A CLASS OF \mathscr{Q}-EXTREME MINKOWSKI-REDUCED FORMS

D. W. TRENERRY

(Received 16 September 1980)
Communicated by A. J. van der Poorten

Abstract

Barnes $(1978,1979)$ introduced the concept of a 9 -extreme form, which is a Minkowski-reduced positive definite quadratic form having prescribed diagonal coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ and providing a local minimum of the determinant of the form over all such forms. Here a class of forms which are Q) -extreme for all α and all n is described.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 10 E 25; secondary 10 E 20.

1. Introduction

A positive definite or semidefinite quadratic form $f(\mathbf{x})=\sum_{1}^{n} a_{i j} x_{i} x_{j}$ is reduced in the sense of Minkowski if, for all $j=1, \ldots, n$ and for all integral $\mathbf{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
\text { if g.c.d. }\left(x_{j}, x_{j+1}, \ldots, x_{n}\right)=1 \text {, then } f(\mathbf{x}) \geqslant a_{j j} . \tag{1.1}
\end{equation*}
$$

In the $\frac{1}{2} n(n+1)$-dimensional space \mathscr{P} of positive definite and semidefinite forms, the set \mathbb{R} of reduced forms is defined by a finite number of inequalities, and is therefore a polyhedral cone. Among these inequalities are those determined by the set

$$
\begin{equation*}
\mathbf{x}= \pm \mathbf{e}_{j} \quad(1 \leqslant j<n), \quad \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \quad(1<i<j<n) \tag{1.2}
\end{equation*}
$$

where \mathbf{e}_{i} denote the unit vectors. For these and other properties of Minkowskireduced forms see Lekkerkerker (1969, §10) or Van der Waerden (1956).

For real $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ with

$$
\begin{equation*}
0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}, \tag{1.3}
\end{equation*}
$$

[^0]the set $\mathscr{Q}(\alpha)$ of (necessarily) positive definite reduced forms is defined as the intersection of 9 K with the hyperplanes
\[

$$
\begin{equation*}
a_{i j}=\alpha_{i} \quad(i=1, \ldots, n) \tag{1.4}
\end{equation*}
$$

\]

Thus $\mathscr{D}(\alpha)$ is the set of all reduced forms with prescribed diagonal coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Since the finite set of inequalities determining \mathfrak{N} include

$$
\left|2 a_{i j}\right|<a_{i i} \quad(1<i<j<n)
$$

$\mathscr{Q}(\boldsymbol{\alpha})$ is bounded and therefore a convex polytope.
A form in $\mathscr{D}(\boldsymbol{\alpha})$ for which the determinant $D(f)$ is a local minimum over all f in $\mathscr{D}(\alpha)$ is called (Barnes $(1978,1979)$) a \mathscr{D}-extreme form. If the determinant is an absolute minimum over all f in $\mathscr{D}(\alpha)$ the form is absolutely \mathscr{D}-extreme. Here we show

Theorem 1. The form

$$
f_{n}(\mathbf{x})=\sum_{1}^{n} \alpha_{i} x_{i}^{2}+\sum_{1<i<j<n} \alpha_{i} x_{i} x_{j}
$$

where α satisfies (1.3), is \mathscr{D}-extreme for all n and all such $\boldsymbol{\alpha}$.

The form $f_{n}(x)$ is absolutely \mathscr{D}-extreme for $n=2$ and 3 and is a natural generalization of Voronoi's principal perfect form (see Voronoi (1907))

$$
\sum_{1}^{n} x_{i}^{2}+\sum_{1<i<j<n} x_{i} x_{j}
$$

Since the region $D(f) \geqslant$ constant is strictly convex within \mathscr{P}, any \mathscr{D}-extreme form is a vertex of $\mathscr{D}(\alpha)$. In general, however, not all vertices are \mathscr{D}-extreme.

For f in $\mathscr{Q}(\alpha)$ denote by $\pm \mathrm{m}_{k}(k=1, \ldots, t)$ all those x other than unit vectors for which equality holds in (1.1). Then f is called \mathscr{D}-eutactic if its adjoint F is expressible in the form

$$
F(\mathrm{x})=\sum_{1}^{n} A_{i j} x_{i} x_{j}=\sum_{1}^{\prime} \rho_{k}\left(\mathrm{~m}_{k}^{\prime} \mathrm{x}\right)^{2}+\sum_{1}^{n} \sigma_{i} x_{i}^{2}
$$

where ρ_{k}, σ_{i} are real and $\rho_{k}>0(k=1, \ldots, t)$.
Theorem 1 is proved using

Theorem 2 (Barnes 1979). A form f in $\mathscr{D}(\alpha)$ is \mathscr{Q}-extreme if and only if it is a vertex of $\mathscr{D}(\boldsymbol{\alpha})$ and is \mathscr{D}-eutactic.

We show f_{n} is a vertex of $\mathscr{D}(\alpha)$ in Section 2 and that it is \mathscr{D}-eutactic in Section 4, thus proving Theorem 1. Section 3 contains some necessary lemmas on determinants.

2. f_{n} is a vertex of $\mathscr{D}(\alpha)$

We can express $f_{n}(\mathbf{x})$ in the form

$$
\begin{aligned}
f_{n}(x)= & \alpha_{1} g_{n}\left(x_{1}, \ldots, x_{n}\right)+\left(\alpha_{2}-\alpha_{1}\right) g_{n-1}\left(x_{2}, \ldots, x_{n}\right) \\
& +\left(\alpha_{3}-\alpha_{2}\right) g_{n-2}\left(x_{3}, \ldots, x_{n}\right)+\cdots+\left(\alpha_{n}-\alpha_{n-1}\right) g_{1}\left(x_{n}\right)
\end{aligned}
$$

where $g_{m}\left(y_{1}, \ldots, y_{m}\right)=\sum_{1}^{m} y_{i}^{2}+\sum_{1<i<j<m} y_{i} y_{j}$ is the principal perfect form of Voronoi (1907). This has the property that, for all integral (y_{1}, \ldots, y_{m}) \neq $(0, \ldots, 0), g_{m}(\mathbf{y}) \geqslant 1$, with equality if and only if $\mathbf{y}= \pm \mathbf{e}_{i}(1 \leqslant i \leqslant m)$ or $\mathbf{y}= \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)(1<i<j \leqslant m)$.

Suppose g.c.d. $\left(x_{j}, x_{j+1}, \ldots, x_{n}\right)=1$, then $\left(x_{i}, \ldots, x_{n}\right) \neq(0, \ldots, 0)(1<i$ $\leqslant j$), so that

$$
g_{n-i+1}\left(x_{i}, \ldots, x_{n}\right) \geqslant 1 \quad(1 \leqslant i \leqslant j)
$$

and hence

$$
\begin{equation*}
f_{n}(x) \geqslant \alpha_{1}+\left(\alpha_{2}-\alpha_{1}\right)+\cdots+\left(\alpha_{j}-\alpha_{j-1}\right)=\alpha_{j}=a_{i j} \tag{2.1}
\end{equation*}
$$

Thus f_{n} lies in $\mathscr{D}(\boldsymbol{\alpha})$.
Also, if equality holds in (2.1), then $g_{n}(x)=1$, so that x lies in the set (1.2). Conversely, if \mathbf{x} lies in the set (1.2), then equality holds in (2.1). Hence f_{n} satisfies the $\frac{1}{2} n(n+1)$ equalities given by equality in (1.1) at the vectors (1.2) and is thus on an edge of the cone \mathfrak{R} and a vertex of $\mathscr{D}(\alpha)$.

Moreover the set of the vectors $\pm \mathrm{m}_{k}(k=1, \ldots, t)$ other than unit vectors for which equality holds in (1.1) is the set

$$
\begin{equation*}
\mathbf{x}= \pm\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \quad(1<i<j<n) \tag{2.2}
\end{equation*}
$$

3. Lemmas on determinants

For $0<a_{0} \leqslant a_{1} \leqslant a_{2} \leqslant \ldots$ let $D_{k}=D_{k}\left(a_{1}, \ldots, a_{k}\right)$ be the determinant of the $k \times k$ matrix with elements

$$
d_{i j}= \begin{cases}2 a_{i}, & i=j, \\ a_{m}, & i \neq j, m=\min (i, j)\end{cases}
$$

Similarly let $G_{k}=G_{k}\left(a_{1}, \ldots, a_{k}\right)$ be the determinant of the $k \times k$ matrix with elements

$$
g_{i j}=\left\{\begin{array}{l}
2 a_{i}, \quad i=j \neq k \\
a_{k}, \quad i=j=k \\
a_{m}, \quad i \neq j, m=\min (i, j)
\end{array}\right.
$$

and let $H_{k}=H_{k}\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ be the determinant of the $k \times k$ matrix with elements

$$
h_{i j}= \begin{cases}2 a_{1}-a_{0}, & i=j=1 \\ 2 a_{i}, & i=j \neq 1 \\ -a_{i}, & j=i+1 \\ -a_{i-1}, & j=i-1 \\ 0, & \text { otherwise }\end{cases}
$$

Lemma 1.

$$
\begin{aligned}
D_{k} & =a_{k} D_{k-1}+G_{k} \quad(k \geqslant 2) \\
G_{k} & =a_{k} D_{k-1}-a_{k-1}^{2} D_{k-2} \quad(k \geqslant 3)
\end{aligned}
$$

and

$$
D_{k}>0, \quad G_{k}>0 \quad \text { for } k>1
$$

Proof. We observe $G_{1}=a_{1}>0, D_{1}=2 a_{1}>0, G_{2}=a_{1} a_{2}+a_{1}\left(a_{2}-a_{1}\right)>$ 0 and $D_{2}=a_{2} D_{1}+G_{2}=3 a_{1} a_{2}+a_{1}\left(a_{2}-a_{1}\right)>0$.

The result then follows by induction, since

$$
\begin{aligned}
& G_{k}=\left|\begin{array}{ccccccc}
2 a_{1} & & a_{1} & & a_{1} & & a_{1} \\
a_{1} & & 2 a_{2} & & a_{2} & & a_{2} \\
& \vdots & & & & \vdots & \\
a_{1} & & a_{2} & & 2 a_{k-1} & & a_{k-1} \\
a_{1} & & a_{2} & \cdots & a_{k-1} & & a_{k}
\end{array}\right| \\
& =\left|\begin{array}{cccccc}
2 a_{1} & & a_{2} & & a_{1} & \\
a_{1} & & 2 a_{2} & & a_{2} & \\
& \vdots & & & & 0 \\
& \ddots & & \ddots & & \vdots \\
a_{1} & & a_{2} & & 2 a_{k-1} & \\
0 & 0 & & -a_{k-1} & a_{k-1}
\end{array}\right| \\
& =a_{k} D_{k-1}-a_{k-1}^{2} D_{k-2} \\
& =a_{k} G_{k-1}+a_{k-1} D_{k-2}\left(a_{k}-a_{k-1}\right)>0,
\end{aligned}
$$

on assuming the induction hypothesis for $k-1$.
Similarly $D_{k}=2 a_{k} D_{k-1}-a_{k-1}^{2} D_{k-2}=a_{k} D_{k-1}+G_{k}>0$.

Lemma 2.

$$
\begin{array}{cc}
H_{k}=2 a_{k} H_{k-1}-a_{k-1}^{2} H_{k-2} & (k>3) \\
a_{k} H_{k-1}-a_{k-1}^{2} H_{k-2}>0 & (k>3)
\end{array}
$$

and

$$
H_{k}>0 \text { for } k \geqslant 1 .
$$

Proof. We observe

$$
\begin{aligned}
H_{1} & =a_{1}+\left(a_{1}-a_{0}\right)>0, \\
H_{2} & =a_{1} a_{2}+2 a_{2}\left(a_{1}-a_{0}\right)+a_{1}\left(a_{2}-a_{1}\right)>0, \\
a_{3} H_{2}-a_{2}^{2} H_{1} & =a_{2}\left(a_{1}-a_{0}\right)\left(a_{3}-a_{2}\right)+a_{2} a_{3}\left(a_{1}-a_{0}\right) \\
& +a_{1} a_{2}\left(a_{3}-a_{2}\right)+a_{1} a_{3}\left(a_{2}-a_{1}\right) \geqslant 0
\end{aligned}
$$

and

$$
H_{3}=2 a_{3} H_{2}-a_{2}^{2} H_{1}=\left(a_{3} H_{2}-a_{2}^{2} H_{1}\right)+a_{3} H_{2}>0 .
$$

Expanding similarly to Lemma 1 we have

$$
\begin{aligned}
H_{k} & =2 a_{k} H_{k-1}-a_{k-1}^{2} H_{k-2} \\
& =a_{k} H_{k-1}+\left(a_{k} H_{k-1}-a_{k-1}^{2} H_{k-2}\right) .
\end{aligned}
$$

Also
$a_{k} H_{k-1}-a_{k-1}^{2} H_{k-2}=a_{k}\left(a_{k-1} H_{k-2}-a_{k-2}^{2} H_{k-3}\right)+a_{k-1} H_{k-2}\left(a_{k}-a_{k-1}\right) \geqslant 0$, on assuming the induction hypothesis for $k-1$. Hence $H_{k}>0$.

4. f_{n} is \mathscr{D}-eutactic

By (2.2) the condition that f_{n} be \mathscr{D}-eutactic is that its adjoint $F_{n}(\mathbf{x})$ satisfy

$$
F_{n}(\mathrm{x})=\sum_{1}^{n} A_{i j} x_{i} x_{j}=\sum_{1<i<j<n} \rho_{i j}\left(x_{i}-x_{j}\right)^{2}+\sum_{1}^{n} \sigma_{i} x_{i}^{2}
$$

with all $\rho_{i j}>0(1 \leqslant i<j \leqslant n)$.
Equating coefficients gives $\rho_{i j}=-A_{i j}(1<i<j<n)$. Hence f_{n} is Q-eutactic if all the off-diagonal cofactors $A_{i j}$ of its matrix are negative. For convenience we show that the matrix B of $2 f_{n}$ has this property. B has elements

$$
b_{i j}= \begin{cases}2 \alpha_{i}, & i=j, \\ \alpha_{m}, & i \neq j, m=\min (i, j) .\end{cases}
$$

For $1 \leqslant i<j \leqslant n$ the cofactors of B are

$$
B_{i j}=(-1)^{i+j} \operatorname{det}\left[\begin{array}{ccc}
P & Q & R \\
Q^{\prime} & S & T \\
R^{\prime} & U & V
\end{array}\right],
$$

where the matrices P, Q, R, S, T, U, V have elements

$$
\begin{aligned}
& p_{k m}= \begin{cases}2 \alpha_{k}, & 1 \leqslant k<i-1, m=k, \\
\alpha_{k}, & 1 \leqslant k<m<i-1, \\
\alpha_{m}, & 1 \leqslant m<k \leqslant i-1\end{cases} \\
& q_{k m}=\alpha_{k}, \quad 1 \leqslant k \leqslant i-1,1 \leqslant m \leqslant j-i \\
& r_{k m}=\alpha_{k}, \quad 1 \leqslant k \leqslant i-1,1 \leqslant m \leqslant n-j \\
& s_{k m}= \begin{cases}\alpha_{i+k-1}, & 1 \leqslant m<k<j-i, \\
2 \alpha_{i+k}, & 1 \leqslant k<j-i-1, m=k+1, \\
\alpha_{i+k}, & 1<k<j-i-2, k+2 \leqslant m \leqslant j-i\end{cases} \\
& t_{k m}=\alpha_{i+k}, \quad 1<k \leqslant j-1,1<m \leqslant n-j \\
& u_{k m}=\alpha_{i+m-1}, \quad 1<k<n-j, 1<m<j-i \\
& v_{k m}= \begin{cases}2 \alpha_{j+k}, & 1<k<n-j, m=k, \\
\alpha_{j+k}, & 1<k<m<n-j, \\
\alpha_{j+m}, & 1<m<k<n-j .\end{cases}
\end{aligned}
$$

By applying successive row and column operations then row operations, we get

$$
B_{i j}=(-1)^{i+j} \operatorname{det}\left[\begin{array}{ccc}
P & W & * \\
X & Y & * \\
O & O & Z
\end{array}\right]
$$

where the O are suitably sized zero matrices, the elements in * are unimportant, Y is an upper triangular matrix with diagonal elements

$$
\alpha_{i},-\alpha_{i+1},-\alpha_{i+2}, \ldots,-\alpha_{j-1}
$$

and W, X, Z have elements

$$
\begin{aligned}
& w_{k m}= \begin{cases}\alpha_{k}, & 1<k<i-1, m=1, \\
c_{k m}, & 1<k<i-1,2<m<j-i,\end{cases} \\
& x_{k m}= \begin{cases}\alpha_{m}, & 1<m<i-1, k=1, \\
0, & 1<m<i-1,2<k<j-i\end{cases} \\
& z_{k m}= \begin{cases}2 \alpha_{j+1}-\alpha_{j}, & k=m=1, \\
2 \alpha_{j+k}, & 2<k<n-j, m=k, \\
-\alpha_{j+k}, & 1<k<n-j-1, m=k+1, \\
-\alpha_{j+m}, & 1<m<n-j-1, k=m+1, \\
0, & \text { otherwise },\end{cases}
\end{aligned}
$$

for some $c_{k m}$.

Hence

$$
\begin{aligned}
B_{i j} & =(-1)^{i+j} G_{i}\left(\alpha_{1}, \ldots, \alpha_{i}\right)\left(-\alpha_{i+1}\right) \cdots\left(-\alpha_{j-1}\right) H_{n-j}\left(\alpha_{j}, \ldots, \alpha_{n}\right) \\
& =-\alpha_{i+1} \alpha_{i+2} \cdots \alpha_{j-1} G_{i}\left(\alpha_{1}, \ldots, \alpha_{i}\right) H_{n-j}\left(\alpha_{j}, \ldots, \alpha_{n}\right) .
\end{aligned}
$$

By the results of Lemmas 1 and 2 and (1.3), we then have $B_{i j}<0$ for $1<i<j<n$, and hence f_{n} is \mathscr{D}-eutactic.

References

E. S. Barnes (1978), 'On Minkowski's fundamental inequality for reduced positive quadratic forms (I)', J. Austral. Math. Soc. (Ser. A) 26, 46-52.
E. S. Barnes (1979), 'On Minkowski's fundamental inequality for reduced positive quadratic forms (II)', J. Austral. Math. Soc. (Ser. A) 27, 1-6.
C. G. Lekkerkerker (1969), Geometry of Numbers (Wolters-Noordhoff, Groningen, 1969).
B. L. Van der Waerden (1956), 'Die Reduktionstheorie der positiven quadratischen Formen', Acta Math 96, 265-309.
G. Voronoi (1907), 'Sur quelques propriétés des formes quadratiques positives parfaites', J. reine angew. Math. 133, 97-178.

The University of New South Wales
Broken Hill, 2880
Australia

[^0]: ©Copyright Australian Mathematical Society 1981

