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SOME PROPERTIES OF ¢-CLOSURE
M. SOLVEIG ESPELIE AND JAMES E. JOSEPH

1. Introduction. The concept of 8-closure was introduced by Velicko
to study H-closed spaces and to generalize Taimanov's extension theorem
[11], [12]. More recently, this notion has been used by Dickman and
Porter [1] to characterize those Hausdorff spaces in which the Fomin
H-closed extension operator commutes with the projective cover (abso-
lute) operator and [2] to study extentions of functions. If X is a topo-
logical space and 4 C X, we let £(4) and I'(4) represent, respectively,
the family of open subsets which contain A and closed subsets which
contain some element of 2(4). The 6-closure of A C X, denoted by
clo(4) (cle(w) if 4 = {v}), is {x € X: each V € I'(x) satisfies
VN A 5~ @} and A is called 6-closed in case clg(4) = A. It is known
that the 6-closure operator, cly, is not (in general) a Kuratowski closure
operator since clg(4) might not be 6-closed [5].

In this article we improve several results in [1] and [2]. We also establish
that a very simple observation about 6-closures of points (Lemma 1)
leads to several known results as well as a number of other interesting
new results; the new results include the equality cls(4) = U4 clo(x) for
a f-rigid subset A of a space. We prove that a space X is compact if and
only if for each upper-semicontinuous multifunction, A, on X, the multi-
function, u, defined by u(x) = cle(A(x)) assumes a maximal value with
respect to set inclusion. We also prove a theorem on the maximality of
6-closures of points, when these §-closures contain a compact 6-closure
of a point. Utilizing the above results and motivated by the well-known
equivalence relation, x is equivalent to y (x = v) if and only if cl(x) =
cl(y), we initiate an investigation of the equivalence relation, x = y if
and only if clg(x) = clp(y). No separation axioms are assumed in this
paper unless otherwise stated.

2. Some separation and decomposition results. In this section we
improve results from [1] and [2] on separation of certain subsets by open
subsets, improve a result from [10] on the question of when the 8-closure
of a nowhere dense subset is nowhere dense, and establish that certain
subsets 4 of topological spaces satisfy clg(4) = U,es clo(x).

A subset A of a space X is called quasi H-closed (QHC) relative to X (8]
if for each covering, @, of 4 by open subsets of X, some finite @* C Q
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satisfies A C Ugxcl(V). The 8-adherence of a filterbase Q (adeQ) on a space
is defined [11] to be NMqclp(F). It is shown in [4] that a subset 4 of a
space X is QHC relative to X if and only if each filterbase Q on A4 satisfies
A M ade # 0. Let adQ denote the adherence of a filterbase Q on a space
X and let cl(A4) represent the closure of a subset 4. We extend the
definition of the operator ad, writing adQ = MNgacl(F) for any family © of
subsets of X. The equality clg(4) = adZ(4) is utilized in [6] to show
that clg(4) is QHC relative to an H(z) space X for each 4 C X. This
generalizes the result [11] that a 6-closed subset of an H-closed space is
an H-set.

Theorem 1 significantly generalizes (2.4) of [1] which states that
disjoint 6-closed subsets of an H-closed space are separated by disjoint
open sets.

THEOREM 1. Two subsets of an H(1) space with disjoint 6-closures are
separated by disjoint open sets.

Proof. Let X be H(:¢) and let A, B be subsets of X satisfying
clo(4) Nclp(B) = @. Ifall Ve 2(4) and W € Z(B) satisfy VN W 5~ @
then Q = {VNW: Ve 2(4), We Z(B)} is an open filterbase on
X. Since X is H(z) and cls(Q) = cl(Q) for open Q, we have

0 # ade? C adZ(4) N adZ(B) = cle(4) M clp(B).
This is a contradiction of the hypothesis. Hence the theorem is verified.

In (2], a subset A of a space X is called 6-rigid if every filterbase @ on
X satisfying FN TV #@ for all VE T(4), FEQ also satisfies
A M ade? # B. The following theorem is easily seen to be an improvement
of the result, (6.1) from (2], that disjoint #-rigid subsets of a Hausdorff
space are separated by open subsets.

THEOREM 2. If X s any space and A, B are subsets of X with A 8-rigid
and A N cly(B) = @, then A and B are separated by disjoint open subsets.

Proof. f Q@ ={VNW:VE Z(4), We Z(B)} is a filterbase on X
then, since 4 is #-rigid, we have 4 M adsZ(B) # @, a contradiction. The
proof is complete.

The following easily established lemma on 6-closures of points will be
useful in the sequel.

LeEMMA 1. If x and y are points in @ space, then y € clo(x) if and only if
x € clo(y).

It is readily seen that U scls(x) C clg(4) for any subset 4 of a space.
It is surprising that if 4 is a 6-rigid subset of a space we have equality.

TaEOREM 3. If A C X s 0-rigid, then clog(4) = U sclo(x).
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Proof. Let A be 6-rigid and let x € clg(4). The constant net x is
frequently in cl(V) for all V€ Z(4). Hence thereisay € 4 such that x
is frequently in cl(V) for all 7 € Z(y); therefore x € clg(y). The proof
is complete.

Lemma 1 may also be used to establish Theorem 4 below.

THEOREM 4. If X is a space and A C X 1s QHC relative to X, then
cl(4) C U clp(x).

Proof. Lety € cl(4). Then Q@ = {V N\ A: V € Z(y)} is a filterbase on
A. Hence

B #AMNadeZ(y) = AN cle(y).
Forx € 4 M cly(y) we have y € clg(x). The proof is complete.

Our next theorem improves Theorem 5 of [10]. A subset V of a space
X is regular-open if V = int(cl(V)) (int(A4) represents the interior of 4)
and regular-closed if X — Visregular-open.Q C Z(A4) isa base of open sets
for 4 if, for each 1 € Z£(4), some W € Q satisfies W C V. We remark
that the spiral of a point x [10] is cls(x).

THEOREM 5. Let A C X be nowhere dense and assume that A has a base
of regular open subsets. If X is T, then clo(4) is nowhere dense.

Proof. Suppose that 1 is a nonempty open subset of clg(4) and let
V(A) represent a base of regular-open subsets about 4. Then
V Cint(cl(W)) = W for all W e V(A4). Since X is 1), we have
A = NywyW. Hence V C A. This is a contradiction and the proof is
complete.

Anet (g, D), inaspace X, §-converges tox in X (g — ox) if gis eventually
in cl(V) for each ¥V € Z(x) [11]. If @ is an open filterbase on X and
x € adQ, the usual construction of a net from the filterbase and Z(x)
yields a net g such that g -— gx; the question of how, given a net g in X
with g — gx, to construct an open filterbase © on X with x € adQ has
gone unanswered. Our final result in this section answers this question.

THEOREM 6. Let X be a space and let (g, D) be a net in X. For each
w€ D, let S(u) ={gla):a = u}. Then Q(g) = UpZ(S(k)) is an open
filterbase on X, and x € adQ(g) if and only if some subnet of g 6-converges
to x.

Proof. It is clear that Q(g) is an open filterbase on X. Suppose
x € adQ(g). We see that

adQ(g) = NpadZ(S(k)) = Npcle(S(k)),
so that g is frequently in cl(V) for each V € Z(x). A standard con-
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struction produces a subnet of g which §-converges to x. Conversely, if g
has a subnet which 6-converges to x, we obtain from the last stated
equation that x € adQ(g). This completes the proof.

3. Characterizations of compactness in terms of upper-semi-
continuous multifunctions and the 6-closure operator. A mulii-
function from a set X to a set Y is a function from X to (V) — {0},
where (V) is the power set of V. Smithson [9] has contributed a survey
relating some of the principal results for multifunctions. If \ is a multi-
function from X to ¥ we will write A\ € .#(X, Y). If X and Y are spaces,
we say that N € A (X, Y) is upper-semicontinuous (u.s.c.) at x € X if
foreach W € (A (x))in Vthereisa IV € 2Z(x) in X satisfying N\(V) C W;
\ is upper-semicontinuous (u.s.c.) on X if X is u.s.c. at each x € X. We
say that \ € (X, V) has a strongly-closed graph if adeh(Q) C {N\(x)}
for each x ¢ X and filterbase Q@ on X satisfying @ — x [7]. We are now
in a position to give several new characterizations of compact spaces.

THEOREM 7. The following statements are equivalent for a space X :

(a) X 1s compact.

(b) For each u.s.c. multifunction, N\, on X, the multifunction, u, on X
defined by

p(x) = clo(M(x))

assumes a maximal value under set inclusion.

(¢c) Each u.s.c. multifunction, N, on X with N x) 6-closed for each x
assumes a maximal value under set inclusion.

(d) Each u.s.c. multifunction, \, on X with a strongly-closed graph
assumes a maximal value under set inclusion.

Proof. The proof that (b) implies (c¢) is obvious. The fact that (c) and
(d) are equivalent follows from Theorem 3.7 of [6]. Now, assume (a),
let @ = {u(x): x € X} be ordered by inclusion and let Q; be a nonempty
chain in Q. For each y such that u(y) € @, let

F(y) = {x € X:u(y) Culx)}.
Then { F(y)} is a filterbase on the compact space X. For any such y, let

v € cl(F(y)) and let W € Z(A\(v)). There is a V € Z(v) satisfying
NV) C W.Letq € VN F(y). Then

r() Culg) = cle(Mg)) C cl(W).

Thus p(y) C p(@), v € F(y) and F(y) is closed. Let ¢ € M F(y). Then
u(g) is an upper bound for @;. By Zorn’s Lemma, Q@ has a maximal
element. This establishes that (a) implies (b). To complete the proof,
we will verify that (a) is implied by (c). If X is not compact, there is a
net, g, in X with an ordinal & as its index set and no convergent subnet.
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Let & have the order topology and, for each £ € &, let
V(k) = X — cl({g(d): 7 = &}).

Then {V(k): k € &} is an increasing open cover of X with no finite
subcover. Define A € #(X, D) by \Nx) = {j € &: j 2 k,} where k, is
the first element k£ of & with x € V (k). Since & with the order topology
is regular and N\ (x) is closed for each x, then u(x) = \(x) for each x. We
now show that X is u.s.c. Let W € Z(\(x)) and let y € V(k,). Then
k, < k;, so that AN(y) C MNx) C W. Hence N(V (k,)) C W and A is u.s.c.
Since p clearly assumes no maximal value with respect to set inclusion,
we see that (c) does not hold. The proof of the theorem is complete.

In a Hausdorff space the #-closure of each point is trivially compact
and maximal in the set of f-closures of points ordered by inclusion. We
may use Theorem 7 to prove that in any space, the #-closures of points
satisfy a maximality condition, when the 6-closure of some point is
compact.

THEOREM 8. Let YV be a space and let yo € YV with clg(yo) compact. Then
there is a y € YV such that (1) cla(yo) C clo(y), and (2) clo(y) s maximal in
the set of O-closures of points when this set is ordered by inclusion.

Proof. Let X = {y € V: cle(yy) C cle(y)}. For each y € X we have
¥y € clg(yp) from Lemma 1. Moreover, if v € cl(X) and W € Z(v) then
some y € W satisfies clg(yo) C clo(y) C cl(W). Hence clg(yy) Cclg(v)
and X is closed in V. Therefore X is a compact subset of ¥ and since the
identity function from X to YV is u.s.c., the proof may be completed by
appeal to the fact that (a) implies (b) in Theorem 7.

The following corollary is immediate from Theorem 8.

CorOLLARY 1. If YV is compact, then for each yo € Y, there isay € ¥
such that (1) clg(vo) C clo(y), and (2) cls(y) is maximal in the set of 6-closures
of points, when this set is ordered by inclusion.

Our final result in this section is another corollary which derives from
Theorem 7.

COROLLARY 2. If V is a regular space and yo € Y, then thereisay € ¥V
such that (1) yo € cl(y), and (2) cl(y) s maximal in the set of closures of
points, when this set is ordered by inclusion.

Proof. 1t is well-known that in a regular space, the closure of a compact
set is compact. Hence the result follows.

4. The quotient space induced by identifying those points with
identical 6-closures. We define an equivalence relation, 6, on a space
X by x 0y if and only if clg(x) = cls(y). Our main result in this section
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is that the quotient space induced on X by 6 is a Ty space. For each
A C X let 6[A4] represent the saturation of the set 4 by 6 (i.e., 8[4] =
{ly € X: x0y for some x € 4}); A is saturated with 6 if 9(4] = 4. We
obtain the following properties of § from previous results.

THEOREM 9. T'he following properties hold in a topological space X :

(@) Each x € X satisfies 0{clp(x)] = clo(x).

(b) Each 6-rigid subset A of X satisfies 6{clg(4)] = cle(A4).

(c) Each subset A of X satisfies 0{A] C clg(4).

(d) Each open subset A of X satisfies [A] C cl(4).

(e) For each x € X, Nayw clo(@) = {y € X: clo(x) C clo(y)}.

(f) For x,y € X, the relations (1) v € clo(x), (2) 0[y] M clo(x) # 0,
(3) 6lx] N clo(y) = 0B, (4) 6[x] Ccle(y) and (5) 6ly] C clo(x) are
equivalent.

Proof. For the proof of (a),lety € 6[cls(x)]. There is a v € clg(x) with
y 8 9. We have, from Lemma 1, that x € cly(v) and, since cls(v) = clg(y)
we obtain y € clg(x). Since clg(x) C 6[cls(x)] from a general property of
equivalence relations, the proof of (a) is complete. The proof that (b)
holds follows directly from (a), Theorem 4, and the fact that 8[\UgF] =
Uef[ F] for any family, ©, of subsets of X. It is obvious that (d) follows
from (c). To verify (c), we note that for any 4 C X,

0[A] = Ublx] C Uablclo(x)] = Uclolx) C clo(4).

Similar methods may be employed to establish (e) and (f). The proofs
are omitted.

Theorem 10 is the main result in this section. We let X (mod 6) repre-
sent the quotient space induced on X by 6.

THEOREM 10. X (mod 6) us 1T’ for any space X.

Proof. Suppose x, y € X with 6{x] # 0[y]. Without loss of generality,
let v € clg(x) — clo(y). Then y ¢ clg(v) and, consequently, 68[y] M clg(v)
= @ from Theorem 9(f). Hence

0ly] C X — cly(v) and 0[x] C clo(v).

Since X — cly(v) is an open subset of X and saturated with 6, we conclude
that X (mod 8) is T'y. The proof is complete.

If clp(x) is maximal in the set of f-closures of points when this set is
ordered by inclusion, it follows that 8[x] = {y € X: cls(x) C cle(y)} and,
therefore, from Theorem 9(e) we have 8[x] closed in X. Hence we obtain
the following theorem and two corollaries.

TrEOREM 11. If X is a space and cly(x) is maximal in the set of 0-closures
of points when this set is ordered by inclusion, then 0[x] is closed in X.
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COROLLARY 3. If X 1s a space and clg(x) is maximal for all x € X then
X (mod 6) s 1.

CoROLLARY 4. If X is compact then X (mod 0) has at least one closed
singleton.

Proof. Use Theorems 8 and 11.

5. Some examples. In this final section, we give some examples in
connection with the above results.

Example 1. A space X with an open subset V such that 8[ V] is not open
n X.

Let X be the closed interval [0, 1], where the basic open sets are the
usual open sets in [0, 1) along with all sets of the form [0, x) \U (y, 1].
Then 6[[0, 3)] = [0, 3) \U {1}, which is not open.

Example 2. A compact T space with 8[V) open in X for each open V and
X (mod 6) not 1.

For n = 1,2,3,4, let A(1) be the set of primes larger than 9, and
Am) = [2n, 2n + 1] otherwise. For each 7, let Q(n) be the filter of finite
complements on A(n). Let X = \U 4(n) \J {0,1} with the topology
generated by the following collection of sets as base:

{7V C X: Visa usual open set in U,»:4 (n)}

U {10} U F(1) U F(2) U F(3): F(n) € Qn),n = 1,2, 3}
Ut YU FA)U F@2)Y F@): F(n) € Qn),n = 1,2,4}
U Hp Y FE)p e AQD), F(2) € Q(2)}.

Il

Then X is compact and 17, but 8{11] is not closed since 0 € cl(6{11]) —
6[11]; 6[ 1] is open for each open V. We note that in this space, clp(0) and
clp(1) are maximal and distinct.

Our next example establishes that, even in a compact space, the iterate,

clg®(x), may fail to be 8-closed for some x and every nonnegative integer #.

Example 3. Let N be the set of positive integers. For each n € N, let
J(n) = (2n, 2n 4+ 2), and let Q(n) be the filter of finite complements
on (2n — 1,2n + 1). Let X be the nonnegative reals with topology
generated by the base

{4 C X: A is a usual open set in UnJ (1)}
U {{2n} U B:n € Nand B € Q(n)}
U0,x) U 2n —1,0):0<x<1,n € N}.

Then clg*(2) fails to be 6-closed for each nonnegative integer #.
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Example 4. A non-Hausdorff space in which clg(x) s maximal for each x
wn the space.
Such a space is an infinite set with the topology of finite complements.
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