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OBSTRUCTIONS TO LIFTINGS IN 
COMMUTATIVE SQUARES 

IRWIN S. PRESSMAN 

Dedicated to the memory of Jean Marauda 

1. Introduction. A commutative square (1) of morphisms is said to have 
a lifting if there is a morphism X : Bi —» A2 such that \<pi = a and <p2\ = /3. 

Ai • Bx 

(1) 

A2 • B2 

Let us assume that we are working in a fixed abelian category fâ. Therefore, 
(Pi will have a kernel "K" and a cokernel " C / ' for i = 1,2. Let k : i£i —-> K2 

and c : Ci —-» C2 denote the canonical morphisms induced by a and /3. 
We shall construct a short exact sequence (s.e.s.) 

(2) 0 - * i £ 2 - > # - > C i - > 0 
using the data of (1). We shall prove that (1) has a lifting if and only if 
k = 0, c = 0, and (2) represents the zero class in E x t ^ G , K2). Furthermore, 
if (1) has one lifting, then the liftings will be in one-to-one correspondence 
with the elements of the set |Hom(G, K2)\. 

The results here should be useful for certain types of problems in algebraic 
topology. For example, if (1) were a commutative diagram of continuous 
mappings of topological spaces, then the homology functors Hn would give a 
sequence of commutative diagrams of abelian groups. To prove the non
existence of a lifting in the category of continuous mappings, it would suffice 
to show that there can be no lifting for one integer n. Olum [3] has looked at 
this problem for topological spaces from a different viewpoint. The meaning 
of homology of a square in [1 ; 3] is quite different from ours. 

2. Splittings of short exact sequences. 

Definition. A short exact sequence E of objects in *$ 

f g 
E : 0 -> A - » B - > C -> 0 
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is said to split if there are morphisms s : C —> B and t : B —> A such that 
tf = 1:A-*A, gs = 1 : C -> C, and /* + sg = 1 : 5 -> 5 . The pair (/, 5) is 
called a splitting of E. E may have many splittings, as the following lemma 
suggests. 

LEMMA 1. Let E be a split s.e.s. The splittings (t, s) of E are in one-to-one 
correspondence with the set |Hom(C, A)\. 

Proof. Let (/, s) be a splitting of E, and let u : C —* A be any morphism of 
Horn(C, A). It is easily checked that (t — ug, s + fu) is also a splitting. 

The converse has a straight-forward proof which is omitted. 

Suppose next that there is a commutative diagram of s.e.s.'s 

E* 0 — * A — • B* —> C' —> 0 

(3) J ||i |A J* 

E : 0 — ^ A <^± B ^± C —•> 0 . 

View E# as the pullback of E along k. If E has a splitting (/, 5), then E# must 
also split and have a splitting (/#, s# ). 

Definition. A splitting (/#, 5#) of E# is compatible with the splitting (/, 5) of 
Eif 

th = ^ and /zs# = sk. 

LEMMA 2. E# has a unique splitting compatible with (t, s). 

Proof. Set t* = *A. Certainly #/# = thf* = tf = 1. Now (1 - fH*)f* = 0 
so there is a unique s* such that 1 —/#/# = s#g#. Moreover, g# (1 —/ # / # ) = 
g#s#g# implies that g# = g*s$g*, and since g# is right-cancellable, g#s# = 1. 
Finally, 

(sk - hs*)g# = s£g# - A(l - / W ) = sgh - h +p = -fth+fth = 0, 

so sk — hs* = 0, and sk = /zs#. Therefore, (/#, s#) is compatible with (/, 5), 
and is the unique splitting with this property. 

This lemma has an obvious dual: one need only replace sharp (#) by flat (^), 
and pullbacks by pushouts. 

3. The homology of a commutative square. We shall examine the case 
where diagram (1) occurs with <pi a monomorphism and <£2 an epimorphism. 
Commutative squares of this type will be called special. Such squares will 
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give rise to s.e.s.'s corresponding to (2). The motivation for this came from 
[4], where special squares arose in the computation of the endomorphisms of 
an exact sequence of length two. 

(4) 

-+B 

d 
Y >Z 

Consider any square (4) in 9*, and set di = {a,f} : A —» B 0 Y and 
d2 = (g} —d) : B® Y—>Z. (The braces { } will denote the components of 
a morphism into a product; ( ) will be used to denote the components of a 
morphism from a coproduct.) The composite d2di = 0 if and only if (4) is 
commutative. Assume this to be the case, and define 

H — ker d2/im di. 

H is called the homology of (4). 
Assume now that (4) is special. Therefore, one can choose b : B —» C as the 

cokernel of the monomorphism a, and c : X —> Y as the kernel of the epi-
morphism d. These give the s.e.s.'s used in the pullback diagram (5) and the 
pushout (6). 

(5) 

(6) 

E# : 0-

E' : 0 

E " : 0 

El» : 0-

-+X- -»P > 5 ->0 

—*x--UY- d 
— > Z - — > 

>A --^B- -^c- — > 

q r 

• 0 

>0 

-»0. 

It follows from (5) that d2 = (g, —d) is an epimorphism with kernel {v, y). 
Similarly, (6) shows that di = {a,f} is a monomorphism with cokernel 

<*. -2>-
Because ^2^1 = 0, ^i factors uniquely through {v, y}. This is seen in diagram 

(7), all of whose rows and columns are s.e.s.'s. 
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3\e 
•* A > P -* H- -»0 

{v,y\ 

di ^ (z, —g) 
-*A =—>B® Y——^ - • 0 

(7) 

w 

Z 

0 0 

From (5) and (7) we note that 

bv = rzv = r(z, — q){v, y) = rkh 

is an epimorphism, so rk must also be an epimorphism. This gives rise to the 
commutative diagram (8) whose rows and columns are s.e.s.'s. 

0 0 

(8) A = A 

u v 
E# : 0 > X > P > B > 0 

„ hu rk 
G : 0 > X > H > C • 0 
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The s.e.s. G corresponds to the s.e.s. (2), referred to earlier. 

„ hu rk 
G : 0 > X • H > C > 0. 

THEOREM 1. The s.e.s. G splits if and only if there is a lifting X of the commu
tative special square (4). 

Proof. Assume first that (/, s) is a splitting of G, and that (#, s#) is the 
unique compatible splitting of E# given by (5) and Lemma 2. Set X = ys#. 
Recall from the proof of Lemma 2 that /# = th. Since a = ve in (8), and 
he = 0 in (7), we have 

s#a = she = (1 — ut#)e = e — w/Ae = e. 

It follows from figures (5) and (6) that 

Xa = ys#a = ye = f, and dX = dys* = gztf# = g. 

Therefore, X is in fact a lifting of (4). 
Conversely, let us suppose that (4) has a lifting /x. We could then choose 

[2, p. 72-73] 

and 

E , : 0 - > I ^ | o , i | ^ I H i 1 o } ^ 0 i 

E b : 0 - > r g - t ( u l . c e r r = < 1 ' 0 > > c - x ) . 
Then y = {n, c) and z = {b,n}, so {i>, y) : P —> B © F in (7) becomes 
{(1,0), (n, c)} :B®X^B® F and e = {a, 0} : 4 - * 5 © X. This allows 
us to set h = b © 1 : B © X —> C © X. Similarly, (z, —q) becomes 
({b,ix}, {0, - 1 } ) : B © F - + C © F and k = 1 © c : C © X -» C © F. It 
follows from this that te = {0, 1} : X -» C © X and rife = (1, 0) : C © X -* C. 
Therefore, G is the split s.e.s. 

if (4) has a lifting. (The congruence class of the s.e.s. G in (8) is independent 
of the choice of pullback P in (5) and pushout Q in (6). We shall omit the 
proof of this fact.) 

COROLLARY. If G splits, (4) has |Hom(C, X)\ liftings. 

Proof. Since G splits, there is at least one lifting X of (4). If 0 : C —>X is 
any morphism of Hom(C, X), then X + cdb will also be a lifting of (4). If 
X + cdb = X + cpby then 6 = p. 

If fx is any other lifting of (4), then (/x — X)a = jua — Xa = / — / = 0, so 
/x — X = \l/b for a unique morphism ^ : C —» F. Similarly, d^6 = d(ji — X) = 0 , 
so ^ = 0 because 6 is an epimorphism. Therefore, there is a unique morphism 
0 : C -> X such that ^ = c6. That is, /x = X + c0&. 
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4. The obstructions. If one follows the notation of § 1, the commutative 
square (1) gives rise to the canonical commutative diagram (9), where 

for i = 1,2. Ji denotes the image of <pt. 

Ki >—> 

(9) I' I 

s2 

A1 

1° 11 I-7' 

Mi 

III 

« 2 
52 

Let us suppose that square II has a lifting rj : J i -* A2. This implies that 
a = rjtiy so S2& = «Si = vhsi = 0. Since s2 is a monomorphism, it follows that 
k = 0. Conversely, if & = 0, then the second square must have a unique 
lifting rj. Dually, the third square has a lifting v if and only if c = 0. 

LEMMA 3. Square II Respectively, III) /zas a unique lifting if and only if 
k = 0 (respectively, c = 0). 

If both & and c are zero and 7 = /2^ = P#I, then there is a commutative 
diagram (10). 

0 

(10) 

Ji 
Wj 

- > B i 

0 - > ^ 2 

*2 
» i4o 

V 

^ 2 , 

/ 2 

^ Ci 

0. 

0 

The central square V of (10) is a special square in the sense of § 3. V has a 
lifting if and only if the short exact sequence (2) splits, where H in (2) is the 
homology of V, and the sequence is obtained in the usual manner. Let us 
denote the class of this s.e.s. in the abelian group Ext1(Ci, ^2) by [G^]. 

Let us introduce the following abelian group elements as our obstructions 
to finding a lifting: 

OB 1: the element k in the group Hom(i£i, K2). 
OB 2: the element c in the group Hom(Ci, C2). 
OB 3: [GF] in the group ExtHG, K2). 

THEOREM 2. The commutative square (1) has a lifting A if and only if OB 1, 
OB 2, and OB 3 are all zero. If there is one lifting, then there are precisely 
|Hom(Ci, K2)\ liftings. 
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