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Abstract

What is the probability that a random UHF algebra is of infinite type? What is the proba-
bility that a random simple AI algebra has at most k extremal traces? What is the expected
value of the radius of comparison of a random Villadsen-type AH algebra? What is the prob-
ability that such an algebra is Z-stable? What is the probability that a random Cuntz–Krieger
algebra is purely infinite and simple, and what can be said about the distribution of its K-
theory? By constructing C∗-algebras associated with suitable random (walks on) graphs, we
provide context in which these are meaningful questions with computable answers.

2020 Mathematics Subject Classification: 46L05 (Primary); 46L35, 05C80,
05C81 (Secondary)

1. Introduction

Inductive limit constructions lie at the very heart of operator algebras. Beginning with
Murray and von Neumann’s analysis of hyperfinite factors [43], continuing with Glimm’s
description of their C∗-analogues, the uniformly hyperfinite (UHF) algebras [23], and later
with Elliott’s pioneering work on approximately finite-dimensional (AF) algebras [15],
and beyond, not only have inductive limits of type I algebras featured consistently and
prominently in the natural C∗-world, but their classification has been a perennial pursuit
of C∗-taxonomists.

In fact (see [24, Theorem 13·50]), every (unital) simple, separable C∗-algebra that has
finite decomposition rank and satisfies the UCT (that is, every stably finite classifiable C∗-
algebra) is isomorphic to an ASH algebra, that is, to an inductive limit of subhomogeneous
C∗-algebras. Even on the other branch of the classifiable tree, purely infinite C∗-algebras
can be built from limits of circle algebras by taking crossed products by trace-scaling
endomorphisms (see [51, Proposition 4·3·3]). The known examples [49, 55, 56, 59] of
amenable C∗-algebras exhibiting Elliott invariants with more exotic behaviour also arise
from inductive limits.

In this paper, we address the question: what can be said about the distributions of the
random C∗-algebras obtained by viewing these constructions as probabilistic rather than
deterministic? To make sense of this, and to answer the questions posed in the abstract, we
outline specific procedures for probabilistic model building and examine the distributions of
suitable invariants. In particular, we will:
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(i) as a warmup example, use random walks on the prime numbers to build UHF algebras
of random type (see Section 3);

(ii) similarly build simple inductive limits of prime dimension drop algebras with random
tracial state spaces, guided by random walks on the natural numbers (see Section 4);

(iii) use random walks on binary trees to evolve Villadsen algebras whose radii of
comparison are random variables with tractable distributions (see Section 5);

(iv) investigate the distribution of the K-theory of graph C∗-algebras associated to random
regular multigraphs (see Section 6).

There are two sources of context for this line of investigation. First, our use of classifying
invariants to develop various classes of C∗-algebras into probability spaces is telegraphed by
the Borel parameterisations established in [18, 19]. Second, in work that builds on the Erdös–
Rényi construction of the random graph [17], it is shown in [11] how to probabilistically
construct (ω-categorical) universal homogeneous relational structures (briefly, one decides
by coin toss whether or not a given tuple of generators satisfies a relation). What unites the
universal UHF algebra Q, the Jiang–Su algebra Z and the stably projectionless algebra W ,
apart from (strong) self-absorption, is that they are the Fraïssé limits of suitable categories
of tracial C∗-algebras (see [13, 27, 41]). In other words, they are the generic objects that
can be built as limits from their associated Fraïssé classes. While for the most part we have
found it more natural to work with the inductive limit structure inherent to Q, Z , W and
other C∗-algebras of interest, and consequently to appeal to the theory of Markov chains
Section 2, the model employed in Section 6 may be thought of as closer in spirit to the
relational approach.

Computations of specific probabilities P and expectations E are included alongside our
random constructions, but the reader should not attach much significance to, say, the asser-
tion that the probability that a random simple inductive limit of prime dimension drop

algebras has at most k extremal traces is
k∑

i=0
(k− i)/

(
(k+ 1)2i+1

)
(see Remark 4·2). Rather,

the point being illustrated is that, with the right framework, such calculations are indeed
possible. Our suggestion is that, whether via random walks or the creation of random pair-
ings, (multi)graphs provide a natural and manageable way of probabilistically generating
large classes of interesting C∗-algebras. And the take-home message should be that graph
properties like recurrence or transience of random walks translate to almost-sure predictions
about the structure of the associated random C∗-algebras (for example, a simple symmetric
walk on the natural numbers almost surely generates the universal UHF algebra).

2. Markov chains

The random constructions in Sections 3 and 4 are based on the following continuous-
time Markov chain (specifically, a birth-and-death process). For an introduction to Markov
chains, see [45].

2·1. The model

The random variable X0 is specified by a probability distribution π on N= {0, 1, 2, . . . }.
At time t≥ 0, the value of Xt is governed by the rate matrix
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Q=

⎛
⎜⎜⎜⎜⎝
−(λ0 +μ0) λ0

μ1 −(λ1 +μ1) λ1

μ2 −(λ2 +μ2) λ2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ , (2·1)

where μi > 0 for i≥ 1 and λi > 0 for i≥ 0. It was shown in [33, Theorems 14,15] (see also
the introduction of [31]) that, if the sequences

αn :=
n∏

i=1

λi−1

μi
, βn :=

n∏
i=1

μi

λi
, n≥ 1

are such that
∞∑

n=1
(αn + βn)=∞, then there exists a unique matrix P(t) associated to Q

that satisfies P′(t)=QP(t)= P(t)Q, P(0)= I, P(s+ t)= P(s)P(t), Pij(t)≥ 0 and
∑

j Pij(t)≤
1 (for all s, t, i, j as appropriate), and that consequently determines the transition
probabilities:

P (Xs+t = j | Xs = i)= Pij(t).

While the continuous process provides important context, what we actually pay attention to
is its jump chain, that is, the discrete Markov chain (Yn)n∈N on N whose initial distribution
is π and whose transition matrix � has entries

�ij =

⎧⎪⎪⎨
⎪⎪⎩

pi := λi
λi+μi

if j= i+ 1

qi := μi
λi+μi

if j= i− 1

0 if |i− j|> 1.

(2·2)

The jump chain is represented by the diagram

There are two possibilities for what happens at i= 0:

(I) 0 is a reflecting barrier (that is, q0=μ0 = 0);

(II) −1 is an absorbing state (that is, with probability q0=μ0/(λ0 +μ0)> 0, Yn moves
from 0 to −1 and stays there).

We will use the process (Yn)n∈N to construct a random UHF algebra in Section 3 and a
random simple inductive limit of prime dimension drop algebras in Section 4. If we want a
nonzero probability of ending up with a nontrivial finite structure (a finite matrix algebra or
finite-dimensional tracial simplex), then we go with option (II).
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2·2. Absorption, recurrence and transience

The behaviour of the Markov chain (Yn)n∈N is determined by the growth of the
sequences

an :=
n∏

i=1

pi−1

qi
, bn :=

n∏
i=1

qi

pi
, n≥ 1. (2·3)

Recall that every state is of one of three types:

(a) positive recurrent (or ergodic) if with probability 1 it is visited infinitely often, the
mean return time between visits being finite;

(b) null recurrent if with probability 1 it is visited infinitely often, but with infinite mean
return time between visits;

(c) transient if with probability 1 it is visited only finitely many times.

In Case (I), the chain is irreducible (that is, there is a nonzero probability of transitioning
between any two given states), so all states are of the same type.

The following results are by now well known. See [32, Section 2] for a discussion of how
they can be deduced from the analysis of the continuous birth-and-death process carried out
in [31].

THEOREM 2·1. In Case (I), the chain (Yn)n∈N is:

(a) positive recurrent if and only if
∞∑

n=1
bn=∞ and

∞∑
n=1

an <∞;

(b) null recurrent if and only if
∞∑

n=1
bn =∞ and

∞∑
n=1

an =∞;

(c) transient if and only if
∞∑

n=1
bn <∞.

PROPOSITION 2·2. In Case (II), if the initial state is i, then the probability of eventual
absorption at zero (that is, of reaching the state −1) is( ∞∑

n=i

cn

)/(
1+

∞∑
n=0

cn

)
,

where cn :=
n∏

j=0
qj/pj. Absorption is transient (that is, occurs with probability < 1) if

∑
cn

converges, is almost sure (that is, occurs with probability 1) if
∑

cn diverges, and is ergodic
(that is, almost sure with finite expected time) if in addition

∑
an converges.

Notice that, by shifting the problem one unit to the right, Proposition 2·2 implies that in
Case (I), the probability of never reaching 0 from the initial state i is(

i−1∑
n=0

bn

)/( ∞∑
n=0

bn

)
,

(where b0 := 1). The computation of this probability appears at least as far back as [26,
Theorem 2a].
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We might also be interested in the largest value attained before absorption. As a reminder
of the flavour of some of the arguments involved, we will provide the easy proof of the
following (which is really the same as [26, Theorem 2b]).

PROPOSITION 2·3. In Case (II), the probability hk,i that, starting at i ∈ I =N, the
maximum attained value is at most k≥ 1 is

hk,i =

⎧⎪⎪⎨
⎪⎪⎩

0 if i≥ k+ 1(
k∑

n=i
cn

)/(
1+

k∑
n=0

cn

)
if 0≤ i≤ k,

where cn :=
n∏

j=0
qj/pj.

Proof. The event in question is the complement of the event that, starting at i, the chain
ever hits the set A= {k+ 1, k+ 2, . . . }. Let us write h′k,i for the probability of this latter
event

(
that is, h′k,i = 1− hk,i

)
. By an application of the Markov property (see [45, Theorem

1·3·2]),
(

h′k,i

)
i∈I

is the minimal non-negative solution to

h′k,i =

⎧⎪⎨
⎪⎩

1 if i ∈ A∑
j∈I
�ijh′k,j if i /∈ A.

(2·4)

Since −1 is an absorbing state, we also know that h′k,−1 = 0. So far, we know that hk,−1= 1
and hk,i = 0 for i≥ k+ 1. For 0≤ i≤ k, we have from (2·4) that

h′k,i = pih
′
k,i+1 + qih

′
k,i−1.

Writing ui = h′k,i − h′k,i−1 for 0≤ i≤ k+ 1, this gives

ui = qi−1

pi−1
ui−1 = qi−1qi−2

pi−1pi−2
ui−2 = · · · = ci−1u0

(with c−1 := 1), which implies that

h′k,i = (u0 + · · · + ui)+ h′k,−1= u0

(
1+

i−1∑
n=0

cn

)
.

Since h′k,k+1 = 1, it follows that u0 =
(

1+
k∑

n=0
cn

)−1

. Finally, this gives

hk,i = 1− h′k,i =
(

k∑
n=i

cn

)/(
1+

k∑
n=0

cn

)

for 0≤ i≤ k.

Example 2·4. A case of particular interest is that of constant transition probabilities (that is,
for all i≥ 1, pi = p= 1− q= 1− qi). We can interpret this as a one-dimensional drunkard’s
walk: a drunkard stumbles along a semi-infinite street of constant slope, walking one block
to the right with probability p and one block to the left with probability q (with p< q, p= q
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or p> q depending on the sign of the slope). His home is at the origin and the bar is at
position k+ 1∈ {1, 2, . . . } ∪ {∞}. In Case (I), even if he makes it home, he refuses to stay
there. By Theorem 2·1, with probability 1, these visits home occur:

(a) infinitely often with finite mean return time if p< q;

(b) infinitely often with infinite mean return time if p= q;

(c) at most finitely often if p> q
(

in which case, the probability that he starts at i and

never reaches home is 1−
(

q
p

)i )
.

In Case (II), if he makes it to his front door (at 0) he can be persuaded, with probability
q0 > 0 (which for simplicity we assume is equal to q), to go inside to bed (at −1). On
the other hand, if he makes it to the bar then he will never leave. By Proposition 2·2 and
Proposition 2·3, the event that, starting at i, he eventually goes to bed:

(a) (if the bar is at ∞) is almost sure if p≤ q (with finite expected time if p< q and
infinite expected time if p= q), and has probability(

q0

p0

(
q

p

)i
)/(

1− q

p
+ q0

p0

)
=

(
q

p

)i+1

if p> q;

(b) (if the bar is at k+ 1 ∈ {i+ 1, i+ 2, . . . } ⊆N) has probability

k+ 1− i

k+ 2

if p= q= q0 (and is given by a less appealing expression if p �= q).

3. UHF algebras
3·1. The construction

Let m−1 =m0 = 1 and let (mn)∞n=1 be an enumeration of the primes. Recall that �=
(�ij)i,j∈N∪{−1} is the transition matrix of the Markov chain (Yn)n∈N described in Section 2·1
(that is, �ij = P(Yn+1 = j | Yn = i)) and π = (πi)i∈N is its initial distribution (that is, πi =
P(Y0 = i)). In this section, we construct a UHF algebra

M(�, π)=MmY0
⊗MmY1

⊗MmY2
⊗ . . . .

In Case (I) we always obtain an infinite-dimensional C∗-algebra, while in Case (II) it is
possible to end up with a finite matrix algebra.

3·2. Probabilities

The following is immediate from Theorem 2·1, Proposition 2·2, Proposition 2·3 and
Example 2·4.

THEOREM 3·1.

(i) If q0 = 0, then with probability 1:

(a) M(�, π) is isomorphic to the universal UHF algebra Q if
∞∑

n=1

n∏
i=1

qi/pi =∞, in

particular if pi = p≤ q= qi for all i≥ 1;
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(b) M(�, π) is of ‘finite type’, that is, every prime factor of the supernatural number

associated to M(�, π) has finite multiplicity, if
∞∑

n=1

n∏
i=1

qi/pi <∞, in particular if

pi = p> q= qi for all i≥ 1.

(ii) If q0 > 0, then the probability that:

(a) M(�, π) is finite dimensional is 1 if
∞∑

n=0

n∏
j=0

qj/pj =∞, in particular if pi = p≤
q= qi for all i≥ 1, and otherwise is

⎛
⎝ ∞∑

i=0

πi

∞∑
n=i

n∏
j=0

qj

pj

⎞
⎠/⎛

⎝1+
∞∑

n=0

n∏
j=0

qj

pj

⎞
⎠ ,

which simplifies to

∞∑
i=0

πi

(
q

p

)i+1

if pi = p> q= qi for all i≥ 0;
(b) M(�, π) is isomorphic to MN, with the highest prime factor of N at most mk, is

⎛
⎝ k∑

i=0

πi

k∑
n=i

n∏
j=0

qj

pj

⎞
⎠/⎛

⎝1+
k∑

n=0

n∏
j=0

qj

pj

⎞
⎠ ,

which simplifies to

k∑
i=0

πi
k+ 1− i

k+ 2

if pi = p= q= qi for all i≥ 0.

3·3. Variations

The particular random walk we have chosen as our model is of course just one of many
possibilities. We might instead for example list the primes as the elements of the grid Z

d

for d≥ 1. It is a classical theorem of Pólya [46] (see also [20, Chapter XIV·7] or [45,
Section 1·6]) that a simple symmetric walk on this grid (that is, one in which it is only
possible to move from a given point to one of the 2d neighbouring points, each with equal
probability), is recurrent for d= 1 and d= 2, but transient for d≥ 3.

In particular, if our random UHF algebra is constructed according to a drunken walk
through an infinite flat city, we still obtain the universal UHF algebra Q. For this reason,
one might (and the author personally does) think of Q as the drunkard’s UHF algebra. On
the other hand, to paraphrase Kakutani [12, Section 3·2], a drunk bird (who flies around Z3)
will almost surely produce a UHF algebra of finite type.
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4. Simple limits of point-line algebras
4·1. Background

The Lazar–Lindenstrauss simplex theorem [37, Theorem 5·2 and its Corollary] says that
every infinite-dimensional metrisable Choquet simplex � is affinely homeomorphic to a
projective limit

�∼= lim←− (�n,ψn), (4·1)

where for each n ∈N, �n is an n-dimensional simplex and ψn : �n→�n−1 is affine and
surjective. Equivalently, the space Aff(�) of continuous affine maps �→R is isomorphic
to the limit

Aff(�)∼= lim−→
(
Aff(�n−1),ψ∗n

)∼= lim−→
(
R

n,ψ∗n
)

(4·2)

in the category of complete order unit spaces (in which the morphisms are positive unital
linear maps). Here, we identify Aff(�n−1) with Rn via the basis (fj,n)0≤j≤n−1 that is defined
on the vertices e0,n−1, e1,n−1, . . . , en−1,n−1 of �n−1 by

fj,n(ei,n)= δij. (4·3)

We will refer to these equivalent statements of the theorem as, respectively, the geometric
version and the algebraic one.

Both versions have proved useful in the construction of simple inductive limit C∗-algebras
A= lim−→ An with prescribed tracial state space T(A). We would in particular like to highlight

the approximately homogeneous (AH) cases An = pnC
(
Xn, Mmn

)
pn, where:

[4, 25] Xn = {1, . . . , ln} (so that A is an approximately finite-dimensional (AF) algebra);

[53] Xn = [0, 1] (so that A is an approximately interval (AI) algebra).

The AF construction uses the geometric version (4·1) of Lazar–Lindenstrauss. The AI
construction uses the algebraic one (4·2), together with an intertwining [53, Lemma 3·8]

,

(where CR([0, 1]) is identified with Aff
(
T
(
C
(
[0, 1], Mmn

)))
via the embedding of C([0,1])

into the centre of C([0, 1], Mmn)) and a suitable Krein–Milman theorem [53, Theorem 2·1]
to approximate each positive unital linear map ϕn by an average of maps induced by ∗-
homomorphisms.

Simple AI algebras are particularly noteworthy for demonstrating the necessity for a clas-
sifying invariant for simple amenable C∗-algebras to include not just traces and ordered
K-theory but also the pairing between the two (see [51, p. 29]). For us though, the key point
is that the construction of these AH algebras is via an algorithm whose

Input is a sequence of affine surjections ψn : �n→�n−1
(
or positive unital linear maps

ψ∗n : Rn→R
n+1

)
, and whose

Output is a simple C∗-algebra whose tracial simplex is specified by (4·1) or (4·2).
In Section 4·2, we will use ‘representing matrices’ to turn the space of sequences (4·1)

into a measure space in which we can compute probabilities. First though, for the sake of
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noise reduction we switch our attention from homogeneous to subhomogeneous building
blocks.

The introduction of boundary conditions at the endpoints of the interval (obtaining what
are variously referred to as point-line algebras, Elliott–Thomsen building blocks or one-
dimensional noncommutative CW complexes) provides access to a wider range for the K-
theory of the limit algebra. (To exhaust the full range, in particular to account for torsion
in K0, one must allow for slightly higher dimensional base spaces; see [16].) That said, our
interest in this section is altogether to rid ourselves of this turbulent K-theory, and focus on
a class for which the only thing that matters is traces, namely, C∗-algebras built from prime
dimension drop algebras

Zx,y = {f ∈C([0, 1], Mx ⊗My) | f (0) ∈Mx⊗ 1y, f (1)∈ 1x⊗My}, (x, y)= 1.

By [30, Theorems 4·5 and 6·2], simple inductive limits of these building blocks are com-
pletely classified by the tracial simplex. The ‘existence’ part of the classification is still based
on Thomsen’s algorithm, with a suitably refined Krein–Milman theorem [38, Theorem 2·1].

4·2. Representing matrices

By reordering the set (ei,n)0≤i≤n of vertices of �n if necessary, we can visualise (4·1) as
follows: �n sits atop its base �n−1, and ψn is the collapsing map that fixes the base and

sends en,n to
n∑

i=1
ai,nei−1,n−1 ∈�n−1. Dually, ψ∗n : Rn ∼=Aff(�n−1)→Aff(�n)∼=Rn+1 has

matrix ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1

. . .

1

a1,n a2,n . . . an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4·4)

The triangular matrix (ai,n)1≤i≤n, n≥1 is called a representing matrix for the simplex �.
Assigning to a representing matrix A the simplex�A defined by (4·4) is a well-defined func-
tion, but is∞-to-1: for a start, [39, Theorem 4·7] says that a sufficient condition for matrices
A and B to represent the same simplex is that they have the same asymptotic behaviour,

that is, satisfy
∞∑

n=1

n∑
i=1
|ai,n − bi,n|<∞. The full story is more complicated, because this

condition is certainly not necessary. For example, it can be shown (see [52, p. 317 and
Theorem 4·3]) that the representing matrices for which:

(a) an,n = 1 (b) a1,n = 1 (c) ai,n= 1

n
for n≥ 1 and 1≤ i≤ n, (4·5)

all give rise to the Bauer simplex K whose extreme boundary is homeomorphic to
{1/n}∞n=1 ∪ {0}.

In the random constructions to follow, we use

(ai,j)i,j≥1 �→
(

n∑
i=1

ainei−1,n−1

)
n≥1

(4·6)
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to identify the set R of representing matrices with
∏

n∈N
�n. Probabilities in the set �(R) of

all metrisable Choquet simplexes (which, as in [14], can be viewed as a subset of the unit
sphere of �1 with its w∗-topology) are computed by pushing forward a choice of product
measure γ =⊗n∈Nγn on R. We will consider three possibilities for γ :

(K) γn the point mass at
∑n

i=0
1
n ei,n;

(C) γn the uniform measure on the n+ 1 vertices of �n;

(P) γsn+i normalised Lebesgue measure on conv
{
e0,n, . . . , en−i+1,n

}⊆�n ⊆�sn+i for
1≤ i≤ n+ 1, where sn = 0+ 1+ · · · + n= (n(n+ 1))/2.

4·3. The constructions

We use the Markov chain (Yn)n∈N of Section 2·1, a choice of probability measure γ of the
form (K), (C) or (P) as described in Section 4·2, and Thomsen’s algorithm (Section 4·1), to
build a simple inductive limit

Z(�, π , γ )= lim−→
(
Zxn,yn , ϕn

)
whose tracial state space is affinely homeomorphic to lim←−

(
�Yn ,ψn

)
. Here, �−1 := �0 and

the connecting map ψn : �Yn→�Yn−1 is either:

(i) the standard inclusion
(

that is, assigns the vertices of �Yn to the first Yn + 1 vertices
of �Yn−1

)
if Yn = Yn−1 − 1; or

(ii) chosen randomly according to the probability measure γ if Yn = Yn−1 + 1.

4·4. Probabilities

THEOREM 4·1. (i) If q0 = 0, then with probability 1, Z(�, π , γ ):

(a) is monotracial (hence, is isomorphic to the Jiang–Su algebra Z) if
∞∑

n=1

n∏
i=1

qi/pi =∞,

in particular if pi = p≤ q= qi for all i≥ 1;

(b) has infinite-dimensional tracial state space if
∞∑

n=1

n∏
i=1

qi/pi <∞, in particular if pi =
p> q= qi for all i≥ 1; moreover, in this case T(Z(�, π , γ )) is with probability 1
affinely homeomorphic to either

K the Bauer simplex whose extremal boundary is
{

1
n

}∞
n=1
∪ {0} or

C the Bauer simplex whose extremal boundary is the Cantor set or

P the Poulsen simplex.

(ii) If q0 > 0, then the probability that Z(�, π , γ ) is isomorphic to Z is 1 if
∞∑

n=0

n∏
j=0

qj/pj =
∞, in particular if pi = p≤ q= qi for all i≥ 1, and otherwise is⎛

⎝ ∞∑
i=0

πi

∞∑
n=i

n∏
j=0

qj

pj

⎞
⎠/⎛

⎝1+
∞∑

n=0

n∏
j=0

qj

pj

⎞
⎠ ,

https://doi.org/10.1017/S0305004123000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000178


Random amenable C∗-algebras 355

which simplifies to

∞∑
i=0

πi

(
q

p

)i+1

if pi = p> q= qi for all i≥ 0.

Proof. (i) First, since an inverse limit is isomorphic to the limit over any cofinal subset of
the index set, Z(�, π , γ ) is monotracial precisely when the walk (Yn) visits the states {0,−1}
infinitely often. This demonstrates (i)(a) and the first assertion of (i)(b).

Case K is not just almost sure, but is the uniquely determined possibility (see (4·5)).
Case C follows from Brouwer’s Theorem [7, Theorem 3], which characterises the Cantor

set up to homeomorphism as the unique nonempty totally disconnected compact metrisable
space without isolated points. By [37, Theorem 5·1], T(Z(�, π , γ )) is a Bauer simplex with
totally disconnected extremal boundary. Essentially, the dual bases (fj,n)0≤j≤n−1 of (4·3) cor-
respond to partitions of unity over a decreasing sequence of clopen covers of the boundary,
with the representing matrix describing the way that successive partitions sit inside each
other (at each stage, the subsequent partition is obtained from the current one by splitting
one element into two pieces). We might picture the random process as a population tree,
where at each level, one member of the population is chosen at random to reproduce. In this
language, the probability that ∂eT(Z(�, π , γ )) has an isolated point (or equivalently, is not
homeomorphic to the Cantor set) is the probability that some branch of the tree eventually
becomes an evolutionary dead end, which is at most

∞∑
n=2

(
n ·
∞∏

i=n

i− 1

i

)
=
∞∑

n=2

n · lim
m→∞

n− 1

m
= 0.

Case P similarly follows from (the remark after) [37, Theorem 5·6]. A representing
matrix yields the Poulsen simplex if the vectors (a1n, . . . , ann, 0, . . . ) are dense in the pos-
itive face of the unit sphere of �1. This fails to happen only if there exist ε > 0, n≥ 1
and some barycentric coordinates (x0, . . . , xn) such that each choice of random point in

conv{e0,m, . . . , en,m}, m≥ n, misses the �1-ball B centred at
n∑

i=0
xiei,m with γ (B)= ε. The

probability of this is at most
∏

m≥n (1− ε), which is 0.
Finally, (ii) follows from Example 2·4.

Remark 4·2.

(i) To allow for the possibility of a nontrivial finite-dimensional trace space, we might
in the case q0 > 0 take the dimension of the randomly constructed simplex to
be sup{Y(n) | n∈N}. As in Example 2·4, supposing that pi = p= qi for all i, the
probability that Z(�, π , γ ) has at most k≥ 1 extremal traces is then

k∑
i=0

πi
k− i

k+ 1
.
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(ii) We could equally well have opted for the stably projectionless versions of dimension
drop algebras, so-called ‘Razak blocks’, simple inductive limits of which (assuming
‘continuous scale’) are completely classified by the tracial state space [48, 58]. In
this case, the almost-sure monotracial limit obtained in Theorem 4·1 would be the
C∗-algebra W instead of Z .

5. Villadsen algebras of the first type

By once again making a random choice at each step of an inductive limit, we this time
build an approximately homogeneous (AH) algebra, the radius of comparison of which is a
random variable whose distribution is the subject of this section.

5·1. Background

The radius of comparison is a numerical invariant of the Cuntz semigroup that was used
in [55] to distinguish C∗-algebras with the same Elliott invariant. In [54, Theorem 5·1], it is
shown how to construct simple, unital AH algebras with arbitrary ‘dimension-rank ratio’ c.
Moreover, as pointed out in [2, Corollary 5·2], an algebra constructed in this way has radius
of comparison r= c/2.

These algebras of Toms are, in the language of [57], Villadsen algebras of the first
type. That is, they are inductive limits AX = lim−→

(
Mmi ⊗C

(
X×ni

)
, ϕi

)
, with a fixed com-

pact Hausdorff X (the ‘seed space’) and each connecting map ϕi of the form ϕi(f )=
diag

(
f ◦ ξi,1, . . . , f ◦ ξi,mi+1/mi

)
, where each ξi,j : X×ni+1→ X×ni is either constant or a coor-

dinate projection. Following [54], we will take X to be the sphere S2, but as in [57, Section 8],
any finite (but nonzero) dimensional CW complex would do.

5·2. The construction

This time, we take a random walk not on the natural numbers but on an infinite complete
binary tree (or rather, on the countable disjoint union of copies of this tree). The initial
position W0 of the walk is specified by a probability distribution π on I = {0} ∪ {

2k | k ∈Z}.
Once the starting point is decided, the walk constructs a random binary number, that is,
determines the value of a random variable

W = 0.W1W2 · · · =
∞∑

i=1

Wi

2i
, (5·1)

where {Wi}i∈N are independent, as follows. After i steps, our position is on the ith level of the
tree. We descend to the level below by taking either the left branch (with probability pi+1), in
which case Wi+1 = 0, or the right branch (with probability qi+1 = 1− pi+1), in which case
Wi+1 = 1. Just as in (2·2), the transition probabilities can be encoded by a matrix �.

By following the procedure outlined in the proof of [54, Theorem 5·1], we use the random
variables {Wi}i∈N to construct a Villadsen algebra of the first type

B(�, π)= lim−→ (Bi, ϕi).

Here, Bi =Mni(C(Ti)), where Ti =
(
S2

)m0m1...mi , and the connecting map ϕi : Bi→ Bi+1 is
of the form

ϕi(f )(t)= diag
(

f ◦ π1
i (t), . . . , f ◦ πmi+1

i (t), f
(

t1i

)
, . . . , f

(
t
si+1
i

))
,
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where π j
i : Ti+1 = Tmi+1

i → Ti, 1≤ j≤mi+1, are the coordinate projections, and the points tji
are chosen to make the limit simple (as in [59]). There is some flexibility in the choice of
the natural numbers mi and si (which determine ni = (mi + si)ni−1). The ratios mi/(mi + si)
are what govern the radius of comparison R of B(�, π), and these ratios are dictated by the
random walk. We set m0/n0 =W0, and mi/(mi + si)= 2−Wi/2i

for i≥ 1. In other words, we
relate

R= lim
i→∞

dim Ti

2ni
= lim

i→∞
m0m1 . . .mi

ni
= lim

i→∞
m0m1 . . .mi−1

ni−1

mi

mi + si
=

∏
i∈N

mi

mi + si

to {Wi}i∈N by

R=W0 · 2−W . (5·2)

By the Jessen–Wintner law of pure types (see [29, Theorem 35], or [6, Theorem 3·26] for
an elementary treatment), the distribution of W is either:

(a) discrete (that is, there is a countable set J such that P(W ∈ J)= 1); or

(b) singular (that is, P(W =w)= 0 for every w ∈R, but there is a Borel set B of Lebesgue
measure zero such that P(W ∈ B)= 1); or

(c) absolutely continuous with respect to Lebesgue (so has a density f ).

(Distributions can in general be of mixed type, but this is not the case for a convergent
series of discrete random variables.)

For the sake of computing the expected value of R, we will assume that we are in case (c).
By the results of [40] (see also [8]), this occurs precisely when there is β ∈R such that, for
every n≥ 1,

pn= 1

1+ eβ/2n and qn = eβ/2
n

1+ eβ/2n .

Then, the probability density function of W is

fβ (x)= βeβx

eβ − 1
, 0≤ x≤ 1 (5·3)

if β �= 0, or f0 = 1, that is, representing the uniform distribution, if β = 0.

5·3. Probabilities

Within the framework of Section 5·2, we can compute the expected value of the radius of
comparison of the random C∗-algebra B(�, π).

THEOREM 5·1. (i) With probability π0, B(�, π) is Z-stable (in fact, a UHF algebra).

(ii) For every r> 0,

P(R≥ r)=
∑
k∈Z

π2k Gβ
( r

2k

)
,
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where

Gβ(x)=

⎧⎪⎪⎨
⎪⎪⎩

1 if x≤ 1
2

x−β/ ln 2−1
eβ−1

if 1
2 < x< 1

0 if x≥ 1

if β �= 0, and

G0(x)=

⎧⎪⎪⎨
⎪⎪⎩

1 if x≤ 1
2

− ln x
ln 2 if 1

2 < x< 1

0 if x≥ 1.

(iii) The expected value of R satisfies

E(R)∑
k∈Z

2kπ2k
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ln 4 if β = 0

ln 2 if β = ln 2

β
(
eβ−2

)
2(eβ−1)(β−ln 2)

if β /∈ {0, ln 2}

if
∑
k∈N

2kπ2k is finite. Otherwise, E(R)=∞.

Proof. (i) follows from the fact that Z-stability implies strict comparison of positive ele-
ments [50, Corollary 4·6], or in other words radius of comparison R= 0. With the present
construction, this is only possible with initial value W0 = 0, in which case each Xi is a point,
so B(�, π) is a UHF algebra (which is Z-stable).

(ii) can be deduced using the probability density function fβ of (5·3) and independence of
W0 and W. From (5·3), we compute the (complementary) cumulative distribution function
of 2−W : for β �= 0 and 1/2≤ x≤ 1 we have

P
(
2−W ≥ x

)= P

(
W ≤ log2

1

x

)
=

∫ log2
1
x

0

βeβt

eβ − 1
dt= x−β/ ln 2 − 1

eβ − 1
=Gβ(x).

If β = 0, this probability is

P
(
2−W ≥ x

)= ∫ log2
1
x

0
1 dt= log2

1

x
=− ln x

ln 2
=G0(x).

Then, for r> 0 we have

P(R≥ r)= P
(
W0 · 2−W ≥ r

)
=

∑
k∈Z

P

(
W0 = 2k, W0 · 2−W ≥ r

)
=

∑
k∈Z

π2kP

(
2−W ≥ r

2k

)
=

∑
k∈Z

π2k Gβ
( r

2k

)
.
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(iii) now follows from (ii), thanks to the well-known formula

E(R)=
∫ ∞

0
P(R≥ r)dr

(see for example [21, V·6, Lemma 1]). Using (ii) and the monotone convergence theorem,
we can compute this as

E(R)=
∑
k∈Z

π2k

∫ ∞
0

Gβ
( r

2k

)
dr.

If β = 0, this is

E(R)=
∑
k∈Z

π2k

(
2k−1 +

∫ 2k

2k−1
− ln r/2k

ln 2
dr

)

=
∑
k∈Z

2kπ2k

(
1

2
+

∫ 1

1
2

− ln t

ln 2
dt

)

=
∑
k∈Z

2kπ2k
1

ln 4
.

If β = ln 2, we have

E(R)=
∑
k∈Z

π2k

(
2k−1 +

∫ 2k

2k−1

(
2k

r
− 1

)
dr

)

=
∑
k∈Z

2kπ2k

(
1

2
+

∫ 1

1
2

(
1

t
− 1

)
dt

)

=
∑
k∈Z

2kπ2k ln 2.

Finally, if β /∈ {0, ln 2}, we have

E(R)=
∑
k∈Z

π2k

(
2k−1 +

∫ 2k

2k−1

((
r/2k

)−β/ ln 2 − 1

eβ − 1

)
dr

)

=
∑
k∈Z

2kπ2k

(
1

2
+

∫ 1

1
2

(
t−β/ ln 2 − 1

eβ − 1

)
dt

)

=
∑
k∈Z

2kπ2k
β
(
eβ − 2

)
2
(
eβ − 1

)
(β − ln 2)

.

5·4. Variations

In an alternative scenario, we proceed as follows. The initial value m0/n0 is once again
specified by a probability distribution π , let us say on the nonzero natural numbers (although
this is immaterial for the ensuing discussion). The construction is essentially the same as in
Section 5·2. The connecting maps ϕi : Bi→ Bi+1 are of the form

ϕi(f )(t)= diag
(

f ◦ π1
i (t), . . . , f ◦ πmi+1

i (t), f
(

t1i

)
, . . . , f

(
ti+1
i

))
,
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the point evaluations chosen to ensure simplicity of the limit. But this time, there are two
possibilities:

(a) with probability pi, we make a tame choice, that is, we set mi = 1, so that
mi/(mi + i)= 1/(i+ 1); or

(b) with probability qi = 1− pi, we make a more exotic choice, that is, we set
mi = i(2i − 1), so that mi/(mi + i)= 1− 1/2i.

The random inductive limit constructed this way is Z-stable if and only if we make the tame
choice infinitely often, which occurs with probability

1−
∞∑

j=0

pj

∏
i≥j+1

qi

(where p0 = 1). This means that, if for example qi = 1/2 for every i, then we almost surely
construct a Z-stable C∗-algebra.

Suppose on the other hand that, while q1 = 1/2, subsequently qi = 1− 1/i2 for i≥ 2 (say).
Then, using the fact that

∏
i≥m

(
1− 1

i2

)
= lim

k→∞

k∏
i=m

i− 1

i
· i+ 1

i
= lim

k→∞
m− 1

m
· k+ 1

k
= m− 1

m
,

the probability of a Z-stable limit is

1−
⎛
⎝2− 1

2
+
∞∑

j=2

1

j2
· j

j+ 1

⎞
⎠= 1−

(
1

2
+ 1

2

)
= 0,

so our random C∗-algebra is almost surely not Z-stable.

6. Graph C∗-algebras

By repeatedly creating random pairings, we construct a random r-regular multigraph Ĝn,r

on n labelled vertices, then generate the associated graph C∗-algebra C∗
(
Ĝn,r

)
. In this

section, we investigate the asymptotic distribution of the K0-group of this algebra.

6·1. Background

A (countable) directed graph E consists of a vertex set E0, an edge set E1, and range and
source maps r, s : E1→ E0. A path in E is a (possibly finite) sequence of edges (αi)i≥1 such
that r(αi)= s(αi+1) for every i, and a loop is a finite path whose initial and final vertices
coincide. A loop α= (α1, . . . , αn) has an exit if there exist e∈ E1 and i ∈ {1, . . . , n} such
that s(e)= s(αi) but e �= αi. A vertex v ∈ E0 is called:

(a) a source if r−1(v)=∅;
(b) a sink if s−1(v)=∅;
(c) an infinite emitter if |s−1(v)| =∞;

(d) cofinal if it can be connected to some point in any given infinite path in E.
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A Cuntz–Krieger E-family associated to a finite directed graph E= (E0, E1, s, r) is a set{
pv | v∈ E0

}
∪
{

se | e ∈ E1
}

, (6·1)

where the pv are mutually orthogonal projections and the se are partial isometries
satisfying:

s∗esf = 0 ∀ e, f ∈ E1 with e �= f

s∗e se = pr(e) ∀ e ∈ E1

ses∗e ≤ ps(e) ∀ e ∈ E1

pv =
∑

e∈s−1(v)

ses∗e ∀ v ∈ E0 that is not a sink. (6·2)

(For countably infinite graphs, which we do not consider here, the last equation should hold
for vertices v that are neither sinks nor infinite emitters.)

The graph algebra C∗(E) is the universal C∗-algebra with generators (6·1) satisfying the
relations (6·2). A Cuntz–Krieger algebra may be defined as the graph C∗-algebra of a finite
graph without sinks or sources. By [35, Section 4], this is equivalent to the original definition
[9]. In fact (see [1, Theorem 3·12]), a graph algebra C∗(E) is isomorphic to a Cuntz–
Krieger algebra if and only if E is a finite graph with no sinks, or equivalently if C∗(E) is
unital and

rank(K0(C∗(E)))= rank(K1(C∗(E))).

In general, if E is a finite graph with no sinks, and AE is its adjacency matrix

AE(i, j)=
∣∣∣{e ∈ E1 | s(e)= i, r(e)= j

}∣∣∣ ,

then K∗(C∗(E)) is given by

K0
(
C∗(E)

)∼= coker
(
At

E − I
)

and K1
(
C∗(E)

)∼= ker
(
At

E − I
)

. (6·3)

(See [47, Theorem 3·2], where this is proved for row-finite graphs possibly with sinks, and
also [10, Theorem 3·1], which considers arbitrary graphs.)

Finally, we recall conditions on E that correspond to C∗(E) being a Kirchberg algebra (see
[3, Propositions 5·1 and 5·3] and [34, Corollary 3·10]).

PROPOSITION 6·1. Let E be a finite directed graph.

(i) If every vertex connects to a loop and every loop has an exit, then C∗(E) is purely
infinite.

(ii) If E has no sinks, then C∗(E) is simple if and only if every loop in E has an exit and
every vertex in E is cofinal. In this case, C∗(E) is an AF algebra if E has no loops,
and otherwise is purely infinite.

6·2. The construction

For a given natural number r, a multigraph E is said to be r-regular if every vertex has
degree r. There are several probability distributions that can be used to construct a random
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r-regular (undirected, multi-) graph on n ∈ 2N labelled vertices. We will use the perfect
matchings model

Ĝn,r =Gn,1 + · · · +Gn,1︸ ︷︷ ︸
r

,

that is, the union of r independent, uniformly random perfect matchings. One might also con-
sider the uniform model G′n,r, that is, a random element of the set of r-regular multigraphs
with the uniform distribution, conditioned on there being no loops. By [28, Theorem 11],
these two models are contiguous, which means that a sequence of events that occurs asymp-
totically almost surely (that is, with probability approaching 1 as n→∞) according to one
distribution, occurs asymptotically almost surely according to the other.

We convert the undirected graph Ĝn,r into a directed one by replacing each edge (between
given vertices i, j) by two (one from i to j and one from j to i).

Remark 6·2. One can expect strong connectivity in random regular graphs. Conditioning
G
′
n,r on there being no multiple edges, one obtains (up to contiguity) the random r-regular

graph Gn,r. By work of Bollobás [5] (see [22, Theorem 11·9]), Gn,r is asymptotically almost
surely (a.a.s.) r-connected. For our purposes, it will be enough for us to know that Ĝn,r is
a.a.s. (1-) connected, which is not difficult to show (see [36]).

6·3. Probabilities

THEOREM 6·3. For every even integer n and every integer r≥ 3, C∗
(
Ĝn,r

)
is isomorphic

to a Cuntz–Krieger algebra that is purely infinite and is asymptotically almost surely simple.
Moreover, for any finite set P of odd primes not dividing r− 1, and any finite abelian group
V such that |V| is in the multiplicative semigroup generated by P⊆N,

lim
n∈2N

P

⎛
⎝K0

(
C∗

(
Ĝn,r

))
⊗

∏
p∈P

Zp ∼= V

⎞
⎠=N(V)

∏
p∈P

∏
k≥0

(
1− p−2k−1

)
, (6·4)

where Zp denotes the p-adic integers, and

N(V)= |{symmetric, bilinear, perfect ϕ : V × V→C
∗}|

|V| · |Aut(V)| .

Here, a symmetric, Z-bilinear map ϕ : V × V→C∗ is perfect if the only v ∈ V with
ϕ(v, V)= 1 or ϕ(V , v)= 1 is v= 0. For a discussion of the significance of the normalising
factor |V| · |Aut(V)|, see [60, Section 1], where it is also noted that, if V is a finite abelian
p-group

V =
M⊕

i=1

Z/pλiZ

with λ1 ≥ λ2 ≥ · · · ≥ λM, then

N(V)= p−
∑

i
μi(μi+1)

2

λ1∏
i=1

⌊
μi−μi+1

2

⌋∏
j=1

(
1− p−2j

)−1
,
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where μi = |{j | λj ≥ i}|. Consequently, for large p,

lim
n∈2N

P

(
K0

(
C∗

(
Ĝn,r

))
⊗Zp ∼=Z/pN

Z

)
≈ p−N ,

while

lim
n∈2N

P

(
K0

(
C∗

(
Ĝn,r

))
⊗Zp ∼= (Z/pZ)N

)
≈ p−

N(N+1)
2 .

As for the left-hand side of (6·4) when P= {p}, note that K0

(
C∗

(
Ĝn,r

))
⊗Zp ∼= V pre-

cisely when K0

(
C∗

(
Ĝn,r

))
is a finite abelian group whose p-Sylow subgroup is isomorphic

to V . This means that, compared to its counterpart (Z/pZ)N , the cyclic groupZ/pN
Z is much

more likely to appear in the K0-group of a random graph algebra C∗
(
Ĝn,r

)
.

Proof of Theorem 6·3. By construction, Ĝn,r has neither sinks nor sources, and every

vertex is the starting point of at least r≥ 3 loops, so by Proposition 6·1(i), C∗
(
Ĝn,r

)
is

isomorphic to a purely infinite Cuntz-Krieger algebra. Since Ĝn,r is a.a.s. connected (see

[36]), it follows from Proposition 6·1(ii) that C∗
(
Ĝn,r

)
is a.a.s. simple.

The second statement is proved in exactly the same way as [44, Theorem 1·5], but
with the (symmetric) adjacency matrix Cn replaced by Cn − I. The key point is that, by
Wood’s incredibly powerful limiting distribution/moment machinery [60, Theorem 6·1,
Theorem 8·3 and Corollary 9·2], it suffices to show that the expected number of surjec-
tions from coker(Cn − I) to V tends to the size | ∧2 V| of the exterior power of V as n∈ 2N
tends to∞. Here is a brief summary of the argument.

Write I(V)= spanZ{v⊗ v | v ∈ V}, so that ∧2V = (V ⊗ V)/I(V). For q= (q1, . . . , qn) ∈
Vn =Hom(Zn, V), let MinCosq be the minimal coset of V containing {q1, . . . , qn}, that is,

MinCosq = qn + spanZ{qi − qn | 1≤ i≤ n− 1}.
For k ∈N, define

RS(q, k)=
{

s ∈ (k ·MinCosq)n |
n∑

i=1

qi ⊗ si ∈ I(V) and
n∑

i=1

si = k
n∑

i=1

qi

}
.

For every q ∈ Vn, we have

q∈ RS(q, r) ⇐⇒ 0∈ RS(q, r− 1)

and, since Cn is obtained from r perfect matchings on {1, . . . , n}, it is not hard to see that
(Cn − I)q ∈ RS(q, r− 1). By [42, Theorem 1·6] and the computations that appear in the proof
of [44, Theorem 1·5],

lim
n∈2N

E(|Sur(coker(Cn − I), V)|)= lim
n∈2N

∑
q∈Sur(Zn,V)

q∈RS(q,r)

P(Cnq= q)

= lim
n∈2N

∑
q∈Sur(Zn,V)

q∈RS(q,r)

|RS(q, r)|−1
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= lim
n∈2N

∑
q∈Sur(Zn,V)
0∈RS(q,r−1)

| ∧2 V|
|V|n−1

= lim
n∈2N

(|V|n−1+ o(|V|n))
| ∧2 V|
|V|n−1

= | ∧2 V|.
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