

)λ

ds

≤
1

t1−c

∫ t

t0

sq(s)

[

(

a +
b

t0
+

(a + ε)λIc

ct c
0

)

s

]λ

ds

≤
1

t1−c

∫ t

t0

sλ+1q(s)(a + ε)λds ≤ β(t), v ∈ D, t ≥ t0,

and respectively
∣

∣

∣
f
(

t, u2(t)
)

− f
(

t, u1(t)
)

∣

∣

∣

≤ λtλq(t)

{

1

t

[

at + b + t

∫ +∞

t

β(s)

s1+c
ds

]

}λ−1

×
|u2(t) − u1(t)|

t

≤ λtλq(t)(a + ε)λ−1 |u2(t) − u1(t)|

t
=

k(t)

t
|u2(t) − u1(t)|

for all u1,2 ∈ Fa,b,c and t ≥ t0.
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Theorem 2.9 Fix λ ≥ 1 and c ≥ 0, d > 0 such that

max
{

λ(c + d)λ−1,
(c + d)λ

d

}

·

∫ +∞

t0

tλq(t)dt < 1.

Then equation (1.1) possesses the solution x(t) defined in [t0, +∞) with the property

that

c − d ≤ x ′(t) <
x(t)

t
≤ c + d, t > t0.

As a plus, the solution has the asymptotic profile x(t) = ct + o(t) when t → +∞.

Proof Consider S = (D, d) the metric space given by the formulas

D =

{

u ∈ C
(

[t0, +∞), R
)

: ct ≤ u(t) ≤ (c + d)t for all t ≥ t0

}

and

d(u1, u2) = sup
t≥t0

{

|u1(t) − u2(t)|

t

}

, u1,2 ∈ D.

For the operator T : D → C([t0, +∞), R) defined by

T(u)(t) = t

{

c +

∫ +∞

t

1

s2

∫ s

t0

τq(τ )[u(τ )]λdτds

}

, u ∈ D, t ≥ t0,

we have the estimates:

c ≤
T(u)(t)

t
= c +

∫ +∞

t

1

s2

∫ s

t0

τλ+1q(τ )
[ u(τ )

τ

]λ

dτds

≤ c + (c + d)λ

∫ +∞

t

1

s2

∫ s

t0

τλ+1q(τ )dτds

≤ c + (c + d)λ

[

1

t

∫ t

t0

τλ+1q(τ )dτ +

∫ +∞

t

τλq(τ )dτ

]

≤ c + (c + d)λ

∫ +∞

t0

τλq(τ )dτ < c + d

and

|T(u2)(t) − T(u1)(t)|

t

≤

∫ +∞

t

1

s2

∫ s

t0

τλ+1q(τ )
∣

∣

∣

( u2(τ )

τ

)λ

−
( u1(τ )

τ

)λ∣
∣

∣
dτds

≤

∫ +∞

t

1

s2

∫ s

t0

τλ+1q(τ )
[

λ(c + d)λ−1
] |u2(τ ) − u1(τ )|

τ
dτds

≤ λ(c + d)λ−1

[

1

t

∫ t

t0

τλ+1q(τ )dτ +

∫ +∞

t

τλq(τ )dτ

]

d(u1, u2)

≤ λ(c + d)λ−1

∫ +∞

t0

τλq(τ )dτ · d(u1, u2) = ϑ · d(u1, u2).
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These imply that T(D) ⊆ D, respectively T : S → S is a contraction of coefficient ϑ.

By denoting with x, where x ∈ D, the fixed point of operator T, we notice that

x ′(t) = [T(x)] ′(t) =
x(t)

t
−

1

t

∫ t

t0

τq(τ )[x(τ )]λdτ <
x(t)

t

and

x ′(t) ≥ c −
1

t

∫ t

t0

τq(τ )[x(τ )]λdτ ≥ c − (c + d)λ

∫ t

t0

τλq(τ )dτ

for all t > t0.

3 Non-Vanishing Solution to Equation (1.4)

To give an application of Theorem 2.9, let us assume that, in accordance with the

analysis from [6, 9], the functions f : GA × R → R and g : [A, +∞) → [0, +∞) are

locally Hölder continuous. Moreover,

0 ≤ f (x, u) ≤ a(|x|)u, x ∈ GA, u ∈ [0, ε],

for a certain ε > 0. Here, the function a : [A, +∞) → [0, +∞) is continuous such

that
∫ +∞

ta(t)dt < +∞.

Following the presentations in [2, 10, 16], if u2(x) is a positive radially symmetric

solution of the linear elliptic equation

(3.1) ∆u + a(|x|)u = 0, |x| > A,

such that x·∇u2(x) ≤ 0 in GA, and u1(x) is a nonnegative radially symmetric solution

of the linear elliptic equation

(3.2) ∆u + g(|x|)x · ∇u = 0, |x| > A,

that satisfies the inequality u1(x) ≤ u2(x) throughout GA, then equation (1.4) will

possess a solution u(x), not necessarily with radial symmetry, such that

u1(x) ≤ u(x) ≤ u2(x), |x| > A.

We introduce the quantities u1,2(x) =
h1,2(s)

s
, where

|x| =

( s

n − 2

)
1

n−2

= β(s).

Now, the existence of solution u2 to equation (3.1) is implied by the (eventual)

existence of a solution h2(s) of the equation

h ′ ′ +
β(s)β ′(s)

(n − 2)s
a(β(s))h = 0, s ≥ s0 ≥ 1, (here, β(s0) > A)
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such that, in [s0, +∞),

(3.3)
1

s0
< ρC ≤ h ′(s) <

h(s)

s
≤ C for given C ∈ (0, ε), ρ ∈ (0, 1).

Since

∫ +∞

s0

s
[ β(s)β ′(s)

(n − 2)s
a
(

β(s)
)

]

ds =
1

n − 2

∫ +∞

β(s0)

τa(τ )dτ < +∞,

the hypotheses of Theorem 2.9 are verified. So, there exists the supersolution u2(x)

of equation (1.4).

Further, the problem of existence for the subsolution u1(x) that satisfies equation

(3.2) reduces to the existence of a nonnegative solution h1(s) to the equation

h ′ ′ + k(s)
(

h ′ −
h

s

)

= 0, s ≥ s0,

where k(s) ≡ β(s)β ′(s)g(β(s)) is a continuous nonnegative-valued function.

By fixing h0 ∈ (1, s0ρC) (see (3.3)), we have

h1(s) = s

(

h0

s0
+

∫ s

s0

H(τ )

τ 2
dτ

)

, H(τ ) = − exp

(

−

∫ τ

s0

k(ξ)dξ

)

for all s ≥ τ ≥ s0. In this way,

h0 − 1

s0
≤

h1(s)

s
≤

h0

s0
, s ≥ s0.

In conclusion, we have demonstrated that equation (1.4) admits a bounded solu-

tion u estimated by

0 <
h0 − 1

s0
≤ u(x) ≤ C, x ∈ Gβ(s0).

The result improves and clarifies the inferences of [16, Section 3].
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