J. Austral. Math. Soc. (Series A) 31 (1981), 269-275

A CLASS OF [®]-EXTREME MINKOWSKI-REDUCED FORMS

D. W. TRENERRY

(Received 16 September 1980) Communicated by A. J. van der Poorten

Abstract

Barnes (1978, 1979) introduced the concept of a \mathfrak{P} -extreme form, which is a Minkowski-reduced positive definite quadratic form having prescribed diagonal coefficients $\alpha_1, \alpha_2, \ldots, \alpha_n$ and providing a local minimum of the determinant of the form over all such forms. Here a class of forms which are \mathfrak{P} -extreme for all α and all n is described.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 10 E 25; secondary 10 E 20.

1. Introduction

A positive definite or semidefinite quadratic form $f(\mathbf{x}) = \sum_{i=1}^{n} a_{ij} x_i x_j$ is reduced in the sense of Minkowski if, for all j = 1, ..., n and for all integral $\mathbf{x} = (x_1, x_2, ..., x_n)$,

(1.1) if g.c.d.
$$(x_i, x_{i+1}, \ldots, x_n) = 1$$
, then $f(\mathbf{x}) \ge a_{ii}$.

In the $\frac{1}{2}n(n + 1)$ -dimensional space \mathcal{P} of positive definite and semidefinite forms, the set \mathfrak{M} of reduced forms is defined by a finite number of inequalities, and is therefore a polyhedral cone. Among these inequalities are those determined by the set

(1.2)
$$\mathbf{x} = \pm \mathbf{e}_i \quad (1 \le j \le n), \qquad \pm (\mathbf{e}_i - \mathbf{e}_j) \quad (1 \le i \le j \le n)$$

where e_i denote the unit vectors. For these and other properties of Minkowskireduced forms see Lekkerkerker (1969, §10) or Van der Waerden (1956).

For real $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ with

$$(1.3) 0 < \alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_n,$$

[©]Copyright Australian Mathematical Society 1981

the set $\mathfrak{D}(\alpha)$ of (necessarily) positive definite reduced forms is defined as the intersection of \mathfrak{M} with the hyperplanes

$$(1.4) a_{ii} = \alpha_i (i = 1, \ldots, n)$$

Thus $\mathfrak{D}(\alpha)$ is the set of all reduced forms with prescribed diagonal coefficients $\alpha_1, \alpha_2, \ldots, \alpha_n$. Since the finite set of inequalities determining \mathfrak{M} include

$$|2a_{ij}| \leq a_{ii} \qquad (1 \leq i < j \leq n),$$

 $\mathfrak{D}(\alpha)$ is bounded and therefore a convex polytope.

A form in $\mathfrak{D}(\alpha)$ for which the determinant D(f) is a local minimum over all f in $\mathfrak{D}(\alpha)$ is called (Barnes (1978, 1979)) a \mathfrak{D} -extreme form. If the determinant is an absolute minimum over all f in $\mathfrak{D}(\alpha)$ the form is absolutely \mathfrak{D} -extreme. Here we show

THEOREM 1. The form

$$f_n(\mathbf{x}) = \sum_{1}^{n} \alpha_i x_i^2 + \sum_{1 \le i \le j \le n} \alpha_i x_i x_j,$$

where α satisfies (1.3), is \mathfrak{D} -extreme for all n and all such α .

The form $f_n(x)$ is absolutely \mathfrak{P} -extreme for n = 2 and 3 and is a natural generalization of Voronoi's principal perfect form (see Voronoi (1907))

$$\sum_{1}^{n} x_i^2 + \sum_{1 \leq i < j \leq n} x_i x_j.$$

Since the region D(f) > constant is strictly convex within \mathcal{P} , any \mathfrak{P} -extreme form is a vertex of $\mathfrak{P}(\alpha)$. In general, however, not all vertices are \mathfrak{P} -extreme.

For f in $\mathfrak{D}(\alpha)$ denote by $\pm \mathbf{m}_k$ (k = 1, ..., t) all those \mathbf{x} other than unit vectors for which equality holds in (1.1). Then f is called \mathfrak{D} -eutactic if its adjoint F is expressible in the form

$$F(\mathbf{x}) = \sum_{1}^{n} A_{ij} x_{i} x_{j} = \sum_{1}^{l} \rho_{k} (\mathbf{m}_{k}' \mathbf{x})^{2} + \sum_{1}^{n} \sigma_{i} x_{i}^{2},$$

where ρ_k , σ_i are real and $\rho_k > 0$ ($k = 1, \ldots, t$).

Theorem 1 is proved using

THEOREM 2 (Barnes 1979). A form f in $\mathfrak{D}(\alpha)$ is \mathfrak{D} -extreme if and only if it is a vertex of $\mathfrak{D}(\alpha)$ and is \mathfrak{D} -eutactic.

We show f_n is a vertex of $\mathfrak{D}(\alpha)$ in Section 2 and that it is \mathfrak{D} -eutactic in Section 4, thus proving Theorem 1. Section 3 contains some necessary lemmas on determinants.

2. f_n is a vertex of $\mathfrak{D}(\alpha)$

We can express $f_n(\mathbf{x})$ in the form

$$f_n(\mathbf{x}) = \alpha_1 g_n(x_1, \dots, x_n) + (\alpha_2 - \alpha_1) g_{n-1}(x_2, \dots, x_n) + (\alpha_3 - \alpha_2) g_{n-2}(x_3, \dots, x_n) + \dots + (\alpha_n - \alpha_{n-1}) g_1(x_n)$$

where $g_m(y_1, \ldots, y_m) = \sum_{i=1}^{m} y_i^2 + \sum_{1 \le i \le j \le m} y_i y_j$ is the principal perfect form of Voronoi (1907). This has the property that, for all integral $(y_1, \ldots, y_m) \ne (0, \ldots, 0), g_m(\mathbf{y}) \ge 1$, with equality if and only if $\mathbf{y} = \pm \mathbf{e}_i$ $(1 \le i \le m)$ or $\mathbf{y} = \pm (\mathbf{e}_i - \mathbf{e}_i) (1 \le i \le j \le m)$.

Suppose g.c.d. $(x_j, x_{j+1}, ..., x_n) = 1$, then $(x_i, ..., x_n) \neq (0, ..., 0)$ $(1 \le i \le j)$, so that

$$g_{n-i+1}(x_i, \ldots, x_n) \ge 1$$
 (1 < i < j),

and hence

(2.1)
$$f_n(\mathbf{x}) \geq \alpha_1 + (\alpha_2 - \alpha_1) + \cdots + (\alpha_j - \alpha_{j-1}) = \alpha_j = a_{jj}.$$

Thus f_n lies in $\mathfrak{D}(\alpha)$.

Also, if equality holds in (2.1), then $g_n(\mathbf{x}) = 1$, so that \mathbf{x} lies in the set (1.2). Conversely, if \mathbf{x} lies in the set (1.2), then equality holds in (2.1). Hence f_n satisfies the $\frac{1}{2}n(n + 1)$ equalities given by equality in (1.1) at the vectors (1.2) and is thus on an edge of the cone \mathfrak{M} and a vertex of $\mathfrak{P}(\alpha)$.

Moreover the set of the vectors $\pm \mathbf{m}_k$ (k = 1, ..., t) other than unit vectors for which equality holds in (1.1) is the set

(2.2)
$$\mathbf{x} = \pm (\mathbf{e}_i - \mathbf{e}_j) \quad (1 \le i \le j \le n).$$

3. Lemmas on determinants

For $0 < a_0 \leq a_1 \leq a_2 \leq \ldots$ let $D_k = D_k(a_1, \ldots, a_k)$ be the determinant of the $k \times k$ matrix with elements

$$d_{ij} = \begin{cases} 2a_i, & i = j, \\ a_m, & i \neq j, m = \min(i, j). \end{cases}$$

Similarly let $G_k = G_k(a_1, \ldots, a_k)$ be the determinant of the $k \times k$ matrix with elements

$$g_{ij} = \begin{cases} 2a_i, & i = j \neq k, \\ a_k, & i = j = k, \\ a_m, & i \neq j, m = \min(i, j) \end{cases}$$

and let $H_k = H_k(a_0, a_1, \ldots, a_k)$ be the determinant of the $k \times k$ matrix with elements

$$h_{ij} = \begin{cases} 2a_1 - a_0, & i = j = 1, \\ 2a_i, & i = j \neq 1, \\ -a_i, & j = i + 1, \\ -a_{i-1}, & j = i - 1, \\ 0, & \text{otherwise.} \end{cases}$$

LEMMA 1.

$$D_{k} = a_{k}D_{k-1} + G_{k} \quad (k \ge 2),$$

$$G_{k} = a_{k}D_{k-1} - a_{k-1}^{2}D_{k-2} \quad (k \ge 3)$$

and

$$D_k > 0, \quad G_k > 0 \quad \text{for } k \ge 1.$$

PROOF. We observe $G_1 = a_1 > 0$, $D_1 = 2a_1 > 0$, $G_2 = a_1a_2 + a_1(a_2 - a_1) > 0$ and $D_2 = a_2D_1 + G_2 = 3a_1a_2 + a_1(a_2 - a_1) > 0$.

The result then follows by induction, since

$$G_{k} = \begin{vmatrix} 2a_{1} & a_{1} & a_{1} & a_{1} \\ a_{1} & 2a_{2} & a_{2} & a_{2} \\ \vdots & \ddots & \vdots \\ a_{1} & a_{2} & 2a_{k-1} & a_{k-1} \\ a_{1} & a_{2} & a_{k-1} & a_{k} \end{vmatrix}$$
$$= \begin{vmatrix} 2a_{1} & a_{2} & a_{k-1} & a_{k} \\ a_{1} & 2a_{2} & a_{1} & 0 \\ a_{1} & 2a_{2} & a_{2} & 0 \\ \vdots & \ddots & \vdots \\ a_{1} & a_{2} & 2a_{k-1} & -a_{k-1} \\ 0 & 0 & -a_{k-1} & a_{k} \end{vmatrix}$$
$$= a_{k}D_{k-1} - a_{k-1}^{2}D_{k-2}$$
$$= a_{k}G_{k-1} + a_{k-1}D_{k-2}(a_{k} - a_{k-1}) > 0,$$
on assuming the induction hypothesis for $k - 1$.
Similarly $D_{k} = 2a_{k}D_{k-1} - a_{k-1}^{2}D_{k-2} = a_{k}D_{k-1} + G_{k} > 0.$

Lemma 2.

$$H_{k} = 2a_{k}H_{k-1} - a_{k-1}^{2}H_{k-2} \qquad (k \ge 3)$$
$$a_{k}H_{k-1} - a_{k-1}^{2}H_{k-2} \ge 0 \qquad (k \ge 3)$$

and

$$H_k > 0$$
 for $k \ge 1$.

PROOF. We observe

$$H_1 = a_1 + (a_1 - a_0) > 0,$$

$$H_2 = a_1 a_2 + 2a_2(a_1 - a_0) + a_1(a_2 - a_1) > 0,$$

$$a_3 H_2 - a_2^2 H_1 = a_2(a_1 - a_0)(a_3 - a_2) + a_2 a_3(a_1 - a_0)$$

$$+ a_1 a_2(a_3 - a_2) + a_1 a_3(a_2 - a_1) > 0$$

and

$$H_3 = 2a_3H_2 - a_2^2H_1 = (a_3H_2 - a_2^2H_1) + a_3H_2 > 0.$$

Expanding similarly to Lemma 1 we have

$$H_{k} = 2a_{k}H_{k-1} - a_{k-1}^{2}H_{k-2}$$

= $a_{k}H_{k-1} + (a_{k}H_{k-1} - a_{k-1}^{2}H_{k-2}).$

Also

 $a_k H_{k-1} - a_{k-1}^2 H_{k-2} = a_k (a_{k-1} H_{k-2} - a_{k-2}^2 H_{k-3}) + a_{k-1} H_{k-2} (a_k - a_{k-1}) > 0$, on assuming the induction hypothesis for k - 1. Hence $H_k > 0$.

4. f_n is \mathfrak{D} -eutactic

By (2.2) the condition that f_n be \mathfrak{D} -eutactic is that its adjoint $F_n(\mathbf{x})$ satisfy

$$F_n(\mathbf{x}) = \sum_{1}^{n} A_{ij} x_i x_j = \sum_{1 \le i \le j \le n} \rho_{ij} (x_i - x_j)^2 + \sum_{1}^{n} \sigma_i x_i^2$$

with all $\rho_{ij} > 0$ ($1 \le i \le j \le n$).

Equating coefficients gives $\rho_{ij} = -A_{ij}$ $(1 \le i \le j \le n)$. Hence f_n is \mathfrak{D} -eutactic if all the off-diagonal cofactors A_{ij} of its matrix are negative. For convenience we show that the matrix B of $2f_n$ has this property. B has elements

$$b_{ij} = \begin{cases} 2\alpha_i, & i = j, \\ \alpha_m, & i \neq j, m = \min(i, j). \end{cases}$$

For $1 \le i \le j \le n$ the cofactors of B are

$$B_{ij} = (-1)^{i+j} \det \begin{bmatrix} P & Q & R \\ Q' & S & T \\ R' & U & V \end{bmatrix},$$

where the matrices P, Q, R, S, T, U, V have elements

$$p_{km} = \begin{cases} 2\alpha_k, & 1 \le k \le i-1, m=k, \\ \alpha_k, & 1 \le k \le m \le i-1, \\ \alpha_m, & 1 \le m < k \le i-1 \end{cases}$$

$$q_{km} = \alpha_k, & 1 \le k \le i-1, 1 \le m \le j-i \\ r_{km} = \alpha_k, & 1 \le k \le i-1, 1 \le m \le n-j \end{cases}$$

$$s_{km} = \begin{cases} \alpha_{i+k-1}, & 1 \le m \le k \le j-i, \\ 2\alpha_{i+k}, & 1 \le k \le j-i-1, m=k+1, \\ \alpha_{i+k}, & 1 \le k \le j-i-2, k+2 \le m \le j-i \end{cases}$$

$$t_{km} = \alpha_{i+k}, & 1 \le k \le j-1, 1 \le m \le n-j \\ u_{km} = \alpha_{i+m-1}, & 1 \le k \le n-j, 1 \le m \le j-i \end{cases}$$

$$v_{km} = \begin{cases} 2\alpha_{j+k}, & 1 \le k \le n-j, m=k, \\ \alpha_{j+k}, & 1 \le k \le n-j, m=k, \\ \alpha_{j+m}, & 1 \le k \le n-j. \end{cases}$$

By applying successive row and column operations then row operations, we get

$$B_{ij} = (-1)^{i+j} \det \begin{bmatrix} P & W & * \\ X & Y & * \\ O & O & Z \end{bmatrix},$$

where the O are suitably sized zero matrices, the elements in * are unimportant, Y is an upper triangular matrix with diagonal elements

$$\alpha_i, -\alpha_{i+1}, -\alpha_{i+2}, \ldots, -\alpha_{j-1},$$

and W, X, Z have elements

$$w_{km} = \begin{cases} \alpha_k, & 1 \le k \le i - 1, m = 1, \\ c_{km}, & 1 \le k \le i - 1, 2 \le m \le j - i, \end{cases}$$

$$x_{km} = \begin{cases} \alpha_m, & 1 \le m \le i - 1, 2 \le m \le j - i, \\ 0, & 1 \le m \le i - 1, 2 \le k \le j - i \end{cases}$$

$$z_{km} = \begin{cases} 2\alpha_{j+1} - \alpha_j, & k = m = 1, \\ 2\alpha_{j+k}, & 2 \le k \le n - j, m = k, \\ -\alpha_{j+k}, & 1 \le k \le n - j - 1, m = k + 1, \\ -\alpha_{j+m}, & 1 \le m \le n - j - 1, k = m + 1, \\ 0, & \text{otherwise}, \end{cases}$$

for some c_{km} .

D-extreme Minkowski-reduced forms

Hence

$$B_{ij} = (-1)^{i+j} G_i(\alpha_1, \ldots, \alpha_i)(-\alpha_{i+1}) \cdots (-\alpha_{j-1}) H_{n-j}(\alpha_j, \ldots, \alpha_n)$$

= $-\alpha_{i+1}\alpha_{i+2} \cdots \alpha_{j-1} G_i(\alpha_1, \ldots, \alpha_i) H_{n-j}(\alpha_j, \ldots, \alpha_n).$

By the results of Lemmas 1 and 2 and (1.3), we then have $B_{ij} < 0$ for $1 \le i \le j \le n$, and hence f_n is \mathfrak{P} -eutactic.

References

- E. S. Barnes (1978), 'On Minkowski's fundamental inequality for reduced positive quadratic forms (1)', J. Austral. Math. Soc. (Ser. A) 26, 46-52.
- E. S. Barnes (1979), 'On Minkowski's fundamental inequality for reduced positive quadratic forms (II)', J. Austral. Math. Soc. (Ser. A) 27, 1-6.
- C. G. Lekkerkerker (1969), Geometry of Numbers (Wolters-Noordhoff, Groningen, 1969).
- B. L. Van der Waerden (1956), 'Die Reduktionstheorie der positiven quadratischen Formen', Acta Math 96, 265-309.
- G. Voronoi (1907), 'Sur quelques propriétés des formes quadratiques positives parfaites', J. reine angew. Math. 133, 97-178.

The University of New South Wales Broken Hill, 2880 Australia