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Rapid shallow granular flows over inclined planes are often seen in nature in the
form of avalanches, landslides and pyroclastic flows. In these situations the flow
develops an inversely graded (large at the top) particle-size distribution perpendicular
to the plane. As the surface velocity of such flows is larger than the mean velocity,
the larger material is transported to the flow front. This causes size segregation in
the downstream direction, resulting in a flow front composed of large particles. Since
the large particles are often more frictional than the small, the mobility of the flow
front is reduced, resulting in a so-called bulbous head. This study focuses on the
formation and evolution of this bulbous head, which we show to emerge in both a
depth-averaged continuum framework and discrete particle simulations. Furthermore,
our numerical solutions of the continuum model converge to a travelling wave
solution, which allows for a very efficient computation of the long-time behaviour
of the flow. We use small-scale periodic discrete particle simulations to calibrate
(close) our continuum framework, and validate the simple one-dimensional (1-D)
model with full-scale 3-D discrete particle simulations. The comparison shows that
there are conditions under which the model works surprisingly well given the strong
approximations made; for example, instantaneous vertical segregation.

Key words: granular materials, shallow water flows, shock waves

1. Introduction
For accurate zonation and risk assessment, it is important to accurately predict

the distance to which hazardous particulate natural flows such as debris flows,
pyroclastic flows or snow slab avalanches might travel (Dalbey et al. 2008). These
flows are heavily influenced not only by the basal topography, but also by the
mixture properties, such as water saturation and the size distribution of the particulate
components (e.g. snow, pumice, rock, sand). Large-scale experiments performed by
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Iverson et al. (2010) showed that segregation effects significantly increase the run-out
distance of granular flows over inclined planes (chute flows). On the laboratory scale,
experiments also show that granular flows of mixtures behave differently than flows
of uniform materials, exhibiting interesting fingering effects (Pouliquen & Vallance
1999; Vallance & Savage 2000; Baker, Johnson & Gray 2016).

Size segregation can have a very strong effect on a mixture’s composition, and often
leads to a nearly complete separation of the different particle phases. For granular
chute flows this tends to un-mix particles of different sizes into layers, creating an
inversely graded structure; the larger particles tend to segregate to the upper free
surface, while the smaller particles sink to the base (Middleton 1970). Although
there is usually some degree of diffusive remixing (Gray & Chugunov 2006), in the
bidisperse granular chute flows we consider here, layers of pure large and pure small
particles develop, with only a thin layer of mixed material in between (Savage &
Lun 1988).

There are many mechanisms of size segregation in granular flows (Dippel & Luding
1995; Luding et al. 1996; Jenkins 1998; Mullin 2000; Hong, Quinn & Luding 2001;
Mobius et al. 2001; Jenkins & Yoon 2002; González et al. 2015; Windows-Yule
et al. 2016), but kinetic sieving and squeeze expulsion are the mechanisms that are
often used to describe segregation in dense granular chute flows (Middleton 1970;
Savage & Lun 1988; Vallance & Savage 2000). In this description, void spaces open
up between particles, allowing for percolation downwards. Small particles are more
likely to fall into these gaps, which leads to a movement of small particles towards
the base of the flow. At the same time, force imbalances squeeze all particles out
of their layers towards the free surface, which leads to an upwards movement. The
combination results in a net migration of small particles to the base and large particles
towards the free surface. More recently, alternative mechanisms for size segregation,
in dense chute flows, have been proposed, based on e.g. buoyancy effects (Khakhar,
McCarthy & Ottino 1999), differences in fluctuating kinetic energy (Fan & Hill 2011;
Staron & Phillips 2015b) and kinetic theory (Larcher & Jenkins 2013).

In this study, the particles not only differ in their sizes, but also in their microscopic
friction coefficients; larger particles are ‘rougher’ than smaller particles, which is
expressed as a larger microscopic friction coefficient. This difference leads to a
larger macroscopic friction coefficient for flows consisting of larger particles than for
smaller particles. This is consistent with large, geophysical particulate flows, where
the smaller particles usually have a higher flowability than larger particles (Iverson
2003). It also induces segregation based on microscopic friction, where smoother
particles tend towards the bottom of the flow (Gillemot, Somfai & Börzsönyi 2017;
van der Vaart et al. 2017). Thus the larger, rougher particles rise towards the free
surface, while the smaller, smoother particles percolate towards the bottom of the
flow.

The large rough particles in the higher layers of the flow are transported towards
the front, due to the higher velocity near the free surface. This creates an additional
downstream (‘horizontal’) segregation structure, with the front of the flow consisting
of mostly large particles. Larger particles have a larger macroscopic friction coefficient
than smaller particles for the same (dimensional) flow height (Weinhart et al. 2012;
Thornton et al. 2012a; Staron & Phillips 2015a); this causes a reduced mobility of
the flow in the large particle front compared to the bidisperse tail. In our case, this
effect is even larger because, as stated before, we also use a higher microscopic
friction for the large particles, compared to the small particles. This configuration,
with larger frictional resistive grains at the front and finer more mobile material
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Bulbous head formation in bidisperse shallow granular flow 265

FIGURE 1. Experimental debris-flow deposit at the United States Geological Survey
(USGS) flow flume, Oregon, USA, August 2008 (Logan & Iverson 2013). The back of
the flow has a constant height, while the front shows evidence of a bulbous head; the
flow is higher near the front than at the back of the flow. Picture courtesy of USGS.

behind, can be unstable and leads to a lateral flow instability, commonly called
the fingering instability (Pouliquen & Vallance 1999). This instability leads to the
formation of levees, that channelise the flow, and therefore can have a significant
influence on the run-out distance (Iverson 1997). When the slope is steep enough that
the flow of large particles does not arrest, the downstream segregation structure leads
to an accumulation of material in the front, leading to the so-called bulbous head,
see figure 1. This bulbous head is seen both in geological deposits (Kokelaar et al.
2014; Takahashi 2014) and large-scale experiments (Iverson et al. 2010; Johnson
et al. 2012; Haas et al. 2015). The difference in friction in the front of these flows
is not only due to segregation effects, but also due to differences in water saturation:
all experimental flows mentioned above are partially water saturated, for which it is
known that the front contains less water than the tail (Takahashi 2014).

The characterisation of the behaviour of water-saturated granular flows is a topic
of ongoing study. Some early experimental studies were done by Davies (1990), who
focused on the characterisation of granular ‘waves’ on moving belts, and Iverson
& LaHusen (1993), who studied the main origin of the frictional behaviour of
water-saturated granular flows on large-scale inclined planes. They were followed by
many publications, see e.g. Haas et al. (2015) and references therein. At the same
time, many models for (partially) water-saturated monodisperse granular flows were
developed. Examples include the early model of Iverson (1997), who developed a
depth-averaged model based on mixture theory, and the model of Berzi & Jenkins
(2009), which uses dense kinetic theory for the granular phase. For a recent overview,
we refer the interested reader to Delannay et al. (2017). To fully understand large
particulate geophysical flows, it is important to understand both the influence of
segregation and the influence of water saturation in these flows; however, here we
are interested in a leading-order model that does not explicitly take into account the
presence of water. In § 3 we show that even with this strong simplification, we are
able to capture much of the dynamics of these flows.

Generally, the debris-flow models discussed above do not take into account
segregation effects inside granular chute flows; however, particles in such flows
typically have a size distribution that spans many orders of magnitude and will
therefore segregate into layers of different sizes (Dunning & Armitage 2011). Here, we
will investigate the influence of particle segregation on dry granular flows. We focus
on bidisperse granular materials, i.e. materials consisting of just two constituents of
different sizes. This greatly simplifies the problem, while maintaining the leading-order
segregation behaviour (Pouliquen & Vallance 1999; Goujon, Dalloz-Dubrujeaud &
Thomas 2007; Gray & Ancey 2009). This is a good model system to investigate the
fundamental dynamics in the more complex wet geophysical problem.
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Discrete particle simulations, which model the motion of each grain, are a logical
choice for studying and understanding particulate flows (Campbell, Cleary & Hopkins
1995; Luding 2008). However, large geophysical flows often consist of several cubic
kilometres of material; combined with the average grain size of less than a cubic
centimetre (Dunning & Armitage 2011), this means that there can be of the order
O(1015) particles in such a flow. Previously, discrete particle simulations have been
shown to be very accurate for simulating segregating laboratory-scale chute flows
(Thornton et al. 2012b); but, are currently limited to O(108) particles, which is seven
orders of magnitude less than needed for the simulation of geophysical flows.

Alternatively, to overcome the limits of computation time, one can model the flow
as a continuum, expressing it in terms of the height, velocity and small/large particle
concentration of the flow at any given position. Geophysical flows are often modelled
using single-phase shallow layer models, that ignore effects due to segregation (Savage
& Hutter 1989; Gray, Tai & Noelle 2003; Bokhove & Thornton 2012). These models
start with the general incompressible mass and momentum balances, which are then
depth averaged to reduce the complexity of the model. A source term is introduced
to prescribe the difference between the driving force (gravitational acceleration along
the slope) and the resistive force (such as basal friction).

To account for effects of segregation in granular chute flows, an advection–
diffusion-like model was developed by Bridgwater, Foo & Stephens (1985) and
later Savage & Lun (1988) derived an equivalent model using statistical arguments.
Subsequently, models based on mixture theory have been developed, which led to
the same advection–diffusion structure, e.g. Gray & Thornton (2005), Thornton, Gray
& Hogg (2006), Gray & Chugunov (2006), Fan & Hill (2011), Marks, Rognon &
Einav (2012), Tunuguntla, Bokhove & Thornton (2014). For the interested reader,
Tunuguntla, Weinhart & Thornton (2016b) gives an overview of segregation models,
and uses a unified notation to compare and contrast them. Moreover, an extension
to include segregation based on gradients in granular temperature has been given by
Hill & Fan (2016). Note that this model reduces to the model of Gray & Chugunov
(2006) when kinetic stress gradients are negligible. Alternatively, one can use the
more complicated models based on kinetic theory, e.g. Larcher & Jenkins (2013)
and Larcher & Jenkins (2015), which use different assumptions, for example that
collisions between particles are instantaneous, binary and uncorrelated.

While the aforementioned segregation models are useful for looking at evolving
segregation profiles, they can be further simplified by looking at either only the
mean diameter at a certain position (x, y) (Takahashi et al. 1992), or only some
depth-averaged quantities (Gray & Kokelaar 2010a). Here, we concentrate on
the depth-averaged concentration of each constituent, which requires additional
assumptions on the segregation behaviour. Gray & Kokelaar (2010a) assumed that
the flow rapidly segregates into fully separated inversely graded layers; whereas,
Edwards & Vriend (2016) used a more complicated three layer approach. It is
noteworthy that, under Gray & Kokelaar (2010a) assumption of instantaneous
complete vertical segregation, all models compared by Tunuguntla et al. (2016b)
reduce to the same depth-averaged segregation model that is used in this paper.
Moreover, this depth-averaged model can be coupled to single-phase shallow layer
models to investigate the mobility feedback that segregation provides (Woodhouse
et al. 2012). This simple model represents the leading-order behaviour of the flow,
as demonstrated by the fact that Woodhouse et al. (2012) successfully showed it can
reproduce the fingering instability of bidisperse granular flow fronts.

In this study, we adapt the model of Woodhouse et al. (2012) by including a
non-unity shape factor for the velocity profile in the momentum balance, and using a
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Bulbous head formation in bidisperse shallow granular flow 267

different choice for the computation of the macroscopic friction coefficient. We then
show that the bulbous-head profile is also a solution of this kind of depth-averaged
continuum framework when using simple initial and boundary conditions. Furthermore,
we demonstrate that the bulbous head also develops in three-dimensional discrete
particle simulations, with reasonable agreement between the simple one-dimensional
continuum model and the fully three-dimensional discrete particle simulations.

This paper is structured as follows: our model adapted from Woodhouse et al.
(2012) and our choices for the constitutive relations are discussed in § 2. The results
of the numerical solutions of this model are described in § 3, where it is shown that
the bulbous head emerges. Furthermore, it is shown in § 4 that our numerical solutions
to the continuum model converge to a simple travelling wave solution, which makes
computation of the long-time flow properties very efficient. Finally, in § 5 the results
from the one-dimensional continuum model are compared to fully three-dimensional
discrete particle simulations, with reasonable agreement between both approaches,
despite the simplifications in the continuum model.

2. Continuum model
In this section, we describe the size bidisperse shallow granular model that is used

in both the time-dependent numerical solutions of § 3 and the travelling wave solution
of § 4. The model is based on Woodhouse et al. (2012), with some generalisations that
are discussed later in this section.

2.1. Definitions
We consider a plane at an angle θ to the horizontal with the x-axis pointing downslope,
the y-axis pointing across the slope and the z-axis being aligned with the upward
pointing normal. In this coordinate system, the gravity vector, g, has the direction
(sin θ, 0,−cos θ) and magnitude g. Particles of two different sizes are released onto
the inclined plane, namely small particles and large particles. These have the same
density but different radii. Where appropriate, the different sizes are denoted by
superscripts L and S for large and small particles, respectively. A schematic overview
of this geometry is given in figure 2.

It is assumed that gradients and velocities in y-direction are neglected. We are
interested in the height, h(x, t), the depth-averaged downslope velocity, ū(x, t), and
the depth-averaged small particle concentration, φ̄(x, t), at all positions, x, at any time,
t > 0. Here, the small particle concentration, φ, is defined as the volume fraction of
the solid phase that consists of small particles, so the large particle concentration
equals (1 − φ). The depth-averaged velocity and small particle concentration can be
derived from their full two-dimensional equivalents u(x, z, t) and φ(x, z, t) and the
flow height, h(x, t), as

ū(x, t)=
1

h(x, t)

∫ h(x,t)

0
u(x, z, t) dz, (2.1)

φ̄(x, t)=
1

h(x, t)

∫ h(x,t)

0
φ(x, z, t) dz. (2.2)

The length scale for the non-dimensionalisation is chosen to be the large particle
diameter, instead of a typical flow height that is usually used with this kind of model.
This leads to an easier comparison with discrete particle simulations later on. All
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FIGURE 2. Schematic drawing of a bidisperse chute flow. The granular material flows
down a chute inclined at an angle θ to the horizontal. A coordinate system is taken
with the x-axis aligned with the downslope direction and the z-axis normal to the chute’s
surface. The flow is assumed to be uniform in the cross-slope y-direction. Due to the
gravity, g, pointing down, the avalanching material flows in the positive x-direction with
a downslope velocity, u(x, z, t). We assume particle-size segregation completely separates
the two particle sizes, where large particles are on top of small particles.

variables are non-dimensionalised by the large particle diameter, d∗L, and gravitational
constant, g, as follows: the height and length of the flow are non-dimensionalised by
d∗L, time by

√
d∗L/g and consequently the depth-averaged velocity by

√
d∗L g. We

also non-dimensionalise the particle diameter for both types of particles with d∗L, and
thus dS

= d∗S/d∗L and dL
= 1, respectively. The bulk density of the flow is assumed

constant, and hence it does not appear in the non-dimensionalised system of equations
in § 2.3.

2.2. Assumptions
The full two-dimensional fields for the small particle concentration and velocity of
the flow are needed for the derivation of the one-dimensional depth-averaged system
of equations in § 2.3 (Woodhouse et al. 2012). This reconstruction is not unique, and
needs assumptions on both the segregation behaviour and the velocity profile.

Regarding the segregation behaviour, it is assumed that the flow is already
segregated at the inflow boundary of the domain, where the large particles flow
above the small particles. Furthermore, they are assumed to stay segregated, so
there is no diffusive remixing (Gray & Chugunov 2006). While this is a rather
strong assumption, it is fairly accurate and validated by experiments and discrete
particle simulations of bidisperse chute flows, where it is shown that the segregation
rate is 10–30 times higher than the diffusive-remixing rate (Wiederseiner et al. 2011;
Thornton et al. 2012b). The combination of instantaneous segregation and the absence
of diffusive remixing is equivalent to the assumption that the flow is fully segregated
at all times and positions. This can be summarised as

φ(x, z, t)=

{
1 if 0< z< h(x, t)φ̄(x, t),
0 if h(x, t)φ̄(x, t)6 z< h(x, t),

(2.3)

where hφ̄ can also be referred to as the height of the small particle layer.
Note, that the assumption of a fully segregated flow leaves the depth-averaged

segregation equation heavily dependent on the velocity profile, i.e. on how much
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faster the large particles in the top layers are moving compared to the small particles
in the bottom layers.

The velocity profile for bidisperse flows over a rough base is complicated and
cannot be described by a simple linear or Bagnold velocity profile (Rognon et al.
2008; Tripathi & Khakhar 2011). However, for very shallow monodisperse flows over
sufficiently rough bases, a linear profile is a good approximation (Silbert, Landry &
Grest 2003; GDR-MiDi 2004; Weinhart et al. 2012), while a Bagnold velocity profile
is more appropriate for thicker monodisperse flows (>20 particle diameters) (Silbert
et al. 2001; Tunuguntla et al. 2014) and monodisperse flows over smooth bases
(Brodu, Richard & Delannay 2013; Faug et al. 2015). For the shallow bidisperse
flows studied in this paper, we use a simplified linear velocity profile with basal slip,
of the form

u(z)= αsū+ 2(1− αs)ū
z
h
, 0 6 αs 6 1. (2.4)

Here, αs is the amount of basal slip; for αs = 1, equation (2.4) describes a plug flow,
while for αs = 0 it describes a linear velocity profile with no slip at the base. The
choice of the constant value of αs is discussed in § 2.4. Note that αs is often denoted
by α, see e.g. Gray & Thornton (2005), Woodhouse et al. (2012) and Baker et al.
(2016). However, this causes a conflict in nomenclature with the shape factor, which
we here denote by α, see (2.5), as is used by many authors e.g. Forterre & Pouliquen
(2003), Weinhart et al. (2012) and Saingier, Deboeuf & Lagrée (2016).

It must be noted that the linear velocity profile (2.4) is deeply embedded
in the depth-averaged segregation equation (2.9), and that this equation will
change drastically for different velocity profiles. For a detailed derivation of the
depth-averaged segregation equation with other velocity profiles, we refer the
interested reader to Baker et al. (2016).

Using the velocity profile (2.4), we can compute the shape factor, α, as

α =
u2

ū2
=

1
3
(1− αs)

2
+ 1. (2.5)

This is where our model differs from that of Woodhouse et al. (2012), who set
α= 1 independent of αs. We choose to retain the dependency of α on αs to keep the
model consistent. Moreover, choosing α 6= 1 is important to preserve the influence
of inertia terms, especially for rapid flows (Saingier et al. 2016). The downside of
using a non-unity shape factor is that the slope of the height at the front goes to
zero, which causes numerical difficulties. Note, that the assumption α= 1 also shows
the bulbous-head profile. However, we prefer to keep the model internally consistent
and hence choose α as given by (2.5).

2.3. System of equations
With the above assumptions on the segregation behaviour and the velocity profile,
we can now formulate our depth-averaged, non-dimensionalised governing equations,
based on the model of Woodhouse et al. (2012). The mass and momentum balances
are respectively given by

∂h
∂t
+
∂

∂x
(hū)= 0, (2.6)

∂

∂t
(hū)+

∂

∂x

(
αhū2
+

1
2

h2 cos θ
)
= hS(h, ū, φ̄), (2.7)
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where the source term, S, consists of the down-slope component of the gravitational
acceleration and the basal friction respectively:

S= sin θ −µ(h, ū, φ̄)
ū
|ū|

cos θ. (2.8)

The gravitational acceleration drives the flow in the positive x-direction, while
the basal friction opposes the avalanche motion. It can be described with a basal
friction coefficient, µ, which is the ratio of the shear and normal stress at the base.
Traditionally, µ is taken either as a constant, e.g. Savage & Hutter (1989), or as a
function of the height and velocity of the flow, e.g. Pouliquen (1999b). Here, we
generalise the computation of µ to also include a dependence on the depth-averaged
concentration of small particles, as discussed later in this section.

Furthermore, the depth-averaged conservation of small particle mass can be
expressed as (Gray & Kokelaar 2010a)

∂

∂t
(hφ̄)+

∂

∂x
(hφ̄ū− (1− αs)hφ̄ū(1− φ̄))= 0, (2.9)

where it must be noted that hφu= (hφ̄ū− (1− αs)hφ̄ū(1− φ̄)) when using the linear
velocity profile with basal slip (2.4).

Note, that the macroscopic friction coefficient, µ, is the only feedback mechanism
affecting the segregation behaviour of the bulk; the depth-averaged mass and
momentum balances (2.6)–(2.7) do not involve gradients in the concentration of
small particles, φ̄. To make the macroscopic friction coefficient, µ, dependent on the
depth-averaged small particle concentration, φ̄, we follow the approach of Pouliquen
& Vallance (1999): the total basal friction is written as a concentration-weighted sum
of the macroscopic friction coefficients µS and µL for monodispersed flows of small
and large particles respectively:

µ= φ̄µS
+ (1− φ̄)µL. (2.10)

This provides a simple way of increasing the frictional resistance to motion as the
proportion of larger particles increases at the flow front (with µL>µS). Other friction
laws are possible, for example the basal friction could be dependent on the local
concentration of large and small particles at the base of the flow, or there may be
a complex nonlinear dependence, as shown in the discrete particle simulations of
Rognon et al. (2008).

For the basal friction coefficients of each pure individual constituent, we use the
non-dimensionalised version of the friction law for rough beds of Weinhart et al.
(2012), which is closely related to Forterre & Pouliquen (2003), and has the form

µν = tan δν1 +
tan δν2 − tan δν1
βνh

AνdνF
+ 1

ν = S, L, (2.11)

where the Froude number F = |ū|/
√

h cos θ can be expressed in terms of the
non-dimensional velocity, ū, and height, h, of the flow, and the z-component of
gravity, cos θ . The definition of the Froude number is different in Weinhart et al.
(2012) compared to Forterre & Pouliquen (2003), which results in a slightly different
form of the friction law. Here we use the definition of Weinhart et al. (2012).
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Concerning the non-dimensional friction parameters for each constituent ν, δν1 is
the minimum chute angle required for flow, δν2 is the maximum chute angle for
which steady flows are possible, Aν is a characteristic dimensionless scale and βν

is an empirical constant. The friction law (2.11) is the second point where our
model differs from Woodhouse et al. (2012), who used an exponential version of
this friction law (Pouliquen 1999b). The advantages of the reciprocal friction law
(2.11) are that it both gives a better fit, and is computationally faster compared to
the exponential friction law (Weinhart et al. 2012). Moreover, it has been shown by
Jop, Forterre & Pouliquen (2005) that the friction law (2.11) is closely related to the
popular µ(I)-rheology (GDR-MiDi 2004) evaluated at the base.

One of the major advantages of the model described in this section is that it consists
entirely of non-dimensional quantities; one can use this model across many different
scales, from the laboratory scale to full particulate geophysical flows. Recently,
Kokelaar et al. (2018) presented field evidence that these models can describe
large-scale features on the moon, in addition to the laboratory-scale phenomena
they have already been shown to capture.

2.4. Closure relations
In this section, closure relations for the macroscopic friction coefficient, µ, and the
shape factor, α, are presented for incorporating the material-dependent properties into
the model (2.6)–(2.11). To determine the friction parameters in (2.11), one can use
small-scale periodic discrete particle simulations, as shown by Thornton et al. (2012a)
and Weinhart et al. (2012).

For glass beads with a volume ratio VL/VS
= 2 on a rough bottom of small

beads, the friction parameters have been determined by Voortwis (2013), using the
open-source software package MercuryDPM (Thornton et al. 2013a,b; Weinhart et al.
2017).

Similarly, the shape factor, α, can be measured from small-scale discrete particle
simulations (Weinhart et al. 2012). For the shallow bidisperse flows in this study,
we observed a height dependence for this shape factor, similar to the relation
for monodisperse flows seen by Weinhart et al. (2012): with increasing height, α
decreases asymptotically to a fixed value, in our case approximately 1.2. This is
lower than the value of 1.25, observed by Weinhart et al. (2012), for monodisperse
flows with a Bagnold velocity profile. For simplicity, we take α = α(hin, θ) constant
throughout the domain, depending only on the inflow height and the chute angle. For
example, for inflow height hin

= 15 and angle θ = 24◦, a constant value α ≈ 1.23 is
used throughout the whole domain. Combined with (2.5), this results in αs ≈ 0.17 as
the constant for the basal slip in the velocity profile (2.4). All relevant parameters for
the continuum model used to obtain the results presented in this paper are summarised
in table 1.

3. Time-dependent numerical solution
In this section, we solve the model outlined in § 2 numerically in order to show

that it leads naturally to the bulbous head, where the flow is thicker downstream near
the front than further upstream. Since the system is hyperbolic, it can be simulated
with a discontinuous Galerkin finite element method (DGFEM) (Reed & Hill 1973).
This type of method combines the numerical fluxes of finite volume methods with
the high-order polynomial approximations through basis functions of finite element
methods. DGFEMs are widely used for computational fluid dynamics, see for example
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Friction parameters Other parameters
Small particles Large particles

δS
1 17.92◦ δL

1 18.60◦ θ 24◦

δS
2 36.53◦ δL

2 30.06◦ αs 0.17
AS 0.71 AL 3.07 hin 15
βS 0.148 βL 0.146 φ̄in 0.5

TABLE 1. Summary of parameters for the continuum model used in this paper. The friction
parameters, δ1, δ2, A and β, depend on the granular materials used, while θ , hin and φ̄in

depend on the geometry. The procedure we used for determining the friction parameters,
for a given granular material, is based on the experiments of Pouliquen (1999b) and is
fully detailed in Thornton et al. (2012a). The basal slip, αs, depends on both the material
and the geometry.

Shu (2013) and the references therein. One of the advantages of DGFEM over
conforming FEM is that it can deal with discontinuities in the solution, without
producing spurious oscillations. We follow the general DGFEM framework for a
second-order scheme with the Harten, Lax and van Leer (HLL) flux (Harten, Lax
& van Leer 1983), the total variation bounded (TVB) limiter of Cockburn & Shu
(1989) and the wetting/drying treatment of Bunya et al. (2009). The details of the
numerical method used can be found in appendix A. The method is implemented in
the hpGEM software package (Pesch et al. 2007; Nurijanyan 2013), which provides
a framework for DGFEM simulations. Due to the wetting and drying treatment and
the small but finite gradients of the height in the front, the accuracy of the method
is reduced to first order.

A domain x ∈ [0, xend] is constructed with an appropriate choice of xend, such that
this end boundary does not influence the flow profile. The initial conditions are chosen
to represent an empty chute, so h(x, 0) = hū(x, 0) = hφ̄(x, 0) = 0. At the inflow
boundary x= 0, Dirichlet boundary conditions are prescribed to fix the inflow values,
h(0, t) = hin, hū(0, t) = hinūin and hφ̄(0, t) = hinφ̄in. These inflow values are chosen
such that the flow at x= 0 is non-accelerating, i.e. S(hin, ūin, φ̄in)= 0. At the outflow
boundary x = xend, outflow boundary conditions are prescribed (Bristeau & Coussin
2001). Since the bulk flow never reaches this boundary, the exact boundary conditions
do not matter, as long as they keep the height, momentum and small particle height
non-negative and nearly zero.

For the results presented in this paper, a granular flow over a chute at angle
θ = 24◦ has been simulated until tend = 2500. For this end time, an appropriate choice
for the length of the domain is xend = 10 000. In order to be able to compare the
DGFEM solutions with the discrete particle simulations of Voortwis (2013), the inflow
height and small particle concentration are prescribed as hin

= 15, φ̄in
= 0.5. For a

flow with uniform inflow height, it then follows that ūin
≈ 3.4, see § B.1. For DGFEM

simulations, we have chosen a time step of 1t = 10−4 and N = 250 elements. All
parameter values used in the numerical solutions are summarised in table 1.

The height and concentration profiles that emerge from these DGFEM solutions can
be found in figure 3. Since the initial and boundary conditions are exactly the same
as in a dam-break structure, the profiles are initially very similar to this structure, see
figure 3(a) (Hogg & Pritchard 2004). We see that the bulbous head has not formed
yet, and the profile of the small particle concentration is smooth. Moreover, it is
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FIGURE 3. Height profiles at various times generated by DGFEM solutions. The thick
black curve denotes the height, h, of the flow, the grey area is bounded by the height
of the small particles, hφ̄. Both x and z are scaled by the large particle diameter, d∗L.
Initially, the bulbous head shape develops (a,b), until the head reaches its maximum
height (c). It then advects downwards, with the faster large particle front growing
longer at a constant rate. The dotted red and dashed blue lines illustrate the different
speeds of the shock position and large particle front, respectively. Note, the axis has
been significantly compressed in the x-direction, in order to fit the page. An animation
of this DGFEM solution is included in the online supplementary material available at
https://doi.org/10.1017/jfm.2019.63.

noteworthy that as a result of choosing α 6= 1, the height tends asymptotically to
zero and a thin precursor layer arises. The smooth profile with gradient continuously
decaying to zero is consistent with monodisperse dam breaks and chute flows, for
which analytical solutions have been derived by Hogg & Pritchard (2004) and Saingier
et al. (2016).

Around t ≈ 250 the flow starts to develop a clear front of only large particles,
separated by a shock in the small particle concentration, see figure 3(b). Furthermore,
the friction causes the large particle front to have a lower speed than the inflowing
material. This makes the height deviate from the dam-break structure, towards a
structure in which the height at the front is higher than at the inflow. Once the head
is fully developed, around t≈ 1000 (figure 3c), the bulbous-head height stays constant.
Near the inflow, the flow is uniform, with the prescribed height, velocity and small
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particle concentration. The bulbous head at the front is now clearly higher than the
inflow height, with a very pronounced large particle front.

When comparing the profiles at t = 1000, t = 1500, t = 2000 and t = 2500
(figure 3c–f ), we see that the shock in small particle concentration moves with
a constant rate, as illustrated by the dotted red line. In the region just behind this
shock, the height profile and small particle concentration profile stay constant with
respect to the shock. Near the inflow, the height and small particle concentration
stay constant at their prescribed values. So up to the shock position, the profiles of
the height and small particle concentration essentially stay the same, they are simply
advected in the x-direction and have a growing ‘tail’. This indicates that there may
be a travelling wave solution of the model we presented in § 2. In § 4 we derive such
a travelling wave solution.

The large particle front grows longer with time, and moves with a constant speed.
This speed is illustrated by the dashed blue line in figure 3(c–f ). The speed of
the large particle front is higher than the shock speed, which is represented by
the different slopes of the dotted red and dashed blue lines in figure 3(c–f ). The
shape of the front stays the same, suggesting that this can be described by another
travelling wave solution of this model. In § 4, it is shown that the large particle front
indeed fits a travelling wave solution, namely the monodisperse front solution derived
by Saingier et al. (2016), which is a generalisation for α 6= 1 of the solutions of
Pouliquen (1999a) and Gray & Ancey (2009).

In the next section, the travelling wave solution for the region behind the shock will
be derived. Furthermore, we show that the numerical solutions of this section converge
to a combination of two travelling wave solutions with different speeds, one with a
shock in the small particle concentration and one for the monodisperse front.

4. Travelling wave solution
In this section, a travelling wave solution is derived based on the observations

from the numerical solution of § 3. That is, we seek a steady solution in a reference
frame moving at constant speed. So if we can capture this wave in a reference frame,
there exists a frame speed, uf , for which the travelling wave solution is a steady-state
solution in this moving frame.

Based on our observations in § 3, we postulate a travelling wave solution to system
(2.6)–(2.9) in which the profiles of h and ū are continuous, but there is a steady
moving shock in φ̄. This shock speed is the same as the frame speed, uf , as we
want the shock to stand still in the moving frame. We can introduce a new coordinate
system

τ = t, ξ = x− uf t, (4.1a,b)

such that the frame moves with speed uf in the positive direction with ξ = 0 being
the fixed position of the shock. Applying this coordinate transformation leads to the
system

∂h
∂τ
+
∂

∂ξ
(h(ū− uf ))= 0, (4.2)

∂

∂τ
(hū)+

∂

∂ξ

(
hū(αū− uf )+

1
2

h2 cos θ
)
= hS(h, ū, φ̄), (4.3)

∂

∂τ
(hφ̄)+

∂

∂ξ
(hφ̄(ū− uf )− hφ̄ū(1− αs)(1− φ̄))= 0. (4.4)
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Note, that the source term, S, given by (2.8) remains unchanged by this transformation
since it does not directly depend on x or t.

As we are interested in a travelling wave solution, we assume that the solution of
the system is in steady state with respect to the new coordinate system. Therefore,
we set the τ -derivatives to zero, so the system becomes a set of coupled ordinary
differential equations:

d
dξ
(h(ū− uf ))= 0, (4.5)

d
dξ

(
hū(αū− uf )+

1
2

h2 cos θ
)
= hS(h, ū, φ̄), (4.6)

d
dξ
(hφ̄(ū− uf )− hφ̄ū(1− αs)(1− φ̄))= 0. (4.7)

Equations (4.5) and (4.7) can be integrated directly:

h(ū− uf )=C1, (4.8)

hφ̄(ū− uf )− hφ̄ū(1− αs)(1− φ̄)=C2, (4.9)

where C1 and C2 are arbitrary integration constants. Based on the numerical results
in § 3, we assume that the height, h, momentum, hū, and small particle height, hφ̄,
go asymptotically to a fixed value for ξ→−∞, so h→ hin, ū→ ūin and φ̄→ φ̄in as
ξ →−∞ for some constants hin > 0, ūin > 0 and φ̄in

∈ [0, 1]. Using (4.8) and (4.9),
the integration constants, C1 and C2, are then given by

C1 = hin(ūin
− uf ), (4.10)

C2 = hinφ̄in(ūin
− uf )− hinφ̄inūin(1− αs)(1− φ̄in). (4.11)

Substituting (4.10) into (4.8) gives the relation for the height depending on the depth-
averaged velocity

h(ū)=
hin(ūin

− uf )

ū− uf
. (4.12)

Similarly, substitution of (4.11) into (4.9) and rearrangement of the terms shows that
φ̄ is a solution to the quadratic equation

(1− αs)ūφ̄2
+ (αsū− uf )φ̄ −

C2

h
= 0. (4.13)

This equation can be solved with the quadratic formula, so if ū is known, then h(ū)
follows from (4.12), and φ̄(ū) can be found from

φ̄(ū)=
−(αsū− uf )+

√
(αsū− uf )2 + 4(1− αs)ūC2/h(ū)

2(1− αs)ū
. (4.14)

Note that the other solution to the quadratic equation (4.13) gives a negative value for
φ̄, which is unphysical. Using these results to eliminate h and φ̄ from (4.6) leads to
a first-order nonlinear ordinary differential equation for ū:(

2αū− uf −
ū(αū− uf )

ū− uf
−

hin(ūin
− uf ) cos θ

(ū− uf )2

)
dū
dξ
= S(h(ū), ū, φ̄(ū)). (4.15)
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4.1. Boundary conditions

As in § 3, we prescribe the inflow height, hin, and the inflow concentration of small
particles, φ̄in. We also want the height to go to the inflow height asymptotically for
ξ →−∞, so (dh/dξ)in = 0 is prescribed. Using (4.5) and the chain rule, it follows
that (

dū
dξ

)in

=
−C1

(hin)2

(
dh
dξ

)in

= 0. (4.16)

Equations (4.15) and (4.16) now imply that ūin must satisfy S(hin, ūin, φ̄in) = 0. For
the current friction law (2.10)–(2.11), this is given by:

ūin
= f (φ̄in)(hin)3/2, (4.17)

where f (φ̄in) is a function of φ̄in, the friction parameters and the geometry. For the
exact form, see § B.1.

Furthermore, it is beneficial to know the values hout and ūout at the outflow position
of the domain, ξ →∞. We look for a flow that is steady for ξ > 0, with no small
particles in this region, so φ̄ = 0 if ξ > 0. To determine the values of hout and ūout,
we use the global mass balance,

hin(ūin
− uf )= hout(ūout

− uf ). (4.18)

Furthermore, we prescribe that the flow is non-accelerating and uniform with only
large particles in the front:

S(hout, ūout, 0)= 0. (4.19)

Note, that conditions (4.17) and (4.19) only hold for steady flows; in particular, in the
initial phase of the flows described in § 3, these conditions do not hold. Conditions
(4.18) and (4.19) imply that the height and depth-averaged velocity have constant
values h = hout and ū = ūout for ξ > 0. They can be computed with Matlab’s solve
routine from

(ūout)5/3 − uf (ūout)2/3 −

(
tan θ − tan δL

1

tan δL
2 − tan θ

βL
√

cos θ
AL

)2/3

hin(ūin
− uf )= 0. (4.20)

The value of hout then follows directly from (4.18).

4.2. Shock properties
To compute the frame speed, uf , consider a plane perpendicular to the chute at a
certain ξ = ξ0< 0. Since we are looking at a steady-state solution in the moving frame
and there are no small particles at the front, we know that the net volume flux of
small particles through this plane is zero. Because we assume that the flow is fully
segregated, this can be expressed as∫ φ̄h

0
(u(z)− uf ) dz= 0. (4.21)

Evaluating this integral at ξ →−∞ with the linear velocity profile (2.4), it can be
shown that the shock speed is given by

uf = ūin(αs + (1− αs)φ̄
in). (4.22)
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To compute the small particle concentration at the left side of the shock, we realise
that for a general hyperbolic system of partial differential equations of the form
∂u/∂t + ∂f (u)/∂x = 0, the Rankine–Hugoniot jump condition states that the shock
speed s satisfies s(u+ − u−) = f (u+) − f (u−) (LeVeque 2002). Applying this to the
relation for the small particle concentration (2.9) and shock speed equal to the frame
speed, uf , we find

uf ((hφ̄)+ − (hφ̄)−) = ((hφ̄)+(ū)+ − (hφ̄)+(ū)+(1− αs)(1− (φ̄)+))

− ((hφ̄)−(ū)− − (hφ̄)−(ū)−(1− αs)(1− (φ̄)−)), (4.23)

where (φ̄)−= limξ↑0 φ̄ and (φ̄)+= limξ↓0 φ̄. Since h and ū are continuous at the shock
position, it holds that (h)− = (h)+ = hout and (ū)− = (ū)+ = ūout. Working out the
parentheses and substituting these relations for the height- and depth-averaged velocity
in (4.23) gives

uf = αsū+ ū(1− αs)((φ̄)
+
+ (φ̄)−). (4.24)

Assuming the small particle concentration at the downstream position of the shock
disappears, (φ̄)+ = 0, it follows from (4.24) that

φ̄out
= (φ̄)− =

uf − αsūout

(1− αs)ūout
, (4.25)

is the value of the small particle concentration at the left side of the shock.

4.3. ODE solution
The last missing step from the travelling wave solution is the exact shape of the
height, velocity and concentration profiles. In order to compute these profiles, equation
(4.15) is solved with MATLAB’s ode45 routine using the parameters of table 1. The
boundary conditions at the shock position, ξ = 0, are h= hout, ū= ūout and (φ̄)−= φ̄out

and (φ̄)+ = 0. Equation (4.15) is integrated in both positive and negative ξ -direction
starting from ξ = 0 with the different initial conditions for φ̄.

The resulting profiles are displayed in figure 4. For ξ > 0, the flow is non-
accelerating, since the height, velocity and small particle concentration stay constant,
in accordance with constraint (4.19). There are no small particles present, since φ̄= 0
for all ξ > 0. The flow for ξ < 0 is more interesting, where it is important to note
that h→ hin, ū→ ūin and φ̄→ φ̄in asymptotically as ξ→−∞. All curves are smooth,
except for the shock in φ̄ at ξ = 0.

Comparing the inflow and outflow heights and velocities, we see that the flow
in the front is deeper and slower than the flow in the back. This is caused by the
higher friction in the front, since there are only large, more frictional, particles here.
The higher friction coefficient causes more momentum to be dissipated, but the
mass must be conserved; therefore, the flow of pure large particles must be deeper to
conserve mass. Of course, the magnitude of these differences depend on the difference
in friction of both constituents. The larger the difference in friction between the
bidisperse and large particle phases, the deeper and slower the flow in the front. This
influence was verified by changing various combinations of friction parameters in
(4.15), e.g. by making A, δL

1 and δL
2 larger or smaller. The exact relation between the

macroscopic friction coefficients and flow height for a bidisperse granular flow within
the bulbous head needs further investigation. However, a detailed investigation of this
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FIGURE 4. Profiles for the travelling wave solution for the height h, height of small
particles hφ̄ and depth-averaged velocity ū of the flow. Note, that this solution is valid
for ξ ∈ (−∞,∞), with h→ hin, φ̄→ φ̄in and ū→ ūin as ξ→−∞ and h= hout, φ̄= 0 and
ū= ūout for ξ > 0. Therefore the total travelling wave solution has infinite mass.

relationship, for the similar constant height breaking wave structure can be found in
van der Vaart et al. (2018).

The shock speed of uf ≈ 1.9 is significantly lower than the outflow speed,
ūout
≈ 3.1, which might look surprising at first. However, we assume that the velocity

of the flow at the surface is higher than at the base, varying linearly as described by
(2.4). The small particles are at the base, and therefore moving much slower than the
large particles at the free surface. Thus the shock in the small particle concentration
must be located at the base of the flow, since that is where all small particles reside.
It follows that the shock speed must be the same as the average velocity of the flow
from the base to the small particle height, which can be expressed as

uf = αsūout
+ 2(1− αs)

ūout

hout

(
houtφ̄out

2

)
, (4.26)

= αsūout
+ (1− αs)ūoutφ̄out. (4.27)

This is exactly the shock speed that we see, which is significantly lower than the
outflow speed. This difference in uf and ūout leads to a net transport of large particles
to the front, causing the bulbous head to grow in volume. Note, that the net transport
of large particles towards the front also directly follows from the travelling wave
solution, see § B.2 for the exact expression.

Next, this travelling wave solution is compared with the time-dependent DGFEM
solution of § 3.

4.4. Comparison with time-dependent solution
To verify that this travelling wave solution describes the time-dependent solution of
§ 3, both solutions are compared by shifting the DGFEM solution such that the shock
in small particle concentration is located at ξ = 0 for all times, see figure 5. Moreover,
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FIGURE 5. Numerical height and concentration profiles at t=2500 obtained from DGFEM
solutions (black lines) compared with the travelling wave solution of figure 4 (red circles)
and monodisperse front solution of (4.28) (blue diamonds). The solid lines and objects
denote the height, h, the dotted line and open circles denote the small particle height, hφ̄.
The profiles obtained from the DGFEM solutions are shifted in x-direction such that the
shock is located at ξ = 0.

the monodisperse front is compared to the solution of Saingier et al. (2016), which
satisfies the ordinary differential equation(

(α − 1)
(ūout)2

h cos θ
+ 1
)

dh
dx̃
= tan θ −µL(h, ūout), (4.28)

where x̃ is the distance from the point where the height vanishes. This is a
generalisation for α 6= 1 of the monodisperse front solutions derived by Pouliquen
(1999a) and Gray & Ancey (2009). By shifting x̃, we can fix the mass such that the
front solution agrees with the DGFEM solutions.

Figure 5 shows the comparison between the DGFEM solution at t= 2500 and both
ODE solutions for the height and height of small particles. We see similar agreement
for the depth-averaged velocity of the flow. For ξ < 0, the time-dependent solution
matches the travelling wave solution of this section. For ξ > 0, the time-dependent
solution matches the solution of ODE (4.28). It should be noted that both ODE
solutions travel with different velocities: the large particle front travels with a speed
ūout, which is larger than the shock speed, uf , leading to an increasing volume in the
monodisperse head. Furthermore, the volume flow rate of large particles is identical
for the travelling wave solution and the DGFEM solution, see § B.2. We therefore
conclude that the DGFEM solution can be seen as a combination of two travelling
wave ODE solutions, travelling at different velocities. In the next section we validate
the model by comparing the DGFEM solution to discrete particle simulations.

5. Comparison with discrete particle simulations
To analyse the quality of the model described in § 2 for this kind of flow, the

DGFEM solutions are compared with two preliminary sets of discrete particle
simulations of a chute flow. The discrete particle simulations are performed using
MercuryDPM (Thornton et al. 2013a,b; Weinhart et al. 2017), where the simulation
details can be found in appendix C. The chute has the same inclination as in the
DGFEM solutions and the particles are the same as used for the calibration of the
friction parameters. To model the inflow boundary conditions, a so-called maser
boundary has been developed: for x ∈ [−20, 0], a small periodic chute is simulated.
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Once the flow is fully developed, the periodic boundary is removed and all particles
flowing through the boundary at x= 0 are both entering the non-periodic part of the
chute (x> 0) and duplicated at the beginning of the domain, x≈−20. This way, the
flow has a fully developed, steady velocity and segregation profile at the inflow. See
§ C.5 for full details of the maser inflow boundary.

5.1. Height profiles
Figure 6 shows a time-evolving height profile from our initial discrete particle
simulations. Initially, at t= 0, we only have the maser particles between x=−20 and
x = 0, otherwise the chute is empty. By t = 100, the flow has already developed a
front of purely large particles, that is higher than inflow height; a bulbous head is
forming. As time progresses (t= 200 until t= 500), the bulbous head gets longer and
higher, eventually saturating in height but always growing in length.

In figure 6, the discrete particle simulations are overlaid with the DGFEM solution
at the same time. Note, that there is no fitting involved, since the friction parameters
and shape factor were calibrated, i.e. measured with small-scale periodic discrete
particle simulations using the same particle properties. The procedure we used for
calibrating the friction parameters, for a given granular material, is based on the
experiments of Pouliquen (1999b) and is fully detailed in Thornton et al. (2012a).
Since the discrete particle simulations and continuum model of § 2 both use the large
particle diameter and gravity for scaling, we can directly compare the results of both
methods. Note that the x-axes start at x=−20 to show the maser particles.

The similarity between the predicted shape of the flow front and the discrete particle
data is remarkably good, especially for larger t. Initially there are some discrepancies:
the head is already forming at t = 100 in the discrete particle simulations and not
in the continuum model. We hypothesise that this is because the DFGEM prescribed
inflow conditions do not exactly match the outflow conditions of the maser, in
particular, the effective friction between the flow and surface. The travelling distance
of the flow is very well predicted for all t, even though the only condition that is
prescribed in both simulation methods is that the flow is steady and non-accelerating
at the inflow.

Still, the depth-averaged continuum theory does not fully capture all of the details
of the height profile. There are two main differences between the shape of the head
in the continuum model and discrete particle simulations. The first is at the very front
of the flow, which in the discrete particle simulations shows a gaseous behaviour
with a few saltating particles being ejected from the flow. This gaseous behaviour
cannot be predicted by the continuum model, since a constant bulk density is assumed.
However, the main discrepancy for the height profile between the continuum model
and the discrete particle simulations is at the back of the bulbous head; e.g. around
x = 1000 and t = 500. The discrete particle simulations display smoother behaviour
than the continuum model, where the mass of the particles is also slightly more in
the back compared to the numerical solution of the continuum model. We suspect the
disagreement in the continuum and discrete particle simulations stems from the fact
that the segregation structure in the front is approximated by a shock rather than the
full structure of the breaking size-segregation wave, that is expected at the back of the
bulbous head (Thornton & Gray 2008; Gajjar et al. 2016; van der Vaart et al. 2018).
This difference modified the effective basal friction; and, hence, the bulk dynamics
and shape of the front. To remove the discontinuity in the first derivative of the height
profile, at the top of the bulbous head, one would need a more complex model that
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FIGURE 6. Snapshots of discrete particle simulation of a bidisperse chute flow over a
rough bottom at various times. The inflow height is 15 particle diameters, resulting in
supercritical inflow and the mixture is 50/50 large and small particles by volume. Red
are the large particles, green are the small particles. The black lines denote the DGFEM
solution for the height. Both x and z are scaled by the large particle diameter d∗L, in both
the discrete particle simulations and DGFEM solutions. Note, that the x-axis is squeezed
by a factor 100 compared to the z-axis, so the individual particles appear as very thin
vertical stripes in this plot.

retains more details of the vertical segregation structure. A more detailed discussion
of the segregating structure can be found in § 5.2.

Figure 7 shows a second comparison with particle simulations for the case hin
=

7.4, αs = 0.08. These parameters result in subcritical inflow conditions; however the
structure is still very similar to a bulbous head, forming and growing longer over
time. In this case, the height is slightly under-predicted, in contrast to the super-critical
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FIGURE 7. Snapshots of discrete particle simulation of a bidisperse chute flow over a
rough bottom at various times. The inflow height is 7.4 particle diameters, resulting in
subcritical inflow and the mixture is 50/50 large and small particles by volume. Red
are the large particles, green are the small particles. The black lines denote the DGFEM
solution for the height. Both x and z are scaled by the large particle diameter d∗L, in both
the discrete particle simulations and DGFEM solutions. Note, that the x-axis is squeezed
by a factor 100 compared to the z-axis, so the individual particles appear to be very thin
in this plot.
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FIGURE 8. Enlarged image of the t = 500 snapshot from figure 6. Red are the large
particles, green are the small particles. The black lines denote the DGFEM solution for
the height (solid) and height of small particles (dashed). Note the breaking size-segregation
wave in the discrete particle simulations between x≈ 500 and x≈ 1500.

case, see figure 6. The height profile seems to be less steep in the continuum model
compared to the discrete particle simulations. Furthermore, the continuum model over-
predicts the flow velocity, which can partially be explained by the fact that the flow
is subcritical. In the particle simulations the maser boundary is constructed such that
it can interact with the main flow particles. The flow front is more resistive, due to
an evolving segregation profile, which feeds back on the maser boundary lowering the
inflow velocity produced by the maser. Therefore, we see that the inflow velocity is
decreasing with time, in the discrete particle simulations, and lower than the steady-
flow relation, equation (4.17), used by the continuum model. This is similar to the
complex feedback between segregation profile, friction and hence velocity, seen in the
breaking size-segregation structures studied by van der Vaart et al. (2018) and is not
captured by the current continuum models.

Further study is needed to investigate the limits of the current model with respect
to the inflow height, Froude number and chute angle. Moreover, the inflow conditions
for subcritical flow configurations should be examined.

5.2. Segregation profiles
Looking at the segregation profiles from the discrete particle simulations in more
detail, we see that the shock in the small particle concentration is unphysical and that
the region with only large particles is much smaller than predicted by the continuum
model. In general, the segregation profiles in the discrete particle simulations are not
as sharp due to diffusive remixing, and possibly some deposition of large particles at
the front with re-circulation. In the front of the flow, we see a thin band consisting
of only large particles. Behind that, there is an expanding structure around the shock
position, see figure 8. The structure observed here in the discrete particle simulations
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has been predicted from a non-depth-averaged continuum model (Thornton & Gray
2008; Gray & Ancey 2009; Gajjar et al. 2016) and in both experiments and discrete
particle simulations of a moving belt (van der Vaart et al. 2018). This structure was
named the breaking size-segregation wave and its study is ongoing. Nevertheless,
these results indicate that the assumption of full segregation needs to be relaxed in
order to obtain a better continuum model for the segregation behaviour in this region.

6. Conclusion and discussion

Granular flows containing a particle-size distribution, in both laboratory experiments
and the natural environment, often show a bulbous head structure at their flow front.
Using three-dimensional discrete particle simulations, and a simple one-dimensional
depth-averaged continuum model, we have shown that this bulbous head structure is
predicted at both the discrete and the continuum level. Furthermore, our long-time
numerical solutions of the continuum model converge to a novel combination of two
travelling wave solutions. This allows for an efficient computation of key features of
the flow, such as the maximum flow depth and the mass flux in steady state.

The simple one-dimensional depth-averaged model, that we present for this complex
problem, is calibrated using only small-scale, steady-state, discrete particle simulations,
i.e. there are no fitting parameters. We performed a preliminary comparison (one
super- and one subcritical) between the computationally cheap depth-averaged
model (requiring minutes of computation on a single core) with two large expensive
(requiring several months of computation on a single core) fully three-dimensional
particle simulations. For the super-critical flow case the depth-averaged model was
able to capture key flow properties e.g. maximum flow depth, and propagation
speed; however, it was not able to accurately capture the details of the segregating
profile. For the subcritical case discrepancies arose and increased with time; the
problem, lying with the inflow boundary condition for the depth-averaged continuum
model. A more detailed comparison between the continuum model and the full-scale
particle simulations should be undertaken and the full range of validity of the simple
continuum model determined. However, given the efficiency of the model it could be
an elegant tool for investigating the leading-order behaviour of complex segregating
geophysical flows in the future.

As stated above, despite capturing various bulk flow properties the current
continuum model does not capture all the details of the segregation behaviour,
since it assumes full segregation at every position. There are many ways the model
could be improved with respect to the segregation profile. Firstly, one could insert a
diffusion layer between the pure large and pure small phases as done by Edwards
& Vriend (2016). Alternatively, one could fit the ‘correct’ two-dimensional breaking
size-segregation wave profile (Thornton & Gray 2008; Gray & Ancey 2009; Gajjar
et al. 2016; van der Vaart et al. 2018) at the one-dimensional shock position. This
structure is known to appear in similar systems, both in discrete particle simulations
and solutions of the full two-dimensional segregation equation. Furthermore, the
breaking size-segregation wave becomes a simple shock when the segregation equation
is depth averaged (Gray & Kokelaar 2010a,b). Finally, we could even couple the
two-dimensional segregation equation to the one-dimensional depth-averaged bulk
flow model. For example, one could construct a two-dimensional domain which is
bounded by the flow base, inflow boundary and the one-dimensional height profile. On
this domain the two-dimensional segregation model can then be solved numerically,
using a velocity profile reconstructed from the computed depth-averaged velocity
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via (2.4). This formulation would allow the diffusion terms to be retained within the
segregation model and hence diffusive-remixing effects could also be captured.

From a mathematical point of view, it would be interesting to check under which
conditions our depth-averaged model is well posed. The closely related model of
Woodhouse et al. (2012) is ill posed when the characteristic from the segregation
equation coincides with one of the characteristics of the bulk flow model, i.e. when
the model fails to be strictly hyperbolic. However, it becomes unconditionally well
posed if a viscosity term is added to the momentum balance (Baker et al. 2016).
Thus, another possible step is to see what happens to the travelling wave solution if
such a viscous term is added to our model. The addition of this term has recently
been investigated for monodisperse flows by Gray & Edwards (2014) and by Baker
et al. (2016) for the model of Woodhouse et al. (2012).

Special attention should also be paid to the use of the shape factor, α 6= 1, as this
makes the complexity of the computational algorithm for the continuum method a lot
higher; requiring the use of a more sophisticated wetting and drying treatment (see
§ A.4). The inclusion of the non-unity shape factor creates a thin precursor layer which
causes a strong restriction on the time step of the numerical DGFEM solutions. The
numerical solution of the continuum model is closer to the particle simulations with
the inclusion of the ‘correct’ shape factor; but, the general structure of the height and
velocity of the bulbous head are all captured by the approximate case α= 1. A more
detailed comparison between the DGFEM and particle simulations forms the central
theme of future work where the cost versus error of including a non-unity shape factor
will be further investigated.

For obtaining accurate closure relations and performing a detailed comparison
between discrete and continuum models, it is helpful to coarse grain the discrete
particle simulations. Coarse graining allows us to extract three-dimensional continuum
fields from the discrete particle data, for e.g. the momentum and stresses (Babic 1997;
Goldhirsch 2010; Weinhart et al. 2013), both for the flow as a whole and for each
constituent separately (Tunuguntla, Thornton & Weinhart 2016a). This, in turn, can
show us which assumptions in the continuum model are most restrictive and help
us to improve full three-dimensional as well as shallow granular segregation models.
Currently, coarse-grained fields have not been constructed for the system studied here.

To make the depth-averaged shallow granular flow framework more general, it can
be extended from bidisperse to tri- and polydisperse mixtures, for which segregation
frameworks have been developed by Gray & Ancey (2011) and Marks et al. (2012),
respectively. Both models have the same structure as the current model for bidisperse
flows, and it would therefore be relatively straightforward to perform the same analysis
as is done in this paper. It has also been shown by Schlick et al. (2016) that such
models can predict segregating patterns in the formation of heaps, when first calibrated
with discrete particle simulations. Due to of the weak coupling between the bulk flow
model and the segregation model, one could even think of coupling a depth-averaged
segregation model, such as the one of Gray & Kokelaar (2010a), to a model for
water-saturated granular chute flows, for example the model described in Kowalski &
McElwaine (2013).

Currently, the calibration of the constitutive relations for our chute flow model has
to be repeated for each different combination of materials and particle sizes. To make
the continuum model more applicable, the friction laws for bidisperse flows should
be validated and extended to varying size ratios and mixture compositions. This
can be done by determining a more general friction law, or by designing efficient
discrete particle simulations that can determine the friction coefficient on the fly. The
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same holds for the a priori unknown velocity profile, which generally depends on
many parameters, such as base geometry and height. Baker et al. (2016) have already
developed a framework for the depth-averaged segregation equation with a general
velocity profile, and extending this work is an interesting avenue of future research.
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Appendix A. DGFEM discretisation
In this appendix, we will give a detailed overview of the discontinuous Galerkin

finite element method that is used for the numerical solutions in § 3. First of all, note
that (2.6)–(2.9) can be written in the standard hyperbolic form

∂U
∂t
+
∂

∂x
f (U)= s(U), (A 1)

where

U =

 h
hū
hφ̄

 , f (U)=

 hū
αhū2
+

1
2 cos θh2

hφ̄ū− (1− αs)hφ̄ū(1− φ̄)

 , s(U)=

 0
hS(h, ū, φ̄)

0

 .
(A 2a−c)

Here, h> 0, α > 1, 0◦ 6 θ < 90◦ and 0 6 αs 6 1. The eigenvalues of this system are,
in no particular order,

λ1 = αū−
√
(α2 − α)ū2 + h cos θ,

λ2 = αū+
√
(α2 − α)ū2 + h cos θ,

λ3 = ū(αs + 2φ̄ − 2αsφ̄).

 (A 3)

Since all eigenvalues are real, this system of equations is indeed hyperbolic.

A.1. Notation
A given one-dimensional domain Ω ⊂R is divided into equal-sized, non-overlapping
intervals K. The set of all of these elements is denoted as E . Each element has a
boundary ∂K, which consists of the two endpoints of the interval. Each point of
the boundary of an element has an outward unit normal vector n. We approximate
U by its discrete counterpart Uh ∈ (Vh)

3, in which Vh is the space of piecewise
linear polynomials. The functions in Vh may be discontinuous across faces, which
distinguishes discontinuous Galerkin finite element methods from conforming finite
element methods. Note, that in this case, the value of Uh(x) on an element K can
be expressed as U0

Kφ
0(x) + U1

Kφ
1(x) with the basis functions φ0 and φ1 linearly

independent linear polynomials and coefficients U`
K ∈R3, `= 0, 1.
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A.2. Discretisation
We now put the system into a discrete weak form. Multiply each equation in (A 1)
with an arbitrary test function v ∈ Vh and integrate over each element, which results
in ∫

K

∂

∂t
(Uh)v +

∂

∂x
F(Uh)v dx=

∫
K

S(Uh)v dx, K ∈ E . (A 4)

Integrating the second term by parts yields:∫
K

∂

∂t
(Uh)v − F(Uh)

∂

∂x
v dx+

∫
∂K

F(Uh)vn ds=
∫

K
S(Uh)v dx, K ∈ E . (A 5)

There are discontinuities in Uh allowed on the element faces ∂K, therefore the flux
F(Uh) is replaced by a numerical flux F̂(UL

h ,UR
h ), where UL

h and UR
h are the values at

∂K of the left and right elements respectively, giving the discretisation∫
K

∂

∂t
(Uh)v −

∫
K

F(Uh)
∂

∂x
v dx+

∫
∂K

F̂(UL
h ,UR

h )vn ds=
∫

K
S(Uh)v dx, K ∈ E . (A 6)

Here we use the numerical flux of Harten et al. (1983), which is positivity preserving
and works well for the similarly structured one-dimensional shallow water equations
(Kesserwani et al. 2008; Toro 2013). For completeness, this is repeated here. Define
aL = αū −

√
(α2 − α)ū2 + h cos θ = λ1 and aR = αū +

√
(α2 − α)ū2 + h cos θ = λ2 as

the characteristic wave speeds of the bulk flow and define fL=F(UL
h ) and fR= f (UR

h ),
respectively, the HLL flux is then given by

F̂(UL
h ,UR

h )=


fL if 0 6 aL < aR,

−aL

aR − aL
fR +

aR

aR − aL
fL +

aLaR

aR − aL
(UR

h −UL
h ) if aL < 0< aR,

fR if aL < aR 6 0.

(A 7)

A.3. Slope limiting
Since the system is hyperbolic, shocks in the solution can form over time. This can
lead to severe oscillations near the shock, which can be prevented by using a slope
limiter. Here, the TVB limiter of Cockburn & Shu (1989) is used.

A.4. Wetting and drying treatment
Physically, the height of the particle flow can never become negative, so this should
also be enforced in the numerical solutions of the continuum model. In order to do
so, we use the wetting and drying treatment of Bunya et al. (2009), which conserves
mass and, if the average height in an element is large enough, momentum. It is a
shallow layer approach, in the sense that if the height at a node is below a certain
threshold, the slope of the height and momentum are changed such that the height
is above that threshold everywhere. If the average height in an element is below that
threshold, the height in that element is set to its average and the momentum is set
to 0. Note that we expect a very thin precursor layer in front of the flow, since α 6= 1
(Saingier et al. 2016). This layer can be much smaller than the numerical precision,
so it is important to correct the height every time step. As the gradient of the height
also goes to zero, we must not be too aggressive with our limiting, as this causes
numerical artefacts where the gradient of the height gets the wrong sign for some
elements. Here, the threshold is chosen to be 10−10, which is well above numerical
precision, but low enough that numerical artefacts are minimal.
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A.5. Time integration
With some basic manipulation, the system of (A 6) can be written as

∂U
∂t
=L(U), (A 8)

where U are the coefficients and L is some nonlinear operator. We use the forward
Euler method (Press 2007) to compute all coefficients at the next time step:

Un+1
=Υ (Un

+1tL(Un)), (A 9)

where Υ is the operator that denotes the combination of slope and non-negativity
limiting and 1t is the time step. From experience we know that the most severe
restriction on the time step comes from the wetting and drying treatment, so a higher-
order time integration method is not needed for a better stability and accuracy of the
method.

Appendix B. Details of the travelling wave solution

B.1. Derivation of ūin

In this appendix, the exact formula for ūin such that S(hin, ūin, φ̄in) = 0, i.e.
µ(hin, ūin, φ̄in) = tan θ , will be derived. It is assumed that hin, φ̄in and all friction
and system parameters are known beforehand, so that ūin is the only unknown.

The friction law is given by

µ(h, ū, φ̄)= φ̄µS
+ (1− φ̄)µL,

µν(h, ū)= tan δν1 +
tan δν2 − tan δν1
βνh

AνdνF
+ 1

, ν = S, L,

 (B 1)

so we have to solve

tan θ = φ̄in

tan δS
1 +

tan δS
2 − tan δS

1

βShin

ASdSF
+ 1

+ (1− φ̄in)

tan δL
1 +

tan δL
2 − tan δL

1

βLhin

ALdLF
+ 1

 . (B 2)

Introducing the following notation:

b= tan θ − φ̄in tan δS
1 − (1− φ̄

in) tan δL
1 ,

aS
= φ̄in

(
tan δS

2 − tan δS
1

)
,

aL
= (1− φ̄in)

(
tan δL

2 − tan δL
1

)
,

cν =
βν

Aνdν
ν = S, L,


(B 3)

one can rewrite (B 2) as

aS

cShin/F+ 1
+

aL

cLhin/F+ 1
= b. (B 4)
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Time Volume Difference to previous QL
·1t

2000 4.42× 104

3000 6.62× 104 2.20× 104 2.20× 104

4000 8.82× 104 2.20× 104 2.20× 104

TABLE 2. Volume difference in time-dependent DGFEM solutions.

Rearrangement of the terms then shows that F can be expressed as

(aL
+ aS
− b)F =

hin

2
(((b− aS)cL

+ (b− aL)cS))

+
hin

2

(√
((b− aS)cL + (b− aL)cS)2 − 4(b− aL − aS)bcLcS

)
. (B 5)

ūin can be determined via
ūin
= F
√

hin cos θ. (B 6)

B.2. Conservation of large particle volume
It must be noted that in the travelling wave solution of § 4, the values of h and ū
for ξ > 0 are constant, so the volume of the large particles in the front is infinite.
However, there is a net flow of large particles towards the front, as can be seen in
the time-dependent solutions of § 3. This transport rate for large particles QL can be
computed by taking the difference of the volumetric flow rate at the inflow ξ =−∞

and outflow ξ =∞:

QL
=

∫ hout

0
(uout(z)− uf )(1− φout(z)) dz−

∫ hin

0
(uin(z)− uf )(1− φin(z)) dz, (B 7)

= houtūout(αs(1− φ̄out)+ (1− αs)(1− (φ̄out)2))− hout(1− φ̄out)uf

− hinūin(αs(1− φ̄in)+ (1− αs)(1− (φ̄in)2))− hin(1− φ̄in)uf , (B 8)

using the assumptions of a fully segregated flow and applying velocity profile (2.4).
For the parameters in table 1, this gives the value QL

= 22.0. Since QL > 0 in this
situation, we expect the volume of the head to grow over time based on this analysis.

The front of the time-dependent DGFEM solutions are integrated numerically and
evaluated at t= 2000, 3000 and 4000, see table 2. We see that the volume of the large
particle front increases at a rate of QL

·1t, which shows that the global mass balance
and hence the travelling wave solution accurately predicts the growth of the head.

Appendix C. Details of discrete particle simulations

In this appendix, details are given regarding the discrete particle simulations used to
determine the friction parameters in table 1 and to produce figure 6. All simulations
are performed with MercuryDPM (Thornton et al. 2013a,b; Weinhart et al. 2017), an
open-source package designed for performing discrete particle simulations. It has been
used for bidisperse chute-flows before, see e.g. (Thornton et al. 2012b).
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C.1. Definitions
The system consists of two types of soft, spherical particles that have the same density,
but different diameters and therefore different contact properties. On a microscopic
scale, both types of particles have the same restitution coefficient and dimensionless
contact time, but the large particles have a larger microscopic friction than the small
particles, see § C.2. Each particle i has diameter di and density ρp. The system
variables are, for each particle i, its position ri, velocity vi and angular velocity ωi.

Each contact between two particles is treated as acting at a single point. The
distance between two particles i and j is given by rij = |ri − rj|, and the overlap
between these particles is δn

ij = max(0, (di + dj)/2 − rij). Note, that it is assumed
that this overlap is small, otherwise contacts cannot be treated as being point-like. If
two particles are in contact, one can define the unit normal vector n̂ij = (ri − rj)/rij
and the vector from the centre of the particle to the contact point, the branch vector,
bij=−(di− δ

n
ij)n̂ij/2. The relative velocity vij= vi− vj can be decomposed in a normal

and tangential component as follows:

vn
ij = (vij · n̂ij)n̂ij, (C 1)

vt
ij = vij − (vij · n̂ij)n̂ij +ωi × bij −ωj × bji. (C 2)

The tangential displacement δt
ij can be evaluated as (Weinhart et al. 2012)

d
dt
δt

ij = vt
ij −

rij

r2
ij
(δt

ij · vij) (C 3)

δt
ij(t0)= 0, (C 4)

which is integrated with the first-order forward Euler method (Press 2007), starting
from the initial time of contact t0.

C.2. Contact law
There are many different contact laws to evaluate the forces between colliding
particles. Here, the normal and tangential forces are modeled with linear elastic and
linear dissipative contributions (Cundall & Strack 1979; Luding 2008). The contact
law does not strongly affect the macroscopic friction coefficient (Thornton et al.
2012a), which justifies choosing the simple linear contact model. The total contact
force on particle i due to particle j is then given by f ij = f n

ij + f t
ij, where the normal

and tangential forces are given by

f n
ij = knδn

ijn̂ij − γ
nvn

ij, (C 5)

f t
ij =−ktδt

ij − γ
tvt

ij, (C 6)

with normal and tangential spring constants kn and kt, and damping constants γ n and
γ t respectively.

The contact time tc for a central collision can be related to the contact properties
as

tc =π

/√
kn

mij
−

(
γ n

2mij

)2

, (C 7)

where the reduced mass is given by mij = mimj/(mi + mj). The restitution coefficient
ε is given by

ε = exp(−tcγ
n/2mij). (C 8)
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It should be noted, that our definition of γ n differs with a factor two from the
definition of Silbert et al. (2001), but is in line with the definitions of Luding (2008)
and Weinhart et al. (2012).

The contact-stiffness and damping are chosen such that the restitution coefficient,
which is a material property, is the same for all types of collisions,

εLL
= εSS

= εLS, (C 9)

where the superscripts LL, SS and LS denote large–large, small–small and large–small
contacts respectively. Furthermore, the ratio between collision time and gravitational
time is kept constant, which means that

tLL
c√
dL/g

=
tSS
c√
dS/g
=

tLS
c√

(dL + dS)/2g
. (C 10)

For each type of contact, the tangential stiffness is related to the normal stiffness as
kt
= 2/7 kn and the the tangential damping coefficient equals the normal damping

coefficient.
Furthermore, Coulomb friction on the contact level has been assumed, which means

that the magnitude of δt
ij is capped if necessary such that | f t

ij|/| f
n
ij| 6 µp. For this

study, the value of µp depends on the size of the particles, where it is larger for
large particles than for small particles. The relevant parameter values can be found
in table 3. For a more detailed description of this contact law we refer to (Weinhart
et al. 2012).

The total force Fi and torque qi acting on particle i are now given by

Fi =mig+
∑
j6=i

f ij, (C 11)

qi =
∑
j6=i

bij × f ij, (C 12)

where g is the gravitational vector, see figure 2.

C.3. Dynamics
The dynamics of a particle i with mass mi and moment of inertia Ii can now be
described by

mi
d2ri

dt2
=Fi, (C 13)

Ii
dωi

dt
= qi. (C 14)

These equations of motion are integrated with a second-order velocity Verlet (leap-
frog) scheme (Allen & Tildesley 1989) to compute the position, velocity and angular
velocity of each particle at each time step.

All necessary parameters for the discrete particle simulations are given in table 3,
non-dimensionalised such that for a large particle dL

=1, mL
=1 and g=1. From these

expressions, all properties for collisions between small particles and mixed collisions
can be derived, see the thesis of Voortwis (2013) for details.
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Parameter Value Description

g 1 Gravitational constant
dL 1 Large particle diameter
dS 3

√
1/2≈ 0.79 Small particle diameter

ρp 6/π Particle density (mL
= 1, mS

= 0.5)
kn,L 2× 105 Normal spring constant large particles
kt,L 2

7 kn,L Tangential spring constant large particles
γ n,L 25 Normal damping coefficient large particles
γ t,L γ n,L Tangential damping coefficient large particles
µp,LL 0.5 Microscopic particle friction large–large contacts
µp,SS 0.25 Microscopic particle friction small–small contacts
µp,LS 0.375 Microscopic particle friction large–small contacts
1t 10−4(≈ tLL

c /50) Time step for time integration schemes

TABLE 3. Nondimensionalised parameter values used for the particle simulations.

C.4. Chute geometry
For all simulations, the base of the flow consists of a few layers of fixed large
particles, to imitate a rough surface. To determine the friction parameters for the
continuum model, a short periodic chute of size (x, y)∈ [0, 20]× [0, 10] is constructed
such that it tilts in x-direction. It is filled with 1000 large particles and 2000 small
particles, so that the volume fraction of each is the same. For a description of the
algorithm to get the closure relations from a short periodic chute flow, we refer the
interested reader to Weinhart et al. (2012). For the long chute simulations, the base
of the short periodic chute is copied in x-direction to a total length of 2000, while
keeping the width in y-direction constant. The inflow is regulated through a maser
boundary, see § C.5 for details.

C.5. Maser inflow boundary condition
For the long chute simulations, the inflow must be non-accelerating and segregated in
order to compare them to the continuum model. One of the options is to do this with
a hopper with a large reservoir of particles. However, this means that at all times, the
positions and velocities of all the particles that will ever appear in the simulation have
to be computed. Furthermore, it can neither be assumed that a flow from a hopper is
already segregated at the inflow of the chute, nor that the mass fraction is constant
over time, which makes comparison with continuum models more difficult.

As an alternative, we designed a maser inflow boundary, which generates a fully
developed inflow for a chute. Initially, it only consists of a periodic box for (x, y) ∈
[−20, 0] × [0, 10]. After the periodic flow reaches a steady state, the maser boundary
starts generating particles: for each particle that passes the line x= 0, the particle is
both moved back to x=−20 as in a normal periodic boundary, and copied as inflow
particle to its original position at the right, becoming an inflowing particle for the
chute, see figure 9. The particles around x = −20 do not exert any forces on the
particles around x= 0; otherwise, the particles around x= 0 would experience similar
forces twice. However, the particles at x = 0 do exert forces at the particles around
x = −20 by the means of ghost particles. This way, a fully developed inflow with
nearly constant height is realised. It should be noted, that the velocity inside the maser
boundary is influenced by the velocity in the outflow domain, since those particles do

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

63
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.63


Bulbous head formation in bidisperse shallow granular flow 293

Master outflow

FIGURE 9. Schematic overview of a maser inflow-boundary. On the left, there is a
periodic box with coloured particles to develop the flow. Once the flow is developed, the
moving particles crossing the right periodic boundary are copied as an inflow particle onto
the long chute.

exert forces on particles inside the maser boundary. Especially for subcritical flows,
this influence can be substantial.
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