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Abstract
Many research topics in natural language processing (NLP), such as explanation generation, dialog model-
ing, or machine translation, require evaluation that goes beyond standard metrics like accuracy or F1 score
toward a more human-centered approach. Therefore, understanding how to design user studies becomes
increasingly important. However, few comprehensive resources exist on planning, conducting, and eval-
uating user studies for NLP, making it hard to get started for researchers without prior experience in the
field of human evaluation. In this paper, we summarize themost important aspects of user studies and their
design and evaluation, providing direct links to NLP tasks and NLP-specific challenges where appropri-
ate. We (i) outline general study design, ethical considerations, and factors to consider for crowdsourcing,
(ii) discuss the particularities of user studies in NLP, and provide starting points to select questionnaires,
experimental designs, and evaluation methods that are tailored to the specific NLP tasks. Additionally,
we offer examples with accompanying statistical evaluation code, to bridge the gap between theoretical
guidelines and practical applications.
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1. Introduction
Over the past years, the natural language processing (NLP) community has increasingly expressed
the need for and the importance of human evaluation to complement automatic evaluation (Belz
and Reiter 2006). Tasks, such as machine translation (Graham et al. 2013), explanation generation
(Nguyen 2018; Narang et al. 2020; Clinciu, Eshghi, and Hastie 2021), text-to-speech genera-
tion (Cardoso, Smith, and Garcia Fuentes 2015; Clark et al. 2019), question answering (Chen
et al. 2019; Schuff, Adel, and Vu 2020), and automatic summarization (Owczarzak et al. 2012;
Paulus, Xiong, and Socher 2018), still rely heavily on automatic measures like BLEU or F1 scores.
However, these scores have been shown to correlate only loosely with human perception of such
systems (Callison-Burch, Osborne, and Koehn 2006; Liu et al. 2016; Mathur, Baldwin, and Cohn
2020; Schuff et al. 2020; Iskender, Polzehl, and Möller 2020; Clinciu et al. 2021) (schematically
depicted in Figure 1) and do not necessarily reflect how a system might perform with respect to
extrinsic evaluations, such as downstream tasks (Gaudio, Burchardt, and Branco 2016).

As a concrete example, BLEU scores are commonly used to quantify how similar a generated
sentence is compared to a ground-truth reference sentence, for example, in machine transla-
tion. BLEU scores rely on the n-gram overlap between the generated text and the reference text.
However, this approach has two important shortcomings: (i) relying on “ground-truth” reference
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Figure 1. Relying on automatic evaluation alone (e.g., via accuracy, F1 or BLEU scores) can be misleading as good
performance with respect to scores does not imply good performance with respect to human evaluation.

Figure 2. Normalized frequencies of “human evaluation” and “Likert” (as in the Likert scale questionnaire type) in the ACL
anthology from 2005 to 2020 showing the growing attention on human evaluation.

texts ignores the breadth of possible correct translations (in the context of machine translation)
and (ii) assuming that similarity of meaning can be inferred from n-gram overlap discounts, for
example, that certain words in the sentence contribute more to shaping its meaning. For exam-
ple, consider the German sentence “Der Junge ging gestern mit seinem Hund spazieren” and its
English reference translation “The boy walked his dog yesterday.” Now, consider the two can-
didate translations (a) “the boy walked his pet yesterday” and “the boy ate his dog yesterday.”
Both candidates receive identical BLEU-2 scores; however from a human perspective, sentence
(a) seems to much better reflect the original German sentence.a

Similarly, automatic evaluation measures used by other NLP tasks face the same problem
(Callison-Burch et al. 2006; Liu et al. 2016; Mathur et al. 2020; Schuff et al. 2020, 2021; Iskender
et al. 2020; Clinciu et al. 2021). Therefore, human evaluation has begun to gain more and more
attention in the NLP community (especially in the context of natural language generation tasks,
including machine translation Belz and Reiter 2006; Novikova, Dusek, and Rieser 2018; van der
Lee et al. 2019). This trend is shown in Figure 2.

aThere exist different versions of BLEU scores, for example, BLEU-2 refers to the score that considers unigrams and
bigrams.
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But how can NLP researchers new to human evaluation get started? On the one hand, there are
numerous text books on human evaluation, experimental design, and experimental evaluation,
such as those from Dean et al. (1999), Field and Hole (2002), Field (2013), Montgomery (2017).
However, they can become overwhelming for a practically oriented researcher due to their breadth
of topics. On the other hand, there are task-specific NLP resources. For example, van der Lee
et al. (2019, 2021), Belz, Mille, and Howcroft (2020) provide guidelines on human evaluation
with a focus on natural language generation (NLG), Sedoc et al. (2019) present an evaluation
methodology specifically for chatbots, and Iskender, Polzehl, andMöller (2021) provide guidelines
for human evaluation for summarization tasks. These contain valuable details for the particular
evaluation setting, but lack discussions of broader human aspects, such as ethical considerations
and cross-task NLP topics, such as crowdsourcing. Similarly, Dror et al. (2018) focus on statistical
significance testing in NLP for automatic evaluation, but do not touch upon the needs of human
evaluation analyses.

Consequently, this paper aims to provide an overview that focuses on commonalities of human
evaluation across NLP without restriction to a single task and seeks a good balance between gen-
erality and relevance to foster an overall understanding of important aspects in human evaluation,
how they are connected, and where to find more information. In particular, we address NLP
researchers who are new to human evaluation and walk them through how to consider ethical
aspects (Section 2) which may influence their study, formulate hypotheses (Section 3), deter-
mine which (in)dependent and confounding variables are relevant to their experiment (Section 4),
choose appropriate metrics and questionnaires and know their level of measurement (Section 5),
select a suitable experimental design (Section 6), set up a crowdsourced study (Section 7), and
calculate appropriate statistics (Section 8).

We complement our discussions with concrete examples from various NLP tasks and partic-
ularly provide two running examples (i.e., a dialog system and a summarization system), which
demonstrate how theoretical aspects discussed in a section may be concretely implemented.

1.1. Overview for quick reference
As not all topics may be relevant to all researchers, we here provide a brief summary of each
section so that readers may quickly find the information that they are looking for. Section 2 dis-
cusses ethical and legal considerations that precede any (human) experiment, including concepts
such as informed consent, participant welfare, data privacy, and what data are considered per-
sonal. Section 3 distinguishes different types of research questions and discusses the concepts
of null hypotheses and alternative hypotheses. Section 5 discusses common scales, metrics, and
levels of measurement, concepts which directly influence what statistical tests will be appropri-
ate for analyzing collected data. Section 6 explains the differences between within-subject and
between-subject experimental designs and when each may be appropriate. Section 7 highlights
aspects to consider when designing a crowdsourcing experiment. Section 8 introduces the most
common statistical tests for analyzing human evaluations and details practical aspects such as
power analysis for sample size calculation, test selection, post hoc testing, and more exotic NLP-
specific statistical methods. Throughout the entire paper, there are two fictional running examples.
Example A, in the blue boxes, describes the evaluation of two dialog systems, and Example B, in
the orange boxes, presents a comparison of three summarization systems.

2. Ethical and legal considerations
When designing an experiment involving human participation, it is critical to consider ethical and
legal implications. As legal aspects vary with country, it is important for researchers to check with
their institution to understand which review processes or legal requirements exist, for example,
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institutional review boards, ethics committees, or relevant data collection laws. As these review
mechanisms may take time, it is important to include them in the timeline of the study.

2.1. Privacy
Before beginning an experiment, it is important to consider what data are actually necessary to
collect, how the data will be stored and protected, and for how long the data will be kept. In par-
ticular, this is important for any data that could contain personal information about a participant
which could later be used to identify them. Ideally, the collection of personally identifying infor-
mation (including participants’ names, contact information, or IP addresses, but also biometric
data such as speech or video) should be kept to the minimum needed to fulfill the purpose of the
experiment. Finck and Pallas (2020) discuss what can be considered personal data in detail. For
example, if using crowdsourcing workers, rather than storing their responses with their website
username, new ids should be generated which cannot be traced back to the original participants.
For more information on approaches to achieve so-called pseudonymization, we refer to Finck
and Pallas (2020). In particular, as speech and video data are often of particular interest to NLP
researchers, we also refer to Siegert et al. (2020) for a discussion on anonymization techniques.

Information about data collection should then be clearly and transparently communicated to
users before starting an experiment so they understand what personal data are being collected
from them, how long it will be stored, and how they can request it to be deleted. For researchers
in the European Union, the General Data Protection Regulation (European Commission 2018)
makes this type of disclosure legally required in the form of a data agreement. However, ethically,
data protection should be a priority in experimental design regardless of the presence or absence
of legal obligations (Floridi 2018).

2.2. Informed consent
Additionally, it is important to make sure participants have true informed consent before begin-
ning an experiment, (Nuremberg Code 1949, APA Ethical Principles and Code of Conduct 2002,
EU Data Protection Regulation 2018, Declaration of Helsinki 2018). This means that participants
should know: (1) The purpose of the research, (2) That they have the right to end participation
at any time, (3) The potential risks an experiment poses/factors why someone might not want to
participate, (4) Prospective benefits of the experiment, (5) Any limits to confidentiality, such as
how the data collected will be used or published, (6) Incentives for participation, And (7) who to
contact in case of questions. For example, while it is clear that one cannot make video recordings
if a user has only consented to providing answers to a survey, it also violates participants’ consent
to use their data for a purpose beyond what they have consented to. For example, if a participant
agrees to allow speech data to be recorded in an anonymized setting for training a speech recog-
nition system, it would not be ethical to use these recordings as the basis for training the voice
of a text-to-speech system. We refer to Nijhawan et al. (2013) for a more detailed discussion of
informed consent.

2.3. Respect for participants
In addition to consent and privacy considerations, researchers should also prioritize the dignity
of participants. Studies should be conducted in order to provide a benefit to society rather than
randomly. However, participant welfare must take a priority over the interests of science and soci-
ety. Therefore, studies should be conducted so as to avoid all unnecessary physical and mental
suffering and injury (Nuremberg Code 1949, APA Ethical Principles and Code of Conduct 2002,
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Declaration of Helsinki 2018). This is especially important when working with vulnerable popula-
tions. For example, intentionally inducing negative emotions to study, for example, participants’
interaction with a chatbot under high-stress conditions could be ethically problematic. For further
reading we refer to Shaw (2003) and Leidner and Plachouras (2017).

3. Research questions and hypotheses
In essence, the purpose of a user study is to answer one or more research questions. These broadly
fall into two categories:

• exploratory research questions, where the research question’s purpose is to generate
assumptions, which can then be tested in a subsequent confirmatory research question, for
example, “Which factors (of the set of measured variables) influence the users’ enjoyment
of system B?” and

• confirmatory research questions, where the research question aims to test a specific
assumption, for example, “Does the explanation method of system B increase the users’
trust in the system compared to that of system A?”

This distinction has a direct influence on all later stages of the study. In the case of an
exploratory research question, an experiment should be designed to collect initial evidence which
can then be used to generate post hoc hypotheses. In contrast, for a confirmatory research ques-
tion, an experiment should be designed so that one or more hypotheses can be statistically
confirmed or rejected. As much NLP research focuses on iteratively improving models, we will
focus on confirmatory, comparative research questions in the remainder of this paper.

Once one or more confirmatory research questions have been chosen, they need to be trans-
formed into hypotheses, which propose a relationship between multiple variables. Staying with
our example, the hypothesis “The new system B changes users’ enjoyment compared to the old
system A” is called the alternative hypothesis, which assumes an effect of the (independent) vari-
able “system type” on the (dependent) variable “user enjoyment,” in contrast to the null hypothesis
that postulates that there will be no change. We detail what independent and dependent variables
are in the following section. A potential pitfall when selecting hypotheses is to choose a hypothesis
that is too general and therefore cannot be clearly accepted or rejected within an experiment, for
example, “The ellipsis resolution System A is better than that System B” without specifying what
“better” concretely means. System A may be better at resolving verbal ellipses (missing verbs),
while System Bmay be better at resolving nominal ellipses (missing nouns), so it is not possible to
say concretely that SystemA or System B concretely “better” is. We provide two running examples
below which will be expanded on in the following sections.

Example A: Dialog Systems Example B: Summarization Systems
Consider that you have developed a new dialog
system, which should help a user book a vaca-
tion and you want to demonstrate that it is better
than an existing baseline system, both in terms of
the user fulfilling their goal and in terms of sys-
tem usability. The research question could then
be framed as: Does the new system improve over
the old?, with the hypotheses (1) The new system
will have a higher rate of goal completion and
(2) The new system will be more usable than the
baseline.

Second, consider three summarization systems,
each designed to condense long texts into short
summaries, using a different algorithm. In this
example, you wish to compare the three sys-
tems to investigate the research question “How
do the three summarization systems differ regard-
ing user-perceived relevance?”. Your hypothesis
would be that there are differences among the
three systems, but might not include an assump-
tion about the direction (positive/negative).

https://doi.org/10.1017/S1351324922000535 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324922000535


1204 H. Schuff and L. Vanderlyn et al.

4. Variables
Before discussing experimental designs and evaluation methods, it is important to distinguish,
which variables are intentionally being changed, which variables are being measured, and which
variables one cannot control. In order to support a repeatable experiment that reliably answers
a research question, we first have to choose an operationalization, that is, a clear, measurable
definition for each of these variables.

4.1. Independent
The independent variable(s) are those which we control in our study, also called factors.
Experimental designs involving a single independent variable are referred to as unifactorial, and
experiments involving multiple independent variables are referred to asmultifactorial. The values
a variable can take are called levels. For example, if the variable is “translation system architecture,”
levels might be “old system” and “new system,” where the difference between is operationalized
as a clear intervention on the model architecture. Here it is important to be deliberate about the
changes between the two systems so it is clear that any changes observed are as a result of the
independent variable in question, for example, the implemented model architecture. For exam-
ple, here it would be important to make sure that both models were trained on the same dataset
so the only difference between them is their architecture. Otherwise, one might not be able to
attribute an observed difference in the dependent variables to a difference in the factor of interest
(architecture), but only be able to conclude this difference as the result of the combined effects
(architecture and dataset) without being able to disentangle the effects of each variable.

4.2. Dependent
The dependent or response variable(s) are those which are measured and whose changes are a
result of the independent variable. For this, it is important to consider not just the general concept
(construct) but also what concrete measurement to take. This process is known as operational-
ization. For example, in order to evaluate the hypothesis that “the new translation system will
generate better translations than the old system,” it is necessary to first operationalize the con-
struct ”better” into a dependent variable, which can be concretely measured. In this case, one
could decide, for example, that better refers to higher subjective user ratings on “intelligibility”
and “fidelity” scales (Carroll 1966; Han, Jones, and Smeaton 2021).

4.3. Confounding
A confounding variable or confounder is a variable that affects the dependent variable, but can-
not be controlled for, for example, age, gender, or education of the participants. Education, for
example, might affect how a user perceives the “intelligibility” of a generated text, but one cannot
deliberately change the education level of participants. Potential confounding variables should
either be accounted for in the experiment design or in the statistical evaluation of the collected
responses. One way of doing this is to include confounding variables as random effects, as dis-
cussed in Section 8.2.4. Therefore, it is important consider what variables might be confounding
variable and to measure these when conducting an experiment.

Example A: Dialog Systems Example B: Summarization Systems
In this example, you are interested in compar-
ing a new system you developed to an existing

Assume you operationalize the relevance of each
generated summary by means of self-reported
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baseline, so the independent variable would be
the system used. To compare the two systems,
you will measure the rate at which users are
able to reach a given goal and the subjective sys-
tem usability ratings. These correspond to the
dependent variables in this experiment.

participant ratings. In this example, the inde-
pendent variable would now be the system and
would have three levels (each level corresponds
to using one of the three systems). The depen-
dent variable would then be the subjective rele-
vance.

Figure 3. A subset of Likert items from the trust in automation scale by Körber (2018).

5. Metrics
Depending on the choice of dependent variable(s), there are different means to concretely quan-
tify user responses. Here, we focus on Likert scales as a measure of subjective user responses
(Section 5.1), but depending on the research question at hand, other quantitative (Section 5.2)
or qualitative measurements (Section 5.3) may be equally important. For quantitative measure-
ments, it is crucial to be aware of the measurement level of the collected responses (Section 5.4) as
it will directly affect which statistical tests can be applied to the collected data.

5.1. Likert scales
While it is clear how to collect objective measures, for example, the length of a dialog, it is less
straightforward how to collect scores of trust, cognitive load, or even creepiness. For such sub-
jective metrics, one usually obtains scores via a validated scale (Hart and Staveland 1988; Körber
2018; Langer and König 2018), for example, in the form of a questionnaire.

A scale is designed to quantify a construct, for example, “system usability,” that may com-
prise multiple aspects, called dimensions, e.g., efficiency, effectiveness, and satisfaction (Brooke
1996; Finstad 2010). The most common type of scale is the Likert scale, containing (multiple)
items, rated by the user on a discrete range. Figure 3 shows an example for a scale containing five-
point Likert items. The overall score for a dimension or construct is calculated by combining the
numbers related to the answer from each item (Körber 2018). Depending on the exact scale, the
procedure used may vary, so it is important to look this up before applying a scale. It is important
to stress that the single questions are not scales themselves but rather are items and the group of
items together constitutes the scale.

Using multiple items instead of a single rating allows one to assess the scale’s internal consis-
tency, for example, via Cronbach’s alpha (DeVellis 2016). Although we cannot directly assess how
well an item is related to the latent variable of interest (e.g., trust) because this is what we want
to capture via the items, we still can quantify these relationships indirectly via item-item correla-
tions. If the items have a high correlation with the latent variable, they will have a high correlation
among each other (DeVellis 2016).
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Designing a valid and reliable scale requires a precise development process, summarized by
Boateng et al. (2018) and explained in detail by DeVellis (2016). For NLP, the fields of psychology,
human-computer interaction, and robotics already offer a valuable range of scales. Validated ques-
tionnaires exist, for example, for evaluating trust (Körber 2018), usability (Brooke 1996; Finstad
2010), cognitive load (Hart and Staveland 1988), social attribution (Carpinella et al. 2017), or user
interface language quality (Bargas-Avila and Brühlmann 2016). A potential pitfall in designing
and applying (Likert) scales is to use scales that have not been validated. Although such unvali-
dated scales can yield valid measurements, the researcher does not know for certain that they will
and runs the danger of not measuring the construct that was intended to be measured.

5.2. Other useful metrics for NLP
As an alternative to Likert scales, continuous rating scales like the visual analog scale (VAS) can
be used to measure a construct. Santhanam and Shaikh (2019) showed that continuous rating
scales can yield more consistent results than Likert scales for dialog system evaluation. In tasks
like generating text or speech, direct comparisons or ranked order comparisons (ranked output
from multiple systems best to worst) can be a good option (Vilar et al. 2007; Bojar et al. 2016).
Another option for tasks involving text generation is error classification, which involves users
annotating text output from a set of predefined error labels (Secară 2005; Howcroft et al. 2020).
Other measurements of interest to NLP research include completion time and bio-signals, such
as gaze, EEG, ECG, and electrodermal activity. Bio-signals may provide insight into, for example,
emotional state (Kim and André 2008), engagement (Renshaw, Stevens, and Denton 2009), stress
(McDuff et al. 2016), and user uncertainty (Greis et al. 2017).

5.3. Qualitative analysis
In addition to quantitative analysis, qualitative analysis can provide valuable insights into users’
perspectives by allowing them more freedom of expression than metrics like a Likert scale. For
example, in order to understand a user’s perception of a chatbot, free response questions can
be used alongside, for example, Likert scales, allowing the users to express which aspects of the
chatbot had the largest impact on them. These responses can then be analyzed with techniques
such as content/theme analysis (Hsieh and Shannon 2005; Braun and Clarke 2006), where user
responses are “coded” using a set of labels generated from the collected data, to identify similar
themes across responses. These codes can then be quantified and patterns can be analyzed about
how often certain codes/themes appeared and under which conditions. For example, one code
might be “smart”, then all user responses that indicated that they found the chatbot to be intel-
ligent could be marked with this label. Researchers could then, for example, analyze that 76% of
users found the chatbot to be intelligent and that this correlated highly with users who reached
their goal.

5.4. Level of measurement
It is important to consider the scale on which a variable is measured in order to choose a cor-
rect statistical test (Section 8) and measures of central tendency (i.e., mode, median, and mean).
Typically, four types of measurement scales are considered: nominal, ordinal, interval, and ratio.

5.4.1. Nominal
On a nominal (categorical) scale, items are simply named, with no concept of order or distance
between them. An example is emotions perceived in a generated voice (“happiness,” “sadness,”
“fear,” etc.). If the scale only contains two choices, it is called dichotomous. The only measure of
central tendency applicable to such data is the mode.
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5.4.2. Ordinal
An ordinal scale adds order to the elements. However, the distance between them cannot be
assumed to be equal. An example is measuring intelligibility using the values “very low,” “low,”
“medium,” “high,” and “very high.” In addition to the mode, ordinal data also enable the
derivation of a median.

5.4.3. Interval
On an interval scale, the elements are ordered with an equal distance between them, allowing one
to additionally take the mean. Scores obtained frommulti-item Likert scales (as shown in the trust
scale in Figure 3) are frequently considered interval data. There has been a long debate between
ordinalists who claim that Likert scales should be treated as ordinal data and non-parametric
statistics have to be used, and intervalists who argue for an interval interpretation and thus sup-
port parametric approaches (Jamieson 2004; Carifio and Perla 2008; DeWinter and Dodou 2010).
For a deeper discussion as well as practical recommendations, we refer to Harpe (2015).

5.4.4. Ratio
A ratio measurement adds the property of a true zero point making ratios of interval measure-
ments sensible. An example is interaction times with an interactive explanation generation system
or the number of dialog turns for a chatbot.

Example A: Dialog Systems Example B: Summarization Systems
Once you have identified all of the variables, the
next step is to operationalize the dependent vari-
ables with a appropriate metrics. In the case of
dialog system accuracy, this can be measured
on a continuous (ratio) scale by counting the
number of times that users are able to reach pre-
defined goals. For perceived usability, a common
scale is the UMUX scale (Finstad 2010), which
is a four-item scale where the per-item responses
are condensed into a single usability score that is
usually treated as an interval measurement.

Assume you use 5-point Likert scales to capture
the participants subjective relevance ratings. You
could then use a single-item scale, that is, a sin-
gle 1-5 rating relevance rating (a multi-item scale
would make use of a variety of items that each
capture perceived relevance and are later aggre-
gated into a single relevance score). The resulting
responses should be considered ordinal measure-
ments as it cannot be assumed that, for example,
the “distance” between rating 1 and 2 is the same
as the difference between rating 3 and 4.

6. Experimental designs
Next, one has to choose how participants are assigned to conditions, that is, to levels of the inde-
pendent variable(s) (as described in Section 4.1). This design determines applicable statistical tests
and can mitigate confounding effects. To illustrate the design choices, we will use the example of
investigating the perceived naturalness of a text-to-speech system with the independent variable
“system,” the levels “old” and “new,” and the confounding variable “native speaker,” that is, that
some participants are native speakers while others are not.

6.1. Within-subject
In this study design, also called a repeated-measures design, participants are exposed to all study
conditions and can thus make comparisons between them. With a fixed number of participants,
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this allows to collect more samples than a between-subjects design. However, a within-subject
design cannot be scaled to an arbitrary number of conditions both because users are often unwill-
ing to participate in longer studies and because they will be affected by fatigue after too many
conditions. Additionally, repeated measures may cause participant responses for later conditions
to be affected by their responses to earlier ones due to carry-over effects and learning. One way to
account for carry-over effects is to control the order of conditions the participants are exposed to.
Typical approaches are randomization (i.e., participants are shown conditions in a random order),
blocking (i.e., participants are grouped into blocks regarding a participant characteristic such as
age), and Latin square designs. For details, we refer to Dean et al. (1999). Within-subject designs
require a statistical comparison of differences per subject which is accounted for using paired tests.

In our example, we could use a within-subject approach and mitigate carry-over effects by
sampling all possible four combinationsb equally often. We could account for the possibly con-
founding effect of being a native speaker by balancing the number of native/non-native speakers
per condition.

6.2. Between-subject
In this design, each participant is only exposed to one condition. While collecting a fixed number
of samples requires a higher number of participants than a within-subject design, a between-
subject design can easily be scaled to arbitrarily high number of conditions, assuming the research
budget supports this.

Participant responses collected with a between-subject design must be analyzed using unpaired
tests as there are no paired responses, but rather two (or more) independently-sampled groups.

In our example, it could be preferable to use a between-subject approach if the interaction of
the users with the system takes a long time, and, thus, users could become fatigued when being
exposed to both conditions (i.e., old and new system).

Example A: Dialog Systems Example B: Summarization Systems
As the speech samples in this experiment are
quite long, you may wish to choose a between-
subject design for this experiment to reduce
fatigue from users. For example, you have reason
to believe that there could be a systematic dif-
ference between the responses from participants
who are native speakers and those who are not.
Even if you are not interested in studying this dif-
ference at the moment, you still have to account
for its potential confounding effect. Therefore,
you can make use of a matched pairs design and
assign the same number of native/non-native
speakers to each condition. Regardless of con-
dition, each participant will be given the same
number of random goals they should try to
accomplish during the dialog.

For the summarization example, you have per-
formed a pilot study and determined that evalu-
ating one system takes relatively little time. So,
for the main experiment you might choose a
within-subject design, that is, each participant
sees all three systems. In order to account for
carry-over effects (e.g., seeing system A first
might change how participants rate system B),
you balance the order in which systems are
shown to participants over the experiment. For
three systems there are six possible orders (ABC,
BAC, BCA, . . .) and you would randomly split
the participant pool into six groups which are
then assigned one of the six orders each. As
you do not, for example, balance for native/non-
native speakers, this is called a completely ran-
domized design.

b(i) native speaker: “old” first → “new” second, (ii) native speaker: “new” → “old”, (iii) not native speaker: “old” → “new”,
(iv) not native speaker: “new” → “old”.
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7. Crowdsourcing for NLP
Crowdsourcing provides an attractive way to quickly collect responses from a population that
has been shown to be more diverse than samples from, for example, college students and internet
samples (Buhrmester, Kwang, and Gosling 2011). In NLP, Schnoebelen and Kuperman (2010) find
crowdsourcing to be a reliable source for linguistic data. However, there are differences between
designing a crowdsourcing study and a traditional lab experiment, which we outline below.

7.1. Fair compensation
In a traditional study, participants are often volunteers interested in aiding research. On crowd-
sourcing platforms, participants might not have another full time job and rely on the money they
earn by completing tasks (Williamson 2016). Therefore, it is important to ensure the pay structure
is non-exploitative and takes into account the average amount of time users will spend on the task
and individual workers that spend significantly more time on the task should be rewarded via, for
example, bonus payments. If a user is unable to complete a task due to an error in the task itself,
their time should still be respected.

7.2. Platform rules
Different platforms, for example, Amazon Mechanical Turk, CrowdFlower, MicroWorkers,
Prolific, or Qualtrics, have different rules and capabilities. For example, some require participants
to be paid on completion of task, while others allow the results to be reviewed first. Some platforms
only support users filling out surveys, while others allow for building more complex interac-
tions/experiment designs or providing links to an external website of the researchers own design.
As each platform also has its own rules and norms, it is also important to ensure an experiment is
compliant with these (Palmer and Strickland 2016).

7.3. Task description
The task description should explicitly contain all necessary steps that a worker needs to fulfill in
order to be paid. A good description should also give a realistic estimate of the time a task will
take. It should give workers an accurate idea of requirements and expectations so they can make
an informed choice about accepting the task.

7.4. Incentives and response quality
Crowdsourcing workers often want to get through an experiment quickly to maximize their pay,
so this should be kept in mind to ensure that the experiment aligns with worker incentives. For
example, interfaces should be easy-to-use so workers do not get frustrated about wasted time.
Bonuses for especially high quality responses can also helpmotivate workers to provide thoughtful
answers.

Attention checking questions, for example, having a question with the correct answer in the
instructions, or free response questions may also help to ensure workers are not just clicking
through tasks to finish quickly (Meade and Craig 2012). We also recommend that experiments
are designed such that workers cannot submit a task unless they have completed all subtasks. For
example, if evaluating a speech generation system, the user must actually play samples before they
can be evaluated. Finally, interactions should be kept as short as possible as participants may suf-
fer from survey fatigue (i.e., giving less thoughtful answers over time) if a survey/interaction takes
too much time (Ben-Nun 2008).
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7.5. Pilot study
Pilot studies, that is, small-scale trials before a larger study, allow for testing the experimen-
tal design and technical setup. In short: answering the questions “Does the experiment work as
anticipated?” and/or “Does the method collect the anticipated data?”

Performing pilot studies allows researchers to discover errors early on, saving resources and
time. For more details on designing pilot studies, we refer to Van Teijlingen and Hundley (2002)
and Hassan, Schattner, and Mazza (2006). Note that pilot studies conducted in a lab setting
may not generalize to the data collected on crowdsourcing websites, due to the difference in
populations. Thus, it is a good idea to also conduct a small pilot study on the crowdsourcing
platform.

7.6. Data collection
If an experiment involves anything more than a survey, the interaction of the user with the system
will often generate interesting data in and of itself. Even if it does not seem immediately relevant
to the research goal, logging only costs storage space and can provide insights when analyzing
the experimental data, so long as the extra data does not contain personally identifying infor-
mation. Additionally, if the focus of the experiment shifts, rather than re-running the study, the
“extra” data logged may already contain the needed information. For example if we want to mea-
sure translation quality, it could also be interesting to log, for example, mouse movements and
time taken to rate each translation as these might later provide insights into how comprehensi-
ble translations were. It is important to note, however, that users should be informed of any data
collected and collecting personally identifying data should be avoided.

7.7. Further reading
We refer to Pavlick et al. (2014) for a discussion ofMechanical Turk’s language demography and to
Paolacci (2010), Schnoebelen and Kuperman (2010), and Palmer and Strickland (2016) for further
advice on conducting a crowdsourcing study, Jacques and Kristensson (2019) for information on
crowdsourcing economics as well as Iskender et al. (2020) for best practices for crowdsourced
summarization evaluation.

8. Statistical evaluation for NLP
In their review of INLG andACL papers that conduct a human evaluation, van der Lee et al. (2019)
note that only 33% of the papers report statistical analyses. This section aims to offer a guideline
to choose an appropriate sample size, select an applicable statistical test, and decide whether a post
hoc test and a multiplicity adjustment need to be used. Although this paper’s scope does not allow
to discuss each of these topics in detail, we still want to mention different positions and provide
selected references to help readers develop their own, informed opinion.

8.1. Estimating the required sample size
Before starting a user study, an important step is to consider what sample size will be necessary
to make meaningful claims about the results. If, for example, too few participants are chosen, it
will reduce the statistical power of the study, and thereby the probability of recognizing a statisti-
cally significant difference between experimental groups if one occurs. In short, statistical power
is important to consider because it represents the likelihood of not reporting a false negative.
Therefore, designing an experiment with enough power is critical to ensure that time, energy, and
money are not wasted conducting a study only to report a false-negative result because there were
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not enough participants. A power level of 0.80 or higher is generally recommended (Bausell and
Li 2002) as it represents that if an experimental design is carried out correctly, 80% of the time, a
significant difference will be detected by the chosen statistical test if such a difference exists.

To ensure enough statistical power in an experiment, researchers can conduct a power analysis
before starting their experiment to hypothesize what power they can expect given an estimated
effect size, a number of participants (N), and a desired significance level. In the sections below,
each of these factors is discussed in more detail, and an example is provided to show how one can
perform such an analysis.

8.1.1. Effect size
The effect size refers to the size or magnitude of an effect (difference between experimental
groups) which would be expected to be observed in a population. In general, there are three dif-
ferent ways to calculate effect size: (1) As a standardized result (e.g., standard deviation units from
the mean) which allows for interpretation across applications, (2) Using the original units (e.g.,
difference of means) which may be useful for domain specific interpretation of results, and (3) As
a unit-free result (e.g., a correlation coefficient) (Sullivan and Feinn 2012).

For NLP system comparisons, the independent variable is categorical and one of the most com-
mon methods for calculating standardized unit effect sizes is Cohen’s d. Cohen’s d measures the
difference between the mean from two Gaussian-distributed variables in standard deviation units.
It can be calculated by taking the difference between the means of two groups and dividing this
by the pooled standard deviation of both samples.

While estimating effect size before starting the actual experiment can be difficult, previous
research in the field or the results from a pilot study can provide a good starting point. However
if there is no prior information available on the expected effect size, the values 0.2, 0.5, and 0.8 are
commonly used as Cohen’s d values for a small, medium, or large expected effect (Cohen 1988).
In a meta-study of 302 social and behavioral meta-analyses, Lipsey and Wilson (1993) found the
average effect size to be exactly 0.5. As an important note, the smaller the effect size is, the more
participants will be required to achieve the same statistical power.

8.1.2. Sample size
The general goal of a power analysis is to identify the minimum sample size needed to achieve a
desired level of power (normally 0.8). To this end, increasing the sample size will always increase
the power of an experiment. In some cases, however, this may not be feasible. In these cases, it is
advisable to try to reduce the number of experimental groups (levels of the independent variable)
to as few as is scientifically defensible. The fewer groups there are, the higher the number of par-
ticipants per group. Alternatively, a within-subject design, if applicable, can also greatly increase
the statistical power of a study (Cohen 1988).

8.1.3. Significance level
Finally, it is important to consider what statistical test will be run on the data and what significance
level, alpha (α) level, is appropriate for the study. Generally, an alpha level of 0.05 is chosen which
represents that 95% of the time if a statistically significant difference is observed, it is not due to
random chance. For more information on choosing the right statistical test, see Section 8.2.

8.1.4. Performing a power analysis
Once all of these pieces of information have been decided, a power analysis can be performed to
determine the expected power of the planned study. This is commonly used to determine what the
minimal number of participants needed will be to ensure a study with sufficient power. To better
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illustrate the meaning of statistical power, an example of a hand calculation for power analysis
of a t-test is provided below. However, in practice designs may be much more complex, in this
case tools like that of Faul et al. (2009) exist, which, given a set of experimental parameters, can
perform the power analysis automatically.

To illustrate statistical power, we adapt the following example from Cohen (1988): Assuming a
between-subjects design aiming to test the hypothesis that system A produces shorter interaction
times than system B, an appropriate statistical test would be a one-sided t-test. Statistical power
can be estimated by first calculating the critical t value, tcrit, which represents the t value that would
be needed for a result to be significant with N participants per group and significance level α.
Assuming there were 64 participants per condition, this results in a tcrit of 1.98. Next, given the
expected effect size, thyp can be calculated. This represents the t value that would be expected
if the predicted effect size was observed, and there were N participants per group. Assuming a
Cohen’s d effect size of 0.5, this results in a thyp of 2.82. Next, assuming that the experiment was
hypothetically carried out perfectly an infinite number of times and that the expected effect size
was correct, it could be assumed that the collected t values would fall along a normal distribution
centered at thyp as the only sources of error in the experiment would be random. Statistical power
can therefore be calculated by looking at what percentage of the t values in this distribution fall
above tcrit, otherwise stated as what percentage of t values would lead to a significant result. In
this example, 80% of the values in a normal distribution centered at 2.82 will be above 1.98, so a
power of 0.8 would be hypothesized. To choose the correct sample size, different values of N can
be tested until the desired power is achieved.

8.1.5. Further reading
For more information, including tables with the relationship between power, N, and hypothe-
sized effect size as well details on calculating power with more complex study designs, Dean et al.
(1999), Bausell and Li (2002), Sullivan and Feinn (2012), and Montgomery (2017) provide a solid
introduction to the topic and VanVoorhis et al. (2007) discuss common rules of thumbs of sample
size. Additionally, Faul et al. (2009) provide an open-source tool for performing power analysis
including support for most common statistical tests.c

8.2. Choosing the correct statistical test
The (set of) applicable statistical test(s) is determined by the experimental setup including the
choice of measurement scale (Section 5.4) and the experimental design (Section 6). To choose a
test, one has to determine the number of levels (groups), if the samples were collected in a paired
or unpaired design, the measurement scale of the dependent variable, and whether parametric
assumptions apply. In the following, we discuss these aspects and present common tests. Figure 4
summarizes these tests within a flow chart, illustrating the conditions under which each test is
applicable.

8.2.1. Paired and unpaired tests
Whether a paired or an unpaired test is the correct choice directly depends on the choice of exper-
imental design (see Section 6) as different designs require accounting for the subject-dependent
variances in the responses differently. A paired test is applicable if the samples were collected in a
within-subject design (repeated measures), that is, from one group. An unpaired test is applicable
if the samples were collected in a between-subjects design, that is, from different groups.

cwww.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.
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Figure 4. A flow chart to help find an appropriate test to analyze collected responses. Starting from the middle, the chart
shows tests suited to analyze experiments with two levels of independent variables (e.g., system A and system B) on the left
and tests suited to analyze experiments withmore than two levels of independent variables (e.g., systems A, B, and C) on the
right. A paired test needs to be used if; for example, a within-subject design is used and the level ofmeasurement determines
whether a parametric test can be used. For example, yes/no ratings are nominal/dichotomous by definition and cannot be
analyzed using a t-test. ∗The pairwise differences have to be on an ordinal scale, see Colquhoun (1971) for more details.

8.2.2. Parametric and non-parametric tests
Parametric tests make assumptions on the underlying population distribution (such as normal-
ity), and non-parametric tests do not make assumptions on the distributions, but still can make
other assumptions (Colquhoun 1971). Therefore, the measurement scale of the dependent vari-
able can directly determine whether a parametric test is applicable. For example, we cannot run a
t-test (which is parametric) on ordinal responses from {“often,” “sometimes,” “never”}. It is often
claimed that parametric tests offer higher statistical power. This statement has to be restricted
to very specific conditions and Colquhoun (1971) argues to prefer non-parametric tests as long
as there is no experimental evidence of the error distribution. We refer to Colquhoun (1971) for
a discussion of the differences between parametric and non-parametric methods and to Sprent
(2012) and Corder and Foreman (2014) for details on non-parametric statistics.

8.2.3. Frequently-used tests for NLP
In the following, we present a selection of common statistical tests, highlight important assump-
tions they make, and provide examples of NLP applications they are relevant to. We do not
exhaustively discuss all assumptions of each test here, but instead offer first guidance in choos-
ing the right test. We first discuss tests that are applicable to experiment designs with one factor
that has two levels (e.g., the factor chatbot system with the levels “system A” and “system B”).

Thereafter, we consider tests involving one factor with more than two levels (e.g., the factor
chatbot system with an additional third “system C”). These tests are called omnibus tests, which
means that they only can detect that “there is a difference” but make no statement about pair-
wise differences. Therefore, pairwise post hoc tests are usually used after detecting a significant
difference with an omnibus test.
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• Unpaired and Paired Two-Sample t-test: In the context of user studies, the t-test is usually
used to test if the means of two samples differ significantly, that is, a two-sample t-test.d
In NLG evaluation, the time a participants takes to read a sentence generated by one ver-
sus another system could be compared using a t-test. For the two-sample test, one further
distinguishes an unpaired or independent test and a paired or dependent test. The t-test
assumes that the errors follow a normal distribution which is usually decided subjectively
by inspecting the quantile-quantile (Q-Q) plot of the data (Hull 1993). When analyzing
Likert scale responses, the choice of test depends on whether one regards the scale scores
to be measures to be ordinal or interval measures (Section 5.4). For more detailed recom-
mendations when and when not to apply parametric statistics to Likert responses, we refer
to Harpe (2015). However, De Winter and Dodou (2010) compare error rates between the
non-parametricMann-Whitney U test with the parametric t-test for five-point Likert items
and find that both tests yield similar power.
A typical situation to apply a t-test is to compare task completion times, for example, the
time it takes a participant to read a text or the time a user takes to engage with a chatbot.

• Mann-Whitney U test andWilcoxon Signed-Rank: Although the t-test can be robust to vio-
lations of normality (Hull 1993), non-parametric alternatives, such as the Mann-Whitney
U test for unpaired samples and the Wilcoxon signed-rank test for paired samples, are
preferable for non-parametric data. The Mann-Whitney U test is the non-parametric
counterpart to the unpaired t-test. In contrast to the t-test, which is restricted to inter-
val data, it is additionally applicable to ordinal data as well as interval data that does
not fulfill the parametric assumptions. For example, testing user acceptance of a voice
assistant could involve asking participants how often they would use the system: “daily,”
“weekly,” “monthly,” or “never.” The paired counterpart to the Mann-Whitney U test is
theWilcoxon signed-rank test which comparesmedian differences between the two groups
and can be applied as long as the pairwise differences between samples can be ranked. If
this is not possible, a sign test should be used instead (Colquhoun 1971). An application
for the Mann-Whitney U test and the Wilcoxon signed-rank test are Likert ratings of, for
example, text fluency or coherence.

• Fisher’s Exact, χ2, and McNemar Test: If the measurement scale is nominal, the Mann-
Whitney U test and the Wilcoxon signed-rank test are not applicable. Instead, Fisher’s
exact test test should be used for unpaired groups if the dependent variable is dichotomous,
that is, can only take two values like “yes” and “no,” for example for rating the correct-
ness of answers generated by a question answering system. If it can take more values, for
example additionally “I do not know,” a chi-square (χ2) test can be used. When samples
are paired, the test of choice should be a McNemar test. An exemplary NLP application of
these two tests are binary responses, to, for example, “is this sentence grammatically cor-
rect?” (Fisher’s exact or chi-square test for unpaired samples and McNemar test for paired
samples) or categorial responses to, for example,“for which tasks would you use this travel
chatbot most likely (a) searching for travel information, (b) booking a travel, or (c) making
a modification to a booked travel?” (chi-square test for unpaired samples and McNemar
test for paired samples).

• One-Way and Repeated-Measures ANOVA: So far, we only addressed tests that compare
two groups, such as samples from “dialog system A” to samples from “dialog system B.”
When we add a third or more conditions, the discussed tests are no longer applicable.
Instead, if the samples are parametric, a one-way ANOVA can be applied to unpaired
samples and a repeated-measures ANOVA can be applied to paired samples.

dA one-sample t-test compares a sample’s mean with a predefined reference mean.
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For example, when interaction times with three different explainability methods should
be compared, one can use a one-way ANOVA when using an between-subjects design
(i.e., each participant sees only one method) and a repeated-measures ANOVA if each
participant sees each method (in a randomized order), that is a within-subject design.

• Kruskal-Wallis and Friedmann Test: Like the Mann-Whitney U test and the Wilcoxon
signed rank test are the non-parametric counterparts to the paired and unpaired t-test, one
can use the non-parametric Kruskal-Wallis test instead of a one-way ANOVA and the non-
parametric Friedmann test instead of a repeated-measures ANOVA. For further details,
we refer to Ostertagova, Ostertag, and Kováč (2014) and Pereira, Afonso, and Medeiros
(2015). In the above explainability methods example, these tests are appropriate choices if
instead of measuring interaction times (interval scale), one, for example, asks participants
to rate trust on a single-item Likert scale (ordinal scale).

8.2.4. More complex models and tests
In addition to the tests above, there also are more general models and tests, which may be useful
for some NLP applications. If the response variable is, for example, categorial (such as responses
like “dog” or “cat”), linear models can be extended to generalized linear models (Nelder and
Wedderburn 1972), where the (e.g., categorial) response scale is linked to a latent scale (e.g., logits)
via a link function. If the experimental setup requires accounting for, for example, subject-specific
influences (e.g., mother tongue or literacy) or repeated measures of one factor within a mixed
design (e.g., a design in which each participant uses one version of a dialog system, i.e., a between-
subjects factor, but all participants perform the same set of tasks, i.e., a within-subject factor),
generalized linear mixed models can be an appropriate statistical model. The difference between
a linear and a linear mixed model is that the latter is extended to include random effects such as
individual participant characteristics on top of fixed effects such as “system type” resulting in a
mixed model. Intuitively, the purpose of including random effects is to get a clearer picture of
the fixed effects and not to falsely attribute, for example, an effect of participant age to be a dif-
ference between two chatbots. An introduction to linear mixed models and their usage in R is
provided by Winter (2013). More details can be found in McCulloch and Neuhaus (2005) and
Jiang (2007). Howcroft and Rieser (2021) discuss ways to improve power in human evaluations in
NLP and recommend to make use of ordinal mixed effects models. Other commonly used models
are Generalized Additive Models (GAMs) (Hastie and Tibshirani 1990; Hastie, Tibshirani, and
Friedman 2009) who model the response variable as a sum of general basis functions. We refer to
Wood (2017) for an introduction using R. Two concrete applications of (ordinal) GAMs are dis-
cussed by Divjak and Baayen (2017) who analyze grammaticality ratings and Schuff et al. (2022)
who study human perception of explanations.

Example A: Dialog Systems Example B: Summarization Systems
After choosing the experimental design, the
next decision is the type of statistical test you
plan to use, as this will determine how many
participants are needed for the experiment. As
you have chosen a between-subject design, a
paired test is not applicable. There are only two
levels for the independent variable (baseline and
new system), so you do not need a test that can
account for more. The dependent variables are

For this example, you have three requirements
that a test has to fulfill. First, you made use of
a within-subject design, so you will need to use
a paired test to account for repeated measures.
Second, your independent variable has more
than two levels, so you need a test setup that
supports more than two conditions. Third, you
need a test that is applicable to ordinal response
variables. Based on these requirements, you
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also both interval (or ratio) values (and assumed
to be parametric), meaning a parametric test is
suitable. Therefore a t-test is a reasonable choice.
Specifically, as you hypothesized that the new
system will result in higher accuracy scores, you
choose to use a one-sided t-test. Based on this,
you calculate the sample size, for example, using
an automated tool. Based on your pilot study and
assume that you will have a relatively small effect
size of 0.3. Therefore, to achieve an appropriate
power level, you estimate needing 71 partici-
pants per group for a total sample size of 142.
After conducting your experiment, you apply the
t-test to your data and find a significant differ-
ence between both the system usability and the
accuracy in fulfilling the users’ goals.

choose to use a Friedman test. Once you have
decided on the test, you can calculate the sam-
ple size. In this experiment, you choose to use
a tool, like G∗ Power (Faul et al. 2007, 2009),
guided by observations from your pilot study.
Assuming an effect size of 0.3, α = 0.05 and a
power of 0.8 (and standard correction values,
including the recommended 15% upscaling), you
would need 23 participants for the Friedman test.
Notably, choosing a between-subject design—
and consequently using a Kruskal-Wallis test—
would require 128 participants to achieve the
same power. After conducting the main experi-
ment, you apply the Friedman test to your data.
For this example, we assume that the test yields a
significant difference.

8.3. Post Hoc tests
The presented omnibus tests do not allow to make statements about pairwise differences between
conditions. For example, an ANOVAmight detect a significant difference within the groups {“sys-
tem A,” “system B,” “system C”} but makes no statement if there is for example a significant
difference between “system A” and “system B.” In such cases, one needs to use a post hoc test.
The respective post hoc test is typically only applied if the omnibus test found a significant effect
and—depending on the method—requires a multiple testing adjustment. Commonly used tests
are Tukey HSD, Scheffé, Games-Howell, Nemenyi, and Conover.

Example A: Dialog Systems Example B: Summarization Systems
In the example of the two different dialog sys-
tems, you do not need to run a post hoc test,
because your independent variable only has two
levels.

Although the Friedman test did yield a signifi-
cant difference between the three conditions, you
still do not know if there are significant pairwise
differences between each combination of condi-
tions. To answer this question statistically, you
run a Conover test.

8.4. Themultiple comparisons problem
The intuition behind the multiple comparisons problem is that every time a statistical test is run,
it bears the risk of a Type I error, that is, falsely reporting a positive result. When one considers
the standard significance level, α of 0.05, this represents 95% confidence in a reported significant
difference or a 5% chance that there was a Type I error. However if multiple hypotheses are tested,
the chance for a type I error over the entire experiment increases. For example, if two hypotheses
are tested each with a 95% confidence level, the confidence for the entire experiment drops to 0.9
(the likelihood that test 1 and 2 were both not falsely positive): (0.95 ∗ 0.95) or an α = 0.1.

Thus, when a researcher wishes to test multiple hypotheses at once, the individual α levels need
to be adjusted. A simple and well-known adjustment method is the Bonferroni correction, that
divides the α level per test by the number of tests to ensure a given familywise error rate—error
rate across the entire experiment—is achieved. Considering the example above of two hypothe-
ses, each with an original α level of α = 0.05, the α level of the experiment before correction is
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α = 0.10. After correction, the α level of each experiment would be 0.025, but the familywise α

level (test 1 and test 2 do not have a type I error) would be 0.05 (1− 0.975 ∗ 0.975). The Bonferroni
correction can be applied to any statistical test; however, it is a very conservative measure and in
the case of many hypotheses being tested can decrease the power of the experiment, making it
challenging to find statistical differences if they do exist.

A marginally less conservative test is the Šidák correction. This test is performed similarly
to the Bonferroni correction; however instead of dividing by the number of comparisons, the
comparison-level α level is calculated as αSID = (1− (1− α)1/m), where m is the number of tests
to be conducted. In the case of the previous example, the per test α level for two comparisons
would be 1− (1− 0.05)1/2 or 0.0253. The Šidák correction makes the assumption that each com-
parison is independent of each other, if this is not the case, the Bonferroni correction is more
appropriate as it does not make this assumption.

Less conservativemethods, such as the Benjamini-Hochberg technique or the Holm procedure,
also called the Holm-Bonferroni method can provide more power for an experiment (Bender and
Lange 2001; Streiner and Norman 2011). The Benjamini-Hochberg technique can be performed
by ranking all comparisons by their p-value, where 1 represents the comparison with the smallest
p-value and m represents the comparison with the largest. For each comparison, a Benjamini-
Hochberg critical value is then computed using the formula: (i/m) ∗Q, where i represents the
comparison’s rank, m the total number of comparisons, and Q the desired α value for the entire
experiment. All comparisons with a p-value below the Benjamini-Hochberg critical value are then
considered significant after correction. The Holm-Bonferroni method similarly ranks all compar-
isons by ascending p-values. For each p-value pi in the experiment, the null hypothesis is rejected
if pi < α

m+(1−i) , where i is the comparison’s rank, m is the total number of comparisons, and α is
the familywise alpha level for the experiment. Alternatively, if the data in an experiment were suit-
able for an ANOVA test, the Tukey HSD, also called the Tukey test, can be a good choice. When
and when not to apply α adjustments is discussed by Rothman (1990), Ottenbacher (1998), Moyé
(1998), Bender and Lange (2001), Streiner and Norman (2011).

8.5. Further analysis methods for NLP
As NLP systems are frequently evaluated in side-by-side comparisons, the collected variables
can also be ranks or preferences (Callison-Burch et al. 2007; Grundkiewicz, Junczys-Dowmunt,
and Gillian 2015). For example, participants can be asked to rank pairs of translations or gen-
erated speech snippets. TrueSkillTM (Herbrich, Minka, and Graepel 2006; Sakaguchi, Post, and
Van Durme 2014) can be used to construct ranks from pairwise preferences. Pairwise preferences
can be analyzed statistically using models, such as (log-linear) Bradly-Terry models (Bradley and
Terry 1952; Dras 2015) or approaches based on item response theory (Sedoc et al. 2019; Sedoc and
Ungar 2020). Further, hybrid approaches that combine ranking with scale ratings (Novikova et al.
2018) or human judgments with automatic evaluation (Hashimoto, Zhang, and Liang 2019) have
been proposed for NLG.

8.6. Worked example
To showcase a complete statistical analysis (including data and code), we consider a scenario in
which we want to compare three chatbot systems with respect to the levels of trust they evoke in
users.e More formally, we investigate the effect of three levels of the independent variable “person-
alization” on the variable user trust. We suppose that we operationalize user trust using the trust
scale by Körber (2018) and consider the scale scores to lie on an interval scale. We assume that we
conducted a pilot study and collected the full study data using a within-subject design balancing

eWe provide toy data and code for the described statistical analysis at https://github.com/boschresearch/user-study-analysis.
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for native speakers. The next step is to determine an appropriate statistical test. For this exam-
ple, we suppose that a Q-Q plot indicated that the collected responses are not parametric. Since
we chose a within-subject design, the ratings are paired. Therefore, we need to use a paired non-
parametric test and choose the Friedmann test. Supposing the Friedmann test detects a significant
difference, we subsequently run a Nemenyi test to determine which pairs of groups significantly
differ. In our example, we might find that trust ratings of two levels of personalization are sig-
nificantly higher than the third level, but that between these two levels, there is no significant
difference.

9. Conclusion
In this paper, we provided an overview of the most important aspects for human evaluation in
natural language processing. We guided the reader along the way from research questions to
statistical analysis, reviewed general experimental design approaches, discussed general ethical
and legal considerations, and gave NLP-specific advice on metrics, crowdsourcing, and evalua-
tion techniques. We complemented our discussions with two running example scenarios from
NLP and a code example for a statistical analysis with R. In doing so, we offered a quick start
guide for NLP researchers new to the field of human evaluation and provided pointers to in-depth
resources.
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