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Abstract

Barnes (1978, 1979) introduced the concept of a <$-extreme form, which is a Minkowski-reduced
positive definite quadratic form having prescribed diagonal coefficients a,, a2 a, and providing
a local minimum of the determinant of the form over all such forms. Here a class of forms which are
<9-extreme for all a and all n is described.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 10 E 25; secondary 10 E 20.

1. Introduction

A positive definite or semidefinite quadratic form/(x) = 2" a^xtXj is reduced in
the sense of Minkowski if, for all j = 1, . . . , n and for all integral x =
( X j , X2, • • • , Xn),

(1.1) if g.c.d. (Xj, xJ+l, ...,xn) = l, t h e n A * ) > ar

In the \n(n + l)-dimensional space ty of positive definite and semidefinite
forms, the set 9H of reduced forms is defined by a finite number of inequalities,
and is therefore a polyhedral cone. Among these inequalities are those de-
termined by the set
(1.2) x = ±e, (1 < j < n), ± (e, - e,) (1 < i <j < n)

where e, denote the unit vectors. For these and other properties of Minkowski-
reduced forms see Lekkerkerker (1969, §10) or Van der Waerden (1956).

For real a = (a1; a2, . . . , an) with

(1.3) 0 < a, < a2 < • • • < an,
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270 D. W. Trenerry [2]

the set ^D(a) of (necessarily) positive definite reduced forms is defined as the
intersection of 9H with the hyperplanes

(1.4) ait = a,- (1 = 1, . . . , n).

Thus D̂ (a) is the set of all reduced forms with prescribed diagonal coefficients
a,, a2, . . . , an. Since the finite set of inequalities determining <Dlt include

|2ty| < a,,. (1 < 1 <j < n),

D̂ (a) is bounded and therefore a convex polytope.
A form in ^D(a) for which the determinant D{f) is a local minimum over all/

in fy(a) is called (Barnes (1978, 1979)) a <$-extreme form. If the determinant is
an absolute minimum over all / in tf) (a) the form is absolutely D̂ -extreme. Here
we show

THEOREM 1. The form

1 Ki<J<n

where a satisfies (1.3), is tf) -extreme for all n and all such a.

The form fn(x) is absolutely 'TD -extreme for n = 2 and 3 and is a natural
generalization of Voronoi's principal perfect form (see Voronoi (1907))

n

1 Ki<J<n

Since the region £>(/) > constant is strictly convex within "3", any ^-extreme
form is a vertex of ^ (a). In general, however, not all vertices are D̂ -extreme.

For / i n ^ (a ) denote by ±mk (k = 1, . . . , i) all those x other than unit
vectors for which equality holds in (1.1). Then/is called tfl-eutactic if its adjoint
F is expressible in the form

F(x) = £ Avx,Xj = 2 pk(m'kx)2 + £ otf,
1 1 1

where pk, a,- are real and pk > 0 (k = 1, . . . , / ) .

Theorem 1 is proved using

THEOREM 2 (Barnes 1979). A form f in D̂ (a) is 'TD -extreme if and only if it is a
vertex of D̂ (a) and is D̂ -eutactic.

We show /„ is a vertex of ^ (a) in Section 2 and that it is 'TD -eutactic in
Section 4, thus proving Theorem 1. Section 3 contains some necessary lemmas
on determinants.

https://doi.org/10.1017/S1446788700019418 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019418


[ 3 ] «D -extreme Minkowski-reduced forms 271

l.fn is a vertex of ^(a)

We can express/n(x) in the form

£n(*i> • • • > * „ ) + ( « 2 ~ a i ) & , - i ( ^ 2 . • • •> * n )

where gm(.y,, . . . ,ym) = 27.y2 + 2,< 1 < / < m^iy, is the principal perfect form of
Voronoi (1907). This has the property that, for all integral (>»,, . . . ,ym) =£
(0, . . . , 0), gm(y) > 1, with equality if and only if y = ± e, (1 < / < m) or
y = ± ( e , - e , ) ( l < i <j < m).

Suppose g.c.d. (xj, xJ+l, . . . , xn) = 1, then (*,.,. . . , xn) ¥^ (0, . . . , 0) (1 < i
< j), so that

&,_,-+1(*,-> • • •, x j > 1 (1 < i < y),

and hence

(2-0 /n(x) > a, + (oj - o,) + • • • + (a,. - a,_,) = a,. = a .̂

Thus/,, lies in 6D (a).
Also, if equahty holds in (2.1), then gn(x) = 1, so that x lies in the set (1.2).

Conversely, if x lies in the set (1.2), then equahty holds in (2.1). Hence/, satisfies
the \n(n + 1) equalities given by equality in (1.1) at the vectors (1.2) and is thus
on an edge of the cone <D1L and a vertex of ^ (a).

Moreover the set of the vectors ±mk (k = 1, . .., t) other than unit vectors
for which equality holds in (1.1) is the set

(2.2) x = ± (e,. - e,) (1 < i <j < n).

3. Lemmas on determinants

For 0 < Of, < a, < a2 < . . . let Dk = Dk(a{, . . . , ak) be the determinant of
the k X k matrix with elements

d ={
" [ am>

Similarly let Gk = Gk(av . . . , ak) be the determinant of the k X k matrix with
elements

f a,, i =j =£ k,
ak, i=j=k,

j , m = min(j,y)
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and let Hk = Hk(a0, a , , . . . , ak) be the determinant of the k X k matrix with
elements

LEMMA 1.

Gk = akD,

2a,
2a,,

0,

c - l "*"

c — I

„

i
i

j

j

= 7 = 1 ,
-j* 1,
- i + l,
- i - l ,

otherwise.

(

Dk_

*>2),

2 (* > 3)

and

Dk > 0, Gk > 0 /or A: > 1.

PROOF. We observe Gx = ax> 0, £), = 2a, > 0, G2 = axa2 + at(a2 — a,) >
0 and D2 = a2Dx + G2 = 7>axa2 + ax(a2 — a,) > 0.

The result then follows by induction, since

2a,

2a,

2at_,

2a,

2a,

0

0

~ak-\

= **G*_, + ak_xDk_2(ak - ak_l) > 0,

on assuming the induction hypothesis for k — 1.
Similarly £>* = 2akDk_x - a\_J)k_2 = akDk_l + Gk > 0.
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LEMMA 2.

Hk = 2akHk_x - a\_xHk_2 (k > 3)

and

PROOF. We observe

~ a2
k_xHk_2 > 0 (k > 3)

Hk>0 fork> 1.

Hx = a, + (a, - a0) > 0,
a \ a\a2 0.

- a\Hx = a2(ax - ao)(a3 - a2) + a2a^{ax - a0)

+ a,a2(a3 — a2) + ata3(a2 — a,) > 0
and

H3 = 2a3H2 - a\Hx = (a3H2 - a\Hx) + a3H2 > 0.

Expanding similarly to Lemma 1 we have

Hk = 2°kHk-i ~ ak-\Hk-2

-• + - ! - «*-
Also

on assuming the induction hypothesis for k — 1. Hence /ft > 0.

4./n is ^D-eutactic

By (2.2) the condition that fn be <>0 -eutactic is that its adjoint FB(x) satisfy
n n

1 l<i</<n 1

with all py > 0 (1 < i <j < «).
Equating coefficients gives py = -y4i;/. (1 < i <j < «). Hence/„ is ^D-eutactic if

all the off-diagonal cofactors Atj of its matrix are negative. For convenience we
show that the matrix B of 2/n has this property. B has elements

2 a " ' = ; >
«m. ' *h m i ( i )

For 1 < / <j < n the cofactors of B are

Q' S T
R' U V

b
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where the matrices P, Q, R, S, T, U, V have elements

{ 2ak, 1 < k < i — 1, m = k,
ak, \<k<m<i-\,
am, 1 < m < k < i - 1

1km = ak> l < k < i — I, l < m < j — i

/•«._ = at, I < k < i - I, I < w < n - jkm " ak>

| 2ai + k>

[ «,- + *'
Skm

lkm

"km

ai+k>

vkm =

1 < A: < j - i - 1, m = k + 1,
1 < A: < j - i - 2, k + 2 < m < j - i

\ < k < j - I, 1 <m <n -j

1 <k <n-j,\ <m <j - i

1 < k < n — j,m = k,
1 < k < m < n — j ,
1 < m < k < n - j .

By applying successive row and column operations then row operations, we
get

B d e t

o

W
Y
O

*
*
z

where the O are suitably sized zero matrices, the elements in * are unim-
portant, Y is an upper triangular matrix with diagonal elements

1,

and W, X, Z have elements

ak, 1 < k < i — 1, m
1 < k < i - 1, 2 < m < 7 - i,

"•km
= {am, 1 < m < i - 1, Ar - 1,

\ 0, 1 < m < i - 1, 2 < k < j - i

Zkm = •

For some ckm.

2«,+i ~

2« , + * ,

0,

A: = w = I,

2 <k <n-j
\<k<n-j

otherwise,

,m = k,
- I, m = k + I,

f - l , * - « + l
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Hence

BtJ = ( - O ' ^ a , , . . .

By the results of Lemmas 1 and 2 and (1.3), we then have By < 0 for
1 < 1 <j < n, and hence/, is ^D-eutactic.
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