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SOME PROPERTIES OF 0-CLOSURE 

M. SOLVEIG ESPELIE AND JAMES E. JOSEPH 

1. Introduction. The concept of 0-closure was introduced by Velicko 
to study inclosed spaces and to generalize Taimanov's extension theorem 
[11], [12]. More recently, this notion has been used by Dickman and 
Porter [1] to characterize those Hausdorff spaces in which the Fomin 
if-closed extension operator commutes with the projective cover (abso­
lute) operator and [2] to study extentions of functions. If X is a topo­
logical space and A C X, we let 2(A) and T(A) represent, respectively, 
the family of open subsets which contain A and closed subsets which 
contain some element of 2(^4). The d-closure of A C.X, denoted by 
cU(A) (cU(v) if A = {v}), is {x G X: each V 6 T(x) satisfies 
V C\ A ?£ 0} and A is called 9-closed in case c\$(A) = A. It is known 
that the 0-closure operator, cU, is not (in general) a Kuratowski closure 
operator since cU(A) might not be 0-closed [5]. 

In this article we improve several results in [1] and [2]. We also establish 
that a very simple observation about 0-closures of points (Lemma 1) 
leads to several known results as well as a number of other interesting 
new results; the new results include the equality cle(A) = U A c\e(x) for 
a 0-rigid subset A of a space. We prove that a space X is compact if and 
only if for each upper-semicontinuous multifunction, X, on X, the multi­
function, /x, defined by n(x) = cU(X(x)) assumes a maximal value with 
respect to set inclusion. We also prove a theorem on the maximality of 
0-closures of points, when these 0-closures contain a compact 0-closure 
of a point. Utilizing the above results and motivated by the well-known 
equivalence relation, x is equivalent to y (x = y) if and only if cl(x) = 
cl(^), we initiate an investigation of the equivalence relation, x = y if 
and only if c\e(x) = c\e(y). No separation axioms are assumed in this 
paper unless otherwise stated. 

2. Some separation and decomposition results. In this section we 
improve results from [1] and [2] on separation of certain subsets by open 
subsets, improve a result from [10] on the question of when the 0-closure 
of a nowhere dense subset is nowhere dense, and establish that certain 
subsets A of topological spaces satisfy c\e(A) = UXÏA c\e(x). 

A subset A of a space X is called quasi H-closed (QHC) relative to X [8] 
if for each covering, 12, of A by open subsets of X, some finite 12* C & 
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satisfies A C Un*cl(F). The d-adherence of a filterbase 12 (ad«fl) on a space 
is defined [11] to be C\QC\B(F). It is shown in [4] that a subset A of a 
space X is QHC relative to X if and only if each filterbase 12 on A satisfies 
A P adfl!2 9^ 0. Let ad!2 denote the adherence of a filterbase 12 on a space 
X and let cl(4) represent the closure of a subset A. We extend the 
definition of the operator ad, writing ad!2 = nncl(-F) for any family 12 of 
subsets of X. The equality cle(A) = ad 2 (4) is utilized in [6] to showT 

that c\e(A) is QHC relative to an H{i) space X for each A C X. This 
generalizes the result [11] that a 0-closed subset of an iJ-closed space is 
an H-set. 

Theorem 1 significantly generalizes (2.4) of [1] which states that 
disjoint 0-closed subsets of an if-closed space are separated by disjoint 
open sets. 

THEOREM 1. Two subsets of an H(i) space with disjoint d-closures are 
separated by disjoint open sets. 

Proof. Let X be H(i) and let A, B be subsets of X satisfying 
c l * ( 4 ) P c U ( 5 ) = 0. If all V£ 2 ( 4 ) and W G 2 (5) satisfy VC\W^Q 
then 12 = {V C\ W: V £ 2 ( 4 ) , W £ 2(5)} is an open filterbase on 
X. Since X is H(i) and cle(Q) = cl(Q) for open Q, we have 

0 ^ ad*12 C a d 2 ( 4 ) H ad2(5 ) = cl*(4) P c\e(B). 

This is a contradiction of the hypothesis. Hence the theorem is verified. 

In [2], a subset A of a space X is called 6-rigid if every filterbase 12 on 
X satisfying F P V ^ 0 for all F 6 r ( 4 ) , F G 12, also satisfies 
A P adfl!2 7e 0. The following theorem is easily seen to be an improvement 
of the result, (6.1) from [2], that disjoint 0-rigid subsets of a Hausdorff 
space are separated by open subsets. 

THEOREM 2. If X is any space and A, B are subsets of X with A 6-rigid 
and A P c\e(B) = 0, then A and B are separated by disjoint open subsets. 

Proof. If 12 = {Vn W: V e 2 ( 4 ) , W £ 2 (5) ) is a filterbase on X 
then, since A is 0-rigid, we have A P ad#2(5) ^ 0, a contradiction. The 
proof is complete. 

The following easily established lemma on ^-closures of points will be 
useful in the sequel. 

LEMMA 1. If x and y are points in a space, then y £ c\e(x) if and only if 
x <E c\e(y). 

It is readily seen that UACU(X) C c\e(A) for any subset A of a space. 
It is surprising that if A is a 0-rigid subset of a space we have equality. 

THEOREM 3. If A C X is 6-rigid, then cU(A) = UACU(X). 
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Proof. Let A be 0-rigid and let x G c\e(A). T h e cons tant net x is 
frequently in cl ( F ) for ail F G 2(A). Hence there is a y G A such t h a t x 
is frequently in cl ( F ) for all F G S (y) ; therefore x G cle(y). T h e proof 
is complete. 

Lemma 1 may also be used to establish Theorem 4 below. 

T H E O R E M 4. If X is a space and A C X is Q H C relative to X, then 
c\(A) C U A C U ( X ) . 

Proof. Let y G d(A). Then Q = {V C\ A: V £ 2(y)} is a. filterbase on 
y4. Hence 

0 ^ /I H ad*2(:y) = i H cU(y). 

For x Ç .4 H cle(y) we have y G cl«(x). T h e proof is complete. 

Our next theorem improves Theorem 5 of [10]. A subset F of a space 
X is regular-open if V = i n t ( c l ( F ) ) (int(^4) represents the interior of A) 
and regular-dosed if X — F i s regular-open. Û C 2 (̂ 4 ) is a &as£ 0/ o£>ew S6£s 
for ,4 if, for each F G 2(^4), some IF G 12 satisfies IF C V. We remark 
tha t the spiral of a point x [10] is c\e(x). 

T H E O R E M 5. Let A C X be nowhere dense and assume that A has a base 
of regular open subsets. If X is 2 \ , then c\e(A) is nowhere dense. 

Proof. Suppose t ha t F is a nonempty open subset of c\$(A) and let 
V (A ) represent a base of regular-open subsets about A. Then 
VC i n t ( c l ( lF ) ) = W for all W G V(A). Since X is 7 \ , we have 

A = nv(A)^F. Hence F C ^4. This is a contradict ion and the proof is 
complete. 

A net (g, D), in a space X , 6-converges to x in X (g —-> #x) if g is eventual ly 
in c l ( F ) for each F G S(x) [11]. If 12 is an open filterbase on X and 
x G ad!2, the usual construction of a net from the filterbase and 2(x) 
yields a net g such t ha t g —> ex; the question of how, given a net g in X 
with g —> ex, to construct an open filterbase 12 on X with x G ad!2 has 
gone unanswered. Our final result in this section answers this question. 

T H E O R E M 6. Let X be a space and let (g, D) be a net in X. For each 
M G Z>, let S(n) = \g(a): a g: /A}. Then 12(g) = U D 2 ( 5 ( / X ) ) W an open 
filterbase on X , and x G ad!2(g) if and only if some subnet of g 6-converges 
to x. 

Proof. I t is clear t ha t 12(g) is an open filterbase on X . Suppose 
x G ad!2(g). We see t ha t 

ad!2(g) = nz>adS(5( M ) ) = nncU(S(n)), 

so t h a t g is frequently in c l ( F ) for each V G S ( x ) . A s tandard con-
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struction produces a subnet of g which ^-converges to x. Conversely, if g 
has a subnet which ^-converges to x, we obtain from the last stated 
equation that x £ ad!2(g). This completes the proof. 

3. Characterizations of compactness in terms of upper-semi-
continuous multifunctions and the 0-closure operator. A multi­
function from a set X to a set F is a function from X to &(Y) — {&}, 
where SP {Y) is the power set of F. Smithson [9] has contributed a survey 
relating some of the principal results for multifunctions. If X is a multi­
function from X to F we will write X £ ^{X, F). If X and F are spaces, 
we say that X £ ~#(X, Y) is upper-semicontinuous (u.s.c.) at x £ X if 
for each W £ 2(X(x)) in F there is a V £ S (x) in X satisfying X( V) C IF; 
X is upper-semicontinuous (u.s.c.) on X if X is u.s.c. at each i ^ I . We 
say that X £^(X, F) has a strongly-closed graph if adeX(12) C {^(#)} 
for each x £ X and filterbase 12 on X satisfying 12 —> £ [7]. We are now 
in a position to give several new characterizations of compact spaces. 

THEOREM 7. The following statements are equivalent for a space X: 
(a) X is compact. 
(b) For each u.s.c. multifunction, X, on X, the multifunction, n, on X 

defined by 

H (x) = c\e(\(x)) 

assumes a maximal value under set inclusion. 
(c) Each u.s.c. multifunction, X, on X with \(x) 6-closed for each x 

assumes a maximal value under set inclusion. 
(d) Each u.s.c. multifunction, X, on X with a strongly-closed graph 

assumes a maximal value under set inclusion. 

Proof. The proof that (b) implies (c) is obvious. The fact that (c) and 
(d) are equivalent follows from Theorem 3.7 of [6]. Now, assume (a), 
let 12 = {n(x): x £ X\ be ordered by inclusion and let 12 ! be a nonempty 
chain in 12. For each y such that n(y) £ Qi, let 

F(y) = {x e X:v(y) C M W I -

Then {F(y)\ is a filterbase on the compact space X. For any such y, let 
v £ cl(F(y)) and let W £ S(X(»)). There is a V £ 2 0) satisfying 
X(F) C W. Let q G F H F(y). Then 

MOOC/ite) =cl,(X((z)) Ccl(W0. 

Thus jLt(̂ ) C M W . *> £ ^Cy) and F(y) is closed. Let q £ Pi ^ ( j ) . Then 
jLx(g) is an upper bound for 12i. By Zorn's Lemma, 12 has a maximal 
element. This establishes that (a) implies (b). To complete the proof, 
we will verify that (a) is implied by (c). If X is not compact, there is a 
net, g, in X with an ordinal 2$ as its index set and no convergent subnet. 
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Let Q) have the order topology and, for each k £ !2>, let 

V(k) =X-cl(lg(j):jzk\). 

Then {V(k): k £ Q\ is an increasing open cover of X with no finite 
subcover. Define X £^£(X, £ï) by X(x) = {j £ 2iï\ j ^ kx} where kx is 
the first element k of 2l with x G F(&). Since £iï with the order topology 
is regular and X(x) is closed for each x, then /x(x) = X(x) for each x. We 
now show that X is u.s.c. Let W 6 S(X(x)) and let y £ F ^ ) . Then 
*y ^ £*, so that X(;y) C X(x) C W. Hence X(F(fe*)) C W and X is u.s.c. 
Since JU clearly assumes no maximal value with respect to set inclusion, 
we see that (c) does not hold. The proof of the theorem is complete. 

In a Hausdorff space the ^-closure of each point is trivially compact 
and maximal in the set of ^-closures of points ordered by inclusion. We 
may use Theorem 7 to prove that in any space, the ^-closures of points 
satisfy a maximality condition, when the ^-closure of some point is 
compact. 

THEOREM 8. Let Y be a space and let y0 Ç Y with c\e(yo) compact. Then 
there is a y £ Y such that (1) cle(yo) dc\e(y), and (2) cU(y) is maximal in 
the set of 6-closures of points when this set is ordered by inclusion. 

Proof. Let X = {y £ F: cl 0(3/0) C cle(y)}. For each y £ X we have 
y G cU(^o) from Lemma 1. Moreover, if v £ c lpQ and W £ 2(z;) then 
some y £ W satisfies cle(yo) C ch(y) C c\(W). Hence cU(yo) dc\e(v) 
and X is closed in F. Therefore X is a compact subset of F and since the 
identity function from X to F is u.s.c, the proof may be completed by 
appeal to the fact that (a) implies (b) in Theorem 7. 

The following corollary is immediate from Theorem 8. 

COROLLARY 1. / / Y is compact, then for each 3>0 G F, there is a y £ F 
such that (1 ) els (y0) C c\e (y), and (2) cle (3/) w maximal in the set of 6-closures 
of points, when this set is ordered by inclusion. 

Our final result in this section is another corollary which derives from 
Theorem 7. 

COROLLARY 2. If Y is a regular space and y$ G F, then there is a y £ F 
such that (1) y0 £ c\(y), and (2) cl(;y) is maximal in the set of closures of 
points, when this set is ordered by inclusion. 

Proof. It is well-known that in a regular space, the closure of a compact 
set is compact. Hence the result follows. 

4. The quotient space induced by identifying those points with 
identical ^-closures. We define an equivalence relation, 6, on a space 
X by x 6 y if and only if c\e(x) = cle(y). Our main result in this section 
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is t ha t the quotient space induced on X by 6 is a T0 space. For each 
A C X let 6[A] represent the saturat ion of the set A by 6 (i.e., 6[A] = 
{y G X: xdy for some x £ A}); A is sa turated with 6 if 6[A] = A. We 
obtain the following properties of 6 from previous results. 

T H E O R E M 9. The following properties hold in a topological space X: 
(a) Each x £ X satisfies d[de(x)] = de(x). 
(b) Each 6-rigid subset A of X satisfies 6[de(A)] = de (A). 
(c) Each subset A of X satisfies 6[A] C de(A). 
(d) Each open subset A of X satisfies 6[A] C cl(^4). 
(e) For each x £ X, Pici^) de(v) = [y 6 X: de(x) C d9(y)}. 
(f) .For x, y £ X , /fee relations (1) 3; G cU(x), (2) 0[y] H cU(x) 5^ 0, 

(3) 6[x]nde(y) * 0, (4) 0[x]Ccl*(:y) and (5) % ] C clfl(x) are 
equivalent. 

Proof. For the proof of (a) , let y Ç 6[de(x)]. There is a z; £ cU(x) with 
3/ 0z;. We have, from Lemma 1, tha t x G cU(^) and, since de(v) = d$(y) 
we obtain y £ cU(x). Since cU(x) C d[de(x)] from a general property of 
equivalence relations, the proof of (a) is complete. The proof t ha t (b) 
holds follows directly from (a), Theorem 4, and the fact t ha t 6[{JnF] = 
UQO[F] for any family, 12, of subsets of X. I t is obvious t ha t (d) follows 
from (c). T o verify (c), we note t ha t for any A C X, 

0[A] = UA6[X] C UAeide(x)] = \JAde(x) Cde{A). 

Similar methods may be employed to establish (e) and (f). The proofs 
are omit ted. 

Theorem 10 is the main result in this section. We let X ( m o d 6) repre­
sent the quotient space induced on X by 6. 

T H E O R E M 10. X ( m o d 6) is T0for any space X. 

Proof. Suppose x, y £ X with 6[x] ^ 6[y]. Wi thou t loss of generality, 
let v Ç de(x) — de(y). Then y (? de(v) and, consequently, 6[y] P\ de(v) 
= 0 from Theorem 9(f). Hence 

0\y] C X - de(v) and 6[x] C d9(v). 

Since X — de(v) is an open subset of X and sa tu ra ted with 6, we conclude 
t ha t X ( m o d 0) is TV The proof is complete. 

If de(x) is maximal in the set of ^-closures of points when this set is 
ordered by inclusion, it follows tha t 6[x] = {y £ X: de(x) C de(y)} and, 
therefore, from Theorem 9(e) we have 6[x] closed in X. Hence we obtain 
the following theorem and two corollaries. 

T H E O R E M 11. If X is a space and de(x) is maximal in the set of 6-do sur es 
of points when this set is ordered by inclusion, then 6[x] is closed in X. 
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COROLLARY 3. If X is a space and cU(x) is maximal for all x ^ I then 
X(mod 6) is I\. 

COROLLARY 4. If X is compact then X ( m o d 6) has at least one closed 

singleton. 

Proof. Use Theorems 8 and 11. 

5. S o m e e x a m p l e s . In this final section, we give some examples in 
connection with the above results. 

Example 1. A space X with an open subset V such that 6[V] is not open 

in X. 

Let X be the closed interval [0, 1], where the basic open sets are the 
usual open sets in [0, 1) along with all sets of the form [0, x) U (y, 1]. 
Then 0[[O, §)] = [0, i ) U {1}, which is not open. 

Example 2. A compact 1\ space with 6[V] open in X for each open Vand 
X ( m o d 6) not 1\. 

For n = 1, 2, 3, 4, let ^4(1) be the set of primes larger than 9, and 
A (n) — [2n, 2n + 1] otherwise. For each n, let fi(w) be the filter of finite 
complements on A(n). Let X — KJ A (n) U {0, 1} with the topology 
generated by the following collection of sets as base: 

{ V C X: V is a usual open set in Un^A (n)} 

yj {{0} VJ F (I) VJ F(2) U F(S): F{n) G û ( n ) , « - 1 ,2 ,3} 

U {{1} U F(l) U F (2) U F ( 4 ) : F(w) G Û(n),w = 1 ,2 ,4} 

W { { £ } U ^ ( 2 ) : £ Ç A(l),F(2) e 12(2)}. 

Then X is compact and I\, bu t #[11] is not closed since 0 £ c l (0[ l l ] ) — 
6[11]; 6[V] is open for each open V. We note t ha t in this space, cU(0) and 
cU( l ) are maximal and distinct. 

Our next example establishes tha t , even in a compact space, the i terate, 
c\en(x), may fail to be 0-closed for some x and every nonnegative integer n. 

Example 3. Let N be the set of positive integers. For each n £ N , let 
J(n) = (2n, 2n + 2) , and let £2(w) be the filter of finite complements 
on (2w — 1, 2n + 1). Let X be the nonnegative reals with topology 
generated by the base 

{A C X: A is a usual open set in U N ^ ( W ) 1 

VJ {{2n} U £ : » 6 N and £ G fi(w)} 

U {[0, x) U (2n - l , o o ) : 0 < x < 1, w 6 N } . 

Then cUw(2) fails to be 0-closed for each nonnegative integer n. 
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Example 4. A non-Hausdorff space in which c\e(x) is maximal for each x 
in the space. 

Such a space is an infinite set with the topology of finite complements. 
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