
J. Appl. Prob. 50, 1102–1116 (2013)
Printed in England

© Applied Probability Trust 2013

ANALYSIS OF THE DISCRETE
ORNSTEIN–UHLENBECK PROCESS
CAUSED BY THE TICK SIZE EFFECT

DANIEL WEI-CHUNG MIAO,∗ National Taiwan University of Science and Technology

Abstract

This paper provides an analysis on a discrete version of the Ornstein–Uhlenbeck (OU)
process which reflects the small discrete movements caused by the tick size effect. This
discrete OU process is derived from matching the first two moments to those of the
standard OU process in an infinitesimal sense. We discuss the distributional convergence
from the discrete to the continuous processes, and show that the convergence speed is in
the second order of the step (tick) size. We also provide some analytical results for the
proposed discrete OU process itself, including the closed-form formula of the moment
generating function and a full characterisation of the steady state distribution. These
results enable us to examine the convergence order explicitly.
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1. Introduction

Many standard financial models are stochastic processes where time and state space are
both continuous. Such processes use Brownian motions to drive the random movements of
the concerned financial quantities. For example, the geometric Brownian motions are used to
model stock prices in the celebrated Black–Scholes model [1], while the Ornstein–Uhlenbeck
processes [11] are used to describe those quantities with a mean-reverting nature such as interest
rates or foreign exchange rates. Well known examples for the latter are the Vasiček model [12]
and its further extension by Hull and White [6]. The continuous time assumption can be
justified by the fact that trading takes place at any real time during an ordinary market open
day. However, the continuous state assumption is somewhat restrictive in that the changes in
these quantities (stock prices, interest rates, etc.) are limited by the tick size, the minimal unit
by which they may change. In other words, for these quantities the states actually change in a
discrete manner and the continuous state models are only an approximation.

If the tick size becomes greater, the error between discrete and continuous state models will
be more significant. In addition to the error caused, there is a notable difference between the
paths of both processes. Consider an inactive market where little trading takes place; the asset
price may stay at a constant level for a certain while until a new trade comes in and causes a
price change. This is not normally seen in the continuous state models driven by Brownian
motions since their state variables change continuously over time. For this kind of random
path, more appropriate models should have their states changing discretely within a countable
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Discrete Ornstein–Uhlenbeck process 1103

set of state values and the changes should happen in continuous time. The state should move
up or down to the neighbouring states such that it changes sequentially within these discrete
values.

This paper intends to discuss the effect of the discrete nature caused by the tick size. The
continuous state (and time) model is seen as a limiting case, of which its discrete state counterpart
(time is still continuous) is developed to capture the tick size effect. The research target chosen
in this study is the OU process which is suitable for the modelling of mean-reverting financial
processes. Its discrete counterpart is constructed by matching the first two moments across an
infinitesimal interval to those of the original OU process. The resultant process is therefore a
continuous time Markov chain that moves within a discrete set and exhibits the mean-reverting
nature.

Existing studies on the discrete OU processes are limited, and most of them are concerned
with processes which have discrete time and state. A discretisation in this sense leads to a
discrete time Markov chain, for which some results can be found in the literature. For example,
Renshaw [10] considered the correlated random walk with friction as a discrete OU process
and derived the expressions for its moment generating function and some statistics including
variance and kurtosis. Larralde [7] studied the first passage time distribution while Lefebvre
and Guilbault [9] studied the first hitting place probabilities. Larralde [8] discussed statistical
properties and characteristic functions of time and state discrete OU processes.

The purpose of our study is two-fold. On the one hand, we intend to examine the order of
convergence from the discrete to the continuous processes. It is shown that the convergence is
in the second order of step size as it tends to zero. In this regard, our study is similar to other
studies on the convergence order of different models, e.g. [2] and [13], where convergence
from various tree models to the Black–Scholes model is discussed. On the other hand, we
intend to derive two analytical results for the discrete OU process itself. The first result is the
closed-form formula of the moment generating function (MGF) at an arbitrary time horizon
including steady state. This is derived by solving the first order PDE for the MGF. Secondly,
we give a full characterisation of the steady state probability distribution. This is derived from
equilibrium, a steady state property that makes the Markov chain particularly tractable. The
convergence order can also be checked from these analytical results.

The rest of this paper is organised as follows. Section 2 introduces our version of the discrete
OU process and discusses its fundamental properties. Section 3 conducts the convergence
analysis which leads to second order convergence in distribution. Section 4 derives the closed-
form formula of the MGF and examines its convergence order. Section 5 gives a full char-
acterisation of the probability distribution at steady state. Finally, Section 6 gives conclusions.

2. Construction of the discrete OU process

Consider the continuous OU process which solves the following stochastic differential
equation

dXt = k(θ − Xt) dt + σ dWt, X0 = x0,

with k, θ , and σ being the speed of mean reversion, long run mean, and volatility, respectively.
Suppose that Xt = x and let �t be an infinitesimal time interval; the first two moments of
Xt+�t are given by

E[Xt+�t | Xt = x] = x + k(θ − x)�t + o(�t),

E[X2
t+�t | Xt = x] = σ 2�t + [x2 + 2xk(θ − x)�t] + o(�t).

(1)
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Our purpose here is to define a discrete OU process, denoted as Xh
t where h is the step size in

space (tick size), that carries the main properties of Xt . Let X be the discrete set of the state
values of Xh

t . Since the OU process is symmetric about the long run mean θ , it is natural to
pick 2N + 1 states, i.e. X = {xi, i = 1, . . . , 2N + 1}, where xi < xi+1, h = xi+1 − xi , and
the center state is xN+1 = θ . The boundary states are x1 = θ −Nh and x2N+1 = θ +Nh, and

xi = x1 + (i − 1)h = θ − (N + 1 − i)h, i = 1, . . . , 2N + 1. (2)

For convenience, we assume that both processes start from the same initial value, i.e. Xh
0 =

X0 = x0 ∈ X.
To capture the continuity in the path of Xt , the discrete OU process Xh

t is only allowed to
jump to adjacent states, i.e. one step up or down. For each state xi , to determine the up and
down jump rates ui and di for which Xh

t behaves in a way close to Xt , we match their first two
moments across the time interval [t, t + �t]. Namely, for all t > 0 and xi ∈ X, we demand

E[(Xh
t+�t )

n | Xh
t = xi] = E[Xn

t+�t | Xt = xi], n = 1, 2.

Letting �t → 0, this moment matching is actually done in an infinitesimal sense.
We now derive the formulas for the up and down jump rates ui and di . Conditional on

Xh
t = xi , because P(Xh

t+�t = xi + h | Xh
t = xi) = ui�t + o(�t) and P(Xh

t+�t = xi −
h | Xh

t = xi) = di�t + o(�t), the first two moments of Xh
t+�t are

E[Xh
t+�t | Xh

t = xi]
= ui�t(xi + h) + (1 − (ui + di)�t)xi + di�t(xi − h) + o(�t),

E[(Xh
t+�t )

2 | Xh
t = xi]

= ui�t(xi + h)2 + (1 − (ui + di)�t)x2
i + di�t(xi − h)2 + o(�t).

(3)

Matching (3) to (1) and ignoring the o(�t) terms, we obtain

ui = σ 2 + hk(θ − xi)

2h2 , di = σ 2 − hk(θ − xi)

2h2 . (4)

It is seen from (4) that ui < di when xi > θ and vice versa, simply reflecting the mean-reverting
property. Moreover, due to the uniform step size h in {xi}, {ui} is a decreasing arithmetic
sequence, {di} is an increasing arithmetic sequence, and we have �u (= ui − ui+1) = �d (=
di+1 − di) = k/2.

Although Xt can take any real value, its variance will not go to infinity as time advances
since the process is mean-reverting. This ensures the existence of a steady state when the
probability distribution does not change over time. Therefore, using a finite set X for Xh

t

should be sufficient to approximate Xt well, as long as the probability of Xt going beyond the
range [xmin, xmax] (where xmin = x1 and xmax = x2N+1 are the minimal and maximal values
of X) is negligible. Since Xh

t cannot jump over these boundaries, we shall also demand that
d1 = 0 and u2N+1 = 0. This condition gives the relationship between N and h as

N = σ 2

h2k
or h = σ√

Nk
. (5)

Since N is an integer, only particular choices of h will make this equality hold. For convenience
we only consider such values of h. For a given pair of N and h, the boundaries of X are

[xmin, xmax] = [θ − Nh, θ + Nh] =
[
θ − σ 2

hk
, θ + σ 2

hk

]
.
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As N → ∞, the step size h → 0 and [xmin, xmax] → (−∞, +∞), meaning that Xh
t tends to

cover the whole real line just like Xt .

Remark 1. Note that for a given h, the state space X is a finite set instead of a countable
one. This is because one cannot find sensible ui ≥ 0 and di ≥ 0 from (4) if the state value
xi /∈ [xmin, xmax]. Hence, X must be upper and lower bounded for a fixed h, and will only
become unbounded in the limiting case when h → 0 and [xmin, xmax] → (−∞, +∞).

Remark 2. In the above construction we choose θ ∈ X for convenience, but this is not strictly
necessary. If θ /∈ X and θ is still the centre of X (symmetric case, θ = (xj + xj+1)/2
for some j where xj , xj+1 ∈ X), one may still follow the above procedure to find ui and di for
each state xi , and Xh

t is well defined. However, if θ /∈ X but θ is not at the centre (asymmetric
case, θ �= (xj + xj+1)/2), one may not find ui and di for which (4) is satisfied for each state
and dmin = umax = 0. In this case, Xh

t is not well defined.

Since Xh
t is upper and lower bounded for a fixed h, it will serve as a good approximation for

Xt only if the probability of Xt moving out of this range is sufficiently small. The following
proposition shows that this is the case.

Proposition 1. Consider an OU process Xt starting from x0 ∈ X. As h → 0 the probability
of Xt moving out of [xmin, xmax] converges to 0 at a speed quicker than f (h) = e−2/h2

, i.e.

lim
h→0

P(Xt /∈ [xmin, xmax])
f (h)

= 0.

Proof. When the process is at steady state (t → ∞), Xt is normally distributed with mean θ

and variance σ 2/2k. Therefore, P(Xt /∈ [xmin, xmax]) = 2P(Xt < θ − σ 2/hk) = 2�(−2/h),
where �(x) = ∫ x

−∞ φ(y) dy and φ(x) = e−x2/2/
√

2π . Using l’Hopital’s rule, we have

lim
h→0

P(Xt /∈ [xmin, xmax])
f (h)

= lim
h→0

2�(−2/h)

e−2/h2 = lim
h→0

4h−2φ(−2/h)

4h−3e−2/h2 = lim
h→0

h√
2π

= 0.

Next, when the process is not at steady state (t < ∞), Xt will follow a normal distribution
with slightly different mean θ + (x0 − θ)e−kt and variance σ 2(1 − e−2kt )/2k (see [12]).
The tail property of its distribution will not be affected by the slight changes in parameters.
Hence, as h → 0, P(Xt |t<∞ /∈ [xmin, xmax]) should converge to 0 at the same speed as
P(Xt | t→∞ /∈ [xmin, xmax]), i.e. the claimed property remains true.

Since the convergence speed of P(Xt /∈ [xmin, xmax]) is quicker than that of an exponential
function, it should be much quicker than that of any polynomial function with order O(hn),
n ∈ N. In contrast with xmax = O(1/h) and |xmin| = O(1/h) which grow to infinity in the
first order of 1/h, P(Xt /∈ [xmin, xmax]) goes to zero much more quickly than the growth of the
range covered by [xmin, xmax]. This indicates that for small h (large N ), Xh

t should provide a
good approximation of Xt .

Since the discrete OU process Xh
t constructed above is a continuous time Markov chain, it

is of interest to discuss some properties regarding its state holding times and state transition
rates. For each state xi , define

τi = the state holding time at state xi,

Ji(t) = the number of (up and down) jumps during [s, s + t] if Xs = xi.
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Note that the random variables τi and Ji(t) have no dependence on i (state xi), and therefore
they can be written as τ and J (t) (subscripts dropped). This is because ui + di = σ 2/h2 (see
(4)) which indicates that the total rate for jumping out of any state xi does not depend on xi .
The following proposition gives more specific statements about their distributions.

Proposition 2. For the discrete OU process Xh
t constructed above, the following statements

hold.

1. For any i, the state holding time τi is exponentially distributed with parameterλ = σ 2/h2.
Namely, τ ∼ Exp(σ 2/h2).

2. For any i, the number of jumps Ji(t) is Poisson distributed with parameter λt = σ 2t/h2.
Namely, J (t) ∼ Poi(σ 2t/h2).

The above proposition indicates that J (t) is actually a Poisson process. The parameter λ

is interpreted as the jump arrival rate, and the holding time τ represents the interarrival time
between successive jumps. Higher σ and smaller h will lead to larger λ and make the resulting
discrete process Xh

t jump more frequently and have a shorter state holding time.
With the Markov chain Xh

t well defined, the probability distribution at any time t can be
calculated. Let ph(t) = [ph

i (t), i = 1, . . . , 2N + 1] denote the probability vector of Xh
t where

ph
i (t) = P(Xh

t = xi). The Kolmogorov forward equations for the probabilities ph
i (t) are given

as follows:

d

dt
ph

1 (t) = − ph
1 (t)u1 + ph

2 (t)d2, i = 1,

d

dt
ph

i (t) =ph
i−1(t)ui−1 − ph

i (t)(ui + di) + ph
i+1(t)di+1, i = 2, . . . , 2N, (6)

d

dt
ph

2N+1(t) =ph
2N(t)u2N − ph

2N+1(t)d2N+1, i = 2N + 1,

or in matrix form as p′
h(t) = ph(t)Ah, where the (2N+1)×(2N+1) matrix Ah is the generator

matrix. The probability distribution at time t can be obtained from ph(t) = ph(0)eAht .

3. Order of convergence

As the discrete OU process Xh
t is derived from the continuous OU process Xt , it is expected

that, as the step size h → 0, both of the processes will become identical. In this section we
show that Xh

t will converge to Xt in distribution and derive the order of convergence.
Let g(t, x) denote the probability density function (PDF) of Xt , i.e. P(Xt ∈ dx | X0 = x0)

= g(t, x) dx. Then g(t, x) must satisfy the Kolmogorov forward equation or Fokker–Plank
equation (see [3]) as below

∂g(t, x)

∂t
= − ∂

∂x
[k(θ − x)g(t, x)] + 1

2

∂2

∂x2 [σ 2g(t, x)], (7)

with an appropriate initial condition g(0, x), x ∈ R. The probability distribution of the discrete
process Xh

t is described by its probability mass function as given in the probability vector ph(t).
In order to make the equations in (6) comparable with (7), we define gh(t, xi) = ph

i (t)/h,
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i = 1, . . . , 2N + 1, and thus

dgh(t, xi)

dt
= gh(t, xi−1)ui−1 − gh(t, xi)(ui + di) + gh(t, xi+1)di+1

= gh(t, xi−1)

[
σ 2 + hk(θ − xi−1)

2h2

]
− gh(t, xi)

[
σ 2

h2

]

+ gh(t, xi+1)

[
σ 2 − hk(θ − xi+1)

2h2

]
, (8)

where we let u0 = d2N+2 = 0. To relate (8) with (7), we apply the central differencing schemes
to the first and second partial derivatives on the right-hand side of (7). This gives

∂g(t, xi)

∂t
= − ∂

∂x
[k(θ − x)g(t, x)]

∣∣∣∣
x=xi

+1

2

∂2

∂x2 [σ 2g(t, x)]
∣∣∣∣
x=xi

= −
[
k(θ − xi+1)g(t, xi+1) − k(θ − xi−1)g(t, xi−1)

2h
− TE1

]

+ 1

2

[
σ 2g(t, xi+1) − 2σ 2g(t, xi) + σ 2g(t, xi−1)

h2 − TE2

]

= g(t, xi−1)

[
σ 2 + hk(θ − xi−1)

2h2

]
− g(t, xi)

[
σ 2

h2

]

+ g(t, xi+1)

[
σ 2 − hk(θ − xi+1)

2h2

]
− TE, (9)

where TE1 = 1
6 (∂3/∂x3)[µ(x)g(t, x)]h2 + · · · , TE2 = 1

12 (∂4/∂x4)[σ 2(x)g(t, x)]h2 + · · · ,
and TE = −TE1 + 1

2TE2 are truncation errors. Comparing (9) to (8), we see that these two
equations differ only in the truncation error term TE = O(h2). This indicates that the effect
of using moment matching to carry out the discretisation is essentially equivalent to applying
central differencing schemes to the Kolmogorov forward equations.

As h → 0, TE → 0, i.e. the right-hand side of the ODE (8) converges to the right-hand
side of the PDE (7) in second order. What we are concerned with is the convergence of the
probability distribution, i.e. the convergence of the solution of (8) to that of (7). We will show
that the convergence order seen in the differential equations (order of truncation errors) will
carry over to their solutions.

Proposition 3. Suppose that the initial probability distributions of Xt and Xh
t satisfy g(0, xi) =

gh(0, xi) for all xi ∈ X. For any t > 0 and xi ∈ X, as h → 0, gh(t, xi) converges to g(t, xi)

in second order, i.e.
gh(t, xi) − g(t, xi) = O(h2).

Proof. First we write (8) and (9) in matrix form as

g′
h(t) = gh(t)Ah,

g′(t) = g(t)Ah − TEh(t),

respectively, where we define the following 1 × (2N + 1) row vectors gh(t) = [gh(t, xi)],
g(t) = [g(t, xi)], and TEh(t) = [TEi

h(t)] for i = 1, . . . , 2N + 1. Subtracting the second
equation from the first equation yields

e′
h(t) = eh(t)Ah + TEh(t),
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where eh(t) = gh(t) − g(t) containing elements eh(t, xi) = gh(t, xi) − g(t, xi). The solution
to the above first order ODE system is given by

eh(t) = eh(0)eAht +
[∫ t

0
TEh(s)e

−Ahs ds

]
eAht . (10)

For a row vector x = [x1, . . . , xn], define the norm as ‖x‖ = ∑n
i=1 |xi |h. The corresponding

norm for a matrix B is then defined by ‖B‖ = max‖x‖=1 ‖xB‖. In our case we have ‖gh(t)‖ = 1
since the elements of gh(t) form a probability ‘density’ function (prob/h at each xi). The
matrices concerned are eAht or e−Aht . Note that eAht is the probability transition matrix across
the interval [0, t], i.e. ph(t) = ph(0)eAht or ph(0) = ph(t)e−Aht . If x is a vector of a probability
density (‖x‖ = 1) like gh(t), then xeAht and xe−Aht must also be vectors of probability densities.
Therefore, we have

‖eAht‖ = max‖x‖=1
‖xeAht‖ = 1 and ‖e−Aht‖ = max‖x‖=1

‖xe−Aht‖ = 1.

Because gh(0, xi) = g(0, xi) for all i, i.e. gh(0) = g(0), the initial error eh(0) = 0.
Moreover, because the truncation error for each time t > 0 and xi ∈ X converges to 0
in second order, there exists a constant ci(t) such that TEi

h(t) ≤ ci(t)h
2. Since ‖TEh(t)‖ =∑2N+1

i=1 |TEi
h(t)|h with N = σ 2/h2k ∝ 1/h2, ‖TEh(t)‖ is first order in h, i.e. there exists a

constant c(t) such that ‖TEh(t)‖ ≤ c(t)h. Taking the norm in (10), we obtain

‖eh(t)‖ = ‖eh(0)eAht‖ +
∥∥∥∥
[∫ t

0
TEh(s)e

−Ahs ds

]
eAht

∥∥∥∥
≤ ‖eh(0)‖‖eAht‖ +

[∫ t

0
‖TEh(s)‖‖e−Ahs‖ ds

]
‖eAht‖

≤ 0 +
∫ t

0
c(s)h ds

= Cth

= O(h),

where Ct = ∫ t

0 c(s) ds. Since ‖eh(t)‖ = ∑2N+1
i=1 |e(t, xi)|h, the above indicates that

e(t, xi) = O(h2), for all i = 1, . . . , 2N + 1, t ∈ [0, T ],
which was our claim.

Remark 3. The above proposition assumes that Xt and Xh
t have the same initial probability

measure. In the special case Xh
0 = X0 = x0 ∈ X, the fact that the PDF of X0 is a

nondifferentiable delta function will cause some technical problems, i.e. the initial error eh(0)

will become unbounded even though they start from the same value x0. But the problem is
eased after a small �t at which time the PDF of X�t is normally distributed around x0 with a
small variance. The above proposition is applicable by taking �t to be the initial time.

Remark 4. The second order convergence is clearly due to the fact that the first two moments
are matched. If more moments are matched (i.e. transitions to other states are allowed, not
just to the adjacent states), the convergence will generally become quicker, but this will not
necessarily improve the order of convergence.
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4. Closed-form formula of the moment generating function

In this section we derive the moment generating function of the discrete OU process. We
first discuss how to formulate the PDE which the MGF of Xh

t should satisfy. Then we present
its closed-form solution. Finally we use this result to examine the convergence order.

4.1. Formulation and solution of the PDE for the MGF of Xh
t

Since the MGF takes the form of an expected value, it is of interest to look at a result
about general expected values. The following proposition provides the differential equation for
E[f (Xh

t )].
Proposition 4. For a function f ∈ C∞(R), E[f (Xh

t )] must solve the following differential
equation

dE[f (Xh
t )]

dt
= E[k(θ − Xh

t )f ′(Xh
t )] + 1

2
E[σ 2f ′′(Xh

t )]

+ h2

3! E[k(θ − Xh
t )f (3)(Xh

t )] + h2

4! E[σ 2f (4)(Xh
t )]

+ h4

5! E[k(θ − Xh
t )f (5)(Xh

t )] + h4

6! E[σ 2f (6)(Xh
t )] + · · · . (11)

Proof. Define the generator for the discrete OU process Xh
t , denoted Ah, as

Ahf (x) = lim
�t→0

E[f (Xh
t+�t ) | Xh

t = x] − f (x)

�t
(12)

for a function f ∈ C∞(R) and for all x ∈ X. Respectively let u and d be the up and down
jump rates for the state x (subscript i dropped), then

E[f (Xh
t+�t ) | Xh

t = x] = (u�t)f (x+h)+(1−(u+d)�t)f (x)+(d�t)f (x−h)+O((�t)2).

Consequently, the generator in (12) becomes

Ahf (x) = uf (x + h) − (u + d)f (x) + df (x − h)

=
[
σ 2 + hk(θ − x)

2h2

]
f (x + h) −

[
σ 2

h2

]
f (x) +

[
σ 2 − hk(θ − x)

2h2

]
f (x − h)

= k(θ − x)

[
f (x + h) − f (x − h)

2h

]
+ 1

2
σ 2

[
f (x + h) − 2f (x) + f (x − h)

h2

]
.

(13)

Applying Taylor expansions to f (x + h) and f (x − h) in (13) yields

Ahf (x) = k(θ − x)

[
f ′(x) + f (3)(x)

3! h2 + f (5)(x)

5! h4 + · · ·
]

+ σ 2
[
f ′′(x)

2! + f (4)(x)

4! h2 + f (6)(x)

6! h4 + · · ·
]
.

Note that (12) can be expressed as

E[f (Xh
t+�t ) | Xh

t = x] = f (x) + Ahf (x)�t + o(�t).
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Taking the expected value with respect to Xh
t , we have

E[f (Xh
t+�t )] = E[f (Xh

t )] + E[Ahf (Xh
t )]�t + o(�t).

Inserting Ah into the above formula and letting �t → 0, we obtain (11).

In order to find the MGF, we set f (x) = eαx in (11) and obtain

dE[eαXh
t ]

dt
= E[k(θ − Xh

t )αeαXh
t ] + 1

2
E[σ 2α2eαXh

t ]

+ h2

3! E[k(θ − Xh
t )α3eαXh

t ] + h2

4! E[σ 2α4eαXh
t ] + · · · . (14)

From an initial look of (14), the presence of the infinite terms on the right-hand side seems to
pose some problem. However, some algebraic manipulations turn the differential equation (14)
into a simple first order PDE, of which the closed-form solution can be found. The following
proposition presents the results.

Proposition 5. The MGF of Xh
t , denoted as y = y(t, α) = E[eαXh

t ], satisfies the following
PDE:

∂y

∂t
+

[
k

h
sinh(αh)

]
∂y

∂α
=

[
kθ

h
sinh(αh) + σ 2

h2 (cosh(αh) − 1)

]
y. (15)

Its solution is given by

E[eαXh
t ] = eαθ+(2/h)(x0−θ) tanh−1(e−kt tanh(αh/2))

[
cosh(αh/2)

cosh(tanh−1(e−kt tanh(αh/2)))

]2σ 2/h2k

.

(16)

Proof. Since ∂E[eαXh
t ]/∂α = E[Xh

t eαXh
t ], (14) can be written as a first order PDE where

the derivatives are with respect to either t or α. By collecting the k and σ 2 related terms on the
right-hand side of (14) and using the following two formulas

1+ 1

3! (αh)2+ 1

5! (αh)4+· · · = sinh(αh)

αh
, 1+ 2

4! (αh)2+ 2

6! (αh)4+· · · = 2
cosh(αh) − 1

(αh)2 ,

the first order PDE can be simplified to (15). The details of solving (15) to derive its solution
(16) are provided in Appendix A.

4.2. Convergence from the MGF of Xh
t to the MGF of Xt

We may use (16) to study the convergence E[eαXh
t ] → E[eαXt ]. Recall that Xt is normally

distributed with mean θ + (x0 − θ)e−kt , variance (σ 2/2k)(1 − e−2kt ) (see [12]), and MGF

E[eαXt ] = eα[θ+(x0−θ)e−kt ]+(α2/2)[(σ 2/2k)(1−e−2kt )]. (17)

The order of convergence is checked in the following proposition.

Proposition 6. For an α such that both MGFs exist, E[eαXh
t ] converges to E[eαXt ] in second

order, i.e.

E[eαXh
t ] = E[eαXt ](1 + O(h2)).
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Proof. We check the convergence order of the following terms in (16) separately:

(A) = e(2/h)(x0−θ) tanh−1(e−kt tanh(αh/2)) −→ (B) = eα(x0−θ)e−kt

,

(C) =
[

cosh(αh/2)

cosh(tanh−1(e−kt tanh(αh/2)))

]2σ 2/h2k

−→ (D) = e(α2/2)[(σ 2/2k)(1−e−2kt )].

Using the relation tanh(x) ≈ x ≈ tanh−1(x) for sufficiently small x, we see that as h → 0,

2(x0 − θ)

h
tanh−1

(
e−kt tanh

(
αh

2

))
−→ 2(x0 − θ)

h
e−kt

(
αh

2

)
= α(x0 − θ)e−kt ,

which shows that (A) converges to (B). To check the convergence order, note that

tanh(x) = ex − e−x

ex + e−x
= (1 + x + x2/2 + · · · ) − (1 − x + x2/2 − · · · )

(1 + x + x2/2 + · · · ) + (1 − x + x2/2 − · · · ) = x + O(x3),

and

tanh−1(x) = 1

2
ln

(
1 + x

1 − x

)

= 1
2 ln[(1 + x)(1 + x + x2 + · · · )]

= 1
2 ln(1 + 2x + 2x2 + 2x3 + · · · )

= 1

2

[
(2x + 2x2 + 2x3 + · · · ) − (2x + 2x2 + 2x3 + · · · )2

2
+ · · ·

]

= x + O(x3).

As a result,

2(x0 − θ)

h
tanh−1

(
e−kt tanh

(
αh

2

))
= 2(x0 − θ)

h

[
e−kt

(
αh

2

)
+ O(h3)

]

= α(x0 − θ)e−kt + O(h2).

Thus we may write (A) = (B)(1 + O(h2)). Next, to see how (C) converges to (D), we use

[cosh(ax)]y/x2 =
[(

eax + e−ax

2

)1/x2]y

=
[(

1 + a2

2
x2 + · · ·

)1/x2]y

−→ [ea2/2]y
= ea2y/2.

Also note that

ea2/2 −
(

1 + a2

2
x2 + · · ·

)1/x2

= O(x2),

thus
[cosh(ax)]y/x2 = ea2y/2(1 + O(x2)).
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As a result,
[

cosh

(
αh

2

)]2σ 2/h2k

= e(α2/2)(σ 2/2k)(1 + O(h2)),

[
cosh

(
tanh−1

(
e−kt tanh

(
αh

2

)))]2σ 2/h2k

= e(α2/2)(σ 2/2k)e−2kt

(1 + O(h2)).

Consequently, we have (C) = (D)(1 + O(h2)). Putting all these together, we see the overall
second order convergence.

5. Steady state analysis

In the preceding section we derived the explicit form for the MGF of Xh
t for any time

horizon t . One may wonder whether it is possible to derive the explicit form of the probability
distribution (probability mass function) of Xh

t . In fact, for t < ∞ (transient state), it is not easy
to obtain the distribution function analytically. On the other hand, when t → ∞ (steady state),
the distribution of Xh

t is particularly tractable. In this section, we will give a full characterisation
of the steady state probability distribution.

Let us define X = limt→∞ Xt and Xh = limt→∞ Xh
t to lighten notations. (Clearly X and

Xh do not depend on their initial measures.) The steady state analysis relies on the existence
of equilibrium, i.e. the limiting probability distribution is stationary. For the continuous OU
process, it is known that the equilibrium state exists and X follows a normal distribution. It can
be reasonably expected that such an equilibrium also exists for the discrete OU process. The
following proposition gives the main result derived from the existence of equilibrium (which
is assumed here and can be easily justified later). It shows that Xh actually follows the same
distribution as an affine function of a binomial random variable.

Proposition 7. For the discrete OU process Xh
t , assuming the existence of equilibrium when

t → ∞, Xh follows a scaled and shifted binomial distribution and has the same distribution
as the random variable

Y = hZ + (θ − Nh),

where Z is a binomial random variable with parameters Bin(2N, 1
2 ).

Proof. Firstly, we show that Xh and Y take values from the same set. The domain set of Xh

is X = {xi} where

xi = x1 + (i − 1)h = h(i − 1) + (θ − Nh), i = 1, . . . , 2N + 1.

On the other hand, since Y = hZ + (θ − Nh), where Z = 0, . . . , 2N , it is obvious that Y also
takes values from X. To prove the claimed result, we need to show P(Xh = xi) = P(Y = xi)

for all i, where

P(Y = xi) = P(Z = i − 1) =
(

2N

i − 1

)(
1

2

)2N

, i = 1, . . . , 2N + 1.

Let P(Xh = xi) = pi for simplicity. By equilibrium, when t → ∞, the adjacent state
probabilities should follow the local balance equations as piui = pi+1di+1, i = 1, . . . , 2N .
Using (2), (4), and (5), we have ui, di = (σ 2/h2)(1 ± (N + 1 − i)/N) and these balance
equations become

pi(2N + 1 − i) = pi+1(i), i = 1, . . . , 2N.
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Because of the symmetry between the first half states (i < N + 1) and the second half states
(i > N + 1), we have pN+1−j = pN+1+j , j = 1, . . . , N . Thus we only need to derive either
half of these state probabilities. For states i ≥ N + 1, the balance equations can be written as

pN+j (N − j + 1) = pN+1+j (N + j), j = 1, . . . , N.

Let pN+1 = p. We may recursively calculate all the state probabilities using

pN+1−j = pN+1+j = p
N

N + 1

N − 1

N + 2
· · · N − j + 1

N + j
, j = 1, . . . , N.

By setting the sum of these probabilities to 1, p is found to be p = (2N
N

)
( 1

2 )2N , and therefore

P(Xh = xi) = pi =
(

2N

i − 1

)(
1

2

)2N

, i = 1, . . . , 2N + 1,

which completes the proof.

Since we have fully characterised the distribution of Xh, its MGF and moments can be
obtained without difficulty. The next proposition presents the results.

Proposition 8. (i) The MGF of Xh is given by

E[eαXh ] = eαθ

[
eαh/2 + e−αh/2

2

]2N (
= eαθ

[
cosh

(
αh

2

)]2N)
. (18)

(ii) The first four moments of Xh are given by

E[Xh] = θ, E[X2
h] = θ2 + σ 2

2k
,

E[X3
h] = θ3 + 3θ

(
σ 2

2k

)
, E[X4

h] = θ4 + 6θ2
(

σ 2

2k

)
+ 3

(
σ 2

2k

)2

− h2
(

σ 2

4k

)
.

Proof. Since Y = hZ + (θ − Nh), where Z ∼ Bin(2N, 1
2 ) (whose MGF is given by

E[eαZ] = [(1 + eα)/2]2N ), the claimed MGF is obtained as

E[eαXh ] = E[eαY ]
= E[eαhZ]eα(θ−Nh)

=
[

1 + eαh

2

]2N

eα(θ−Nh)

= eαθ

[
eαh/2 + e−αh/2

2

]2N

.

To find the moments of Xh, we first use E[Zn] = (dn/dαn)E[eαZ]|α=0 to find the moments of
Z as

E[Z] = N, E[Z2] = N2 + 1
2N,

E[Z3] = N3 + 1
2N2 + 1

2N, E[Z4] = N4 + 3N3 + 3
4N2 − 1

4N.
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Then the first four moments of Xh can be found from its relationship with Y and Z, i.e.

E[Xn
h] = E[Yn] = E[(hZ + θ − Nh)n], n = 1, 2, 3, 4.

After some further derivations, the claimed results are obtained.

We may use the MGF given in (18) to examine the existence of the equilibrium which is
assumed previously. It is observed that as t → ∞, the result in (16) will coincide with (18). This
agreement indicates that the equilibrium based analysis leads to the correct result. Another way
of checking its correctness is to examine whether the limiting characteristic function φ(α) =
limt→∞ φ(α, t) is continuous at α = 0 where φ(α, t) = E[eiαXh

t ] (see, e.g. the continuity
theorem in [3, p. 172]). This can be easily seen from (18).

Once again we may use the results in Proposition 8 to check the convergence order. This is
clear for the moments (see the h2(σ 2/4k) term in E[X4

h]; the fact that there is no h-related term
in E[Xn

h], n ≤ 3, means that these moments already match E[Xn] exactly). For the MGF, the
convergence is observed below

E[eαXh ] = eαθ

[
1 + 1

2!
(

αh

2

)2

+ 1

4!
(

αh

2

)4

+ · · ·
]2σ 2/h2k

= eαθ

[(
1 + α2

8
h2 + o(h2)

)1/h2]2σ 2/k

h→0−−−→ eαθ+(α2/2)(σ 2/2k)

= E[eαX]
(see (17) for the last equality.) We note that h2 is involved in the expression of E[eαXh ],
confirming the second order convergence.

6. Conclusions

Motivated by the discrete nature found in the stochastic processes for financial markets, we
consider the discrete OU process and conduct its analysis. This discrete process is constructed
by matching the first two moments across an infinitesimal interval. Our analysis leads to three
main results about the discrete OU process. Firstly, the convergence speed from the discrete to
the continuous processes is in the second order of step size. Secondly, the moment generating
function for any time horizon and step size is derived in closed-form. Thirdly, the steady state
probability distribution is completely characterised. The order of convergence can also be
observed from the latter two analytical results.

Appendix A. Solving (15) to derive the MGF

Equation (15) is a special kind of first order PDE known as a quasilinear PDE (see [4] and
[5]), for which the general form is p(∂y/∂t) + q(∂y/∂x) = r and the characteristic equation
is

dt

p
= dx

q
= dy

r
.

The approach to solving this PDE is described as follows. Solving the first two terms (first
equality) in the characteristic equation gives a constant of integration c1, while solving the latter
two (second equality) gives another constant of integration c2. The main technique is to set
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g(c1) = c2 and find the function g(·). Then the solution of y can be obtained from the constants
c1, c2 and the function g(·).

Applying this idea to (15), we express the characteristic equation as

dt

1
= dα

(k/h) sinh(αh)
= dy

[(kθ/h) sinh(αh) + (σ 2/h2)(cosh(αh) − 1)]y . (19)

By applying the formula ∫
1

sinh(x)
dx = ln tanh

(
x

2

)
+ c

to the equation formed by the first equality in (19), we have

t = h

k

∫
1

sinh(αh)
dα = 1

k
ln tanh

(
αh

2

)
+ c1 �⇒ c1 = e−kt tanh

(
αh

2

)
.

Now we look at the equation formed by the second equality in (19)

d ln y

dα
= (kθ/h) sinh(αh) + (σ 2/h2)(cosh(αh) − 1)

(k/h) sinh(αh)
= θ + σ 2

hk
tanh

(
αh

2

)
.

We use another formula ∫
tanh(x) dx = ln cosh(x) + c

to obtain

ln y = αθ + 2σ 2

h2k
ln cosh

(
αh

2

)
+ c2 �⇒ c2 = y

eαθ [cosh(αh/2)]2σ 2/h2k
. (20)

Now we apply the main technique to set g(c1) = c2, i.e.

g

(
e−kt tanh

(
αh

2

))
= y

eαθ [cosh(αh/2)]2σ 2/h2k
.

Remember that our target is the function y = y(t, α). Suppose that the initial condition is given
as y(0, α) = y0(α) = E[eαXh

0 ] (i.e. the initial measure of Xh
0 and its MGF are assumed to be

given). Setting t = 0 in the above equation gives

g

(
tanh

(
αh

2

))
= y0(α)

eαθ [cosh(αh/2)]2σ 2/h2k
.

Define v = tanh(αh/2) and, thus, α = (2/h) tanh−1(v), then the function g(·) can be found as

g(v) = y0((2/h) tanh−1(v))

e(2/h) tanh−1(v)θ [cosh(tanh−1(v))]2σ 2/h2k
.

Using c2 = g(c1) with c1 = e−kt tanh(αh/2), we obtain c2 as a function of t and α. By further
substituting this c2 into (20), we arrive at the final closed-form formula for y as

y(t, α) = E[eαXh
t ]

= y0((2/h) tanh−1(e−kt tanh(αh/2)))eαθ

e(2/h) tanh−1(e−kt tanh(αh/2))θ

[
cosh(αh/2)

cosh(tanh−1(e−kt tanh(αh/2)))

]2σ 2/h2k

.

The equation (16) is a special case when Xh
0 = x0 (i.e. Xh

t has a Dirac measure as its initial
measure) and y0(α) = eαx0 .
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