OBSTRUCTIONS TO LIFTINGS IN COMMUTATIVE SQUARES

IRWIN S. PRESSMAN
Dedicated to the memory of Jean Maranda

1. Introduction. A commutative square (1) of morphisms is said to have a lifting if there is a morphism $\lambda: B_{1} \rightarrow A_{2}$ such that $\lambda \varphi_{1}=\alpha$ and $\varphi_{2} \lambda=\beta$.

Let us assume that we are working in a fixed abelian category \mathscr{C}. Therefore, φ_{i} will have a kernel " K_{i} " and a cokernel " C_{i} " for $\mathrm{i}=1,2$. Let $k: K_{1} \rightarrow K_{2}$ and $c: C_{1} \rightarrow C_{2}$ denote the canonical morphisms induced by α and β.

We shall construct a short exact sequence (s.e.s.)

$$
\begin{equation*}
0 \rightarrow K_{2} \rightarrow H \rightarrow C_{1} \rightarrow 0 \tag{2}
\end{equation*}
$$

using the data of (1). We shall prove that (1) has a lifting if and only if $k=0, c=0$, and (2) represents the zero class in $\operatorname{Ext}^{1}\left(C_{1}, K_{2}\right)$. Furthermore, if (1) has one lifting, then the liftings will be in one-to-one correspondence with the elements of the set $\left|\operatorname{Hom}\left(C_{1}, K_{2}\right)\right|$.

The results here should be useful for certain types of problems in algebraic topology. For example, if (1) were a commutative diagram of continuous mappings of topological spaces, then the homology functors H_{n} would give a sequence of commutative diagrams of abelian groups. To prove the nonexistence of a lifting in the category of continuous mappings, it would suffice to show that there can be no lifting for one integer n. Olum [3] has looked at this problem for topological spaces from a different viewpoint. The meaning of homology of a square in $[\mathbf{1 ; 3}]$ is quite different from ours.

2. Splittings of short exact sequences.

Definition. A short exact sequence \mathbf{E} of objects in \mathscr{C}

$$
\mathbf{E}: 0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow \mathbf{0}
$$

[^0]is said to split if there are morphisms $s: C \rightarrow B$ and $t: B \rightarrow A$ such that $t f=1: A \rightarrow A$, $g s=1: C \rightarrow C$, and $f t+s g=1: B \rightarrow B$. The pair (t, s) is called a splitting of $\mathbf{E} . \mathbf{E}$ may have many splittings, as the following lemma suggests.

Lemma 1. Let \mathbf{E} be a split s.e.s. The splittings (t, s) of \mathbf{E} are in one-to-one correspondence with the set $|\operatorname{Hom}(C, A)|$.

Proof. Let (t, s) be a splitting of \mathbf{E}, and let $u: C \rightarrow A$ be any morphism of $\operatorname{Hom}(C, A)$. It is easily checked that $(t-u g, s+f u)$ is also a splitting.

The converse has a straight-forward proof which is omitted.
Suppose next that there is a commutative diagram of s.e.s.'s

View \mathbf{E}^{*} as the pullback of \mathbf{E} along k. If \mathbf{E} has a splitting (t, s), then \mathbf{E}^{*} must also split and have a splitting $\left(t^{\#}, s^{\#}\right)$.

Definition. A splitting ($t^{\#}, s^{\#}$) of $\mathbf{E}^{\#}$ is compatible with the splitting (t, s) of E if

$$
t h=t^{\#} \quad \text { and } \quad h s^{\#}=s k .
$$

Lemma 2. $\mathrm{E}^{\#}$ has a unique splitting compatible with (t, s).
Proof. Set $t^{\#}=t h$. Certainly $t^{\#} f \#=t h f \#=t f=1$. Now $\left(1-f \# t^{\#}\right) f^{\#}=0$ so there is a unique s\# such that $1-f^{\# \#} t^{\#}=s^{\#} g^{\#}$. Moreover, $g^{\#}\left(1-f^{\#} t^{\#}\right)=$ $g^{\#} s^{\#} g^{\#}$ implies that $g^{\#}=g^{\#} s^{\#} g^{\#}$, and since $g^{\#}$ is right-cancellable, $g^{\#} s^{\#}=1$. Finally,
$\left(s k-h s^{\#}\right) g^{\#}=s k g^{\#}-h\left(1-f^{\#} t^{\#}\right)=s g h-h+f t^{\#}=-f t h+f t h=0$,
so $s k-h s^{\#}=0$, and $s k=h s^{\#}$. Therefore, $\left(t^{\#}, s^{\#}\right)$ is compatible with (t, s), and is the unique splitting with this property.

This lemma has an obvious dual: one need only replace sharp (${ }^{*}$) by flat (b), and pullbacks by pushouts.
3. The homology of a commutative square. We shall examine the case where diagram (1) occurs with φ_{1} a monomorphism and φ_{2} an epimorphism. Commutative squares of this type will be called special. Such squares will
give rise to s.e.s.'s corresponding to (2). The motivation for this came from [4], where special squares arose in the computation of the endomorphisms of an exact sequence of length two.
(4)

Consider any square (4) in \mathscr{C}, and set $\partial_{1}=\{a, f\}: A \rightarrow B \oplus Y$ and $\partial_{2}=\langle g,-d\rangle: B \oplus Y \rightarrow Z$. (The braces \{ \} will denote the components of a morphism into a product; \rangle will be used to denote the components of a morphism from a coproduct.) The composite $\partial_{2} \partial_{1}=0$ if and only if (4) is commutative. Assume this to be the case, and define

$$
H=\operatorname{ker} \partial_{2} / \operatorname{im} \partial_{1}
$$

H is called the homology of (4).
Assume now that (4) is special. Therefore, one can choose $b: B \rightarrow C$ as the cokernel of the monomorphism a, and $c: X \rightarrow Y$ as the kernel of the epimorphism d. These give the s.e.s.'s used in the pullback diagram (5) and the pushout (6).

$$
\begin{align*}
& \mathbf{E}^{\#}: 0 \longrightarrow X \xrightarrow{u} P \xrightarrow{v} B \longrightarrow 0 \\
& 1 \| \quad y \downarrow \quad g \downarrow \tag{5}\\
& \mathbf{E}^{\prime}: 0 \longrightarrow X \xrightarrow{c} Y \xrightarrow{d} Z \longrightarrow 0 \\
& \mathbf{E}^{\prime \prime}: 0 \longrightarrow A \xrightarrow{a} B \xrightarrow{b} C \longrightarrow 0 \\
& f \downarrow \quad z \downarrow \quad 1 \| \\
& \mathbf{E} b: 0 \longrightarrow Y \xrightarrow{q} Q \xrightarrow{r} C \longrightarrow \mathbf{0} .
\end{align*}
$$

It follows from (5) that $\partial_{2}=\langle g,-d\rangle$ is an epimorphism with kernel $\{v, y\}$. Similarly, (6) shows that $\partial_{1}=\{a, f\}$ is a monomorphism with cokernel $\langle z,-q\rangle$.

Because $\partial_{2} \partial_{1}=0, \partial_{1}$ factors uniquely through $\{v, y\}$. This is seen in diagram (7), all of whose rows and columns are s.e.s.'s.
$0 \quad 0$

(7)

From (5) and (7) we note that

$$
b v=r z v=r\langle z,-q\rangle\{v, y\}=r k h
$$

is an epimorphism, so $r k$ must also be an epimorphism. This gives rise to the commutative diagram (8) whose rows and columns are s.e.s.'s.
(8)

$\mathbf{G}: 0 \longrightarrow X \xrightarrow{h u} H \xrightarrow{r k} C \longrightarrow$

The s.e.s. G corresponds to the s.e.s. (2), referred to earlier.

$$
\mathbf{G}: 0 \longrightarrow X \xrightarrow{h u} H \xrightarrow{r k} C \longrightarrow 0 .
$$

Theorem 1. The s.e.s. G splits if and only if there is a lifting λ of the commutative special square (4).

Proof. Assume first that (t, s) is a splitting of \mathbf{G}, and that $\left(t^{\#}, s^{*}\right)$ is the unique compatible splitting of $\mathbf{E}^{\#}$ given by (5) and Lemma 2. Set $\lambda=y s{ }^{\#}$. Recall from the proof of Lemma 2 that $t^{\#}=t h$. Since $a=v e$ in (8), and $h e=0$ in (7), we have

$$
s^{\#} a=s^{\#} v e=\left(1-u t^{\#}\right) e=e-u t h e=e .
$$

It follows from figures (5) and (6) that

$$
\lambda a=y s^{\#} a=y e=f, \quad \text { and } \quad d \lambda=d y s^{\#}=g v s^{\#}=g .
$$

Therefore, λ is in fact a lifting of (4).
Conversely, let us suppose that (4) has a lifting μ. We could then choose [2, p. 72-73]

$$
\mathbf{E}^{\#}: 0 \rightarrow X \xrightarrow{u=\{0,1\}} B \oplus X \xrightarrow{v=\langle 1,0\rangle} B \rightarrow 0,
$$

and

$$
\mathbf{E}^{b}: 0 \rightarrow Y \xrightarrow{q=\{0,1\}} C \oplus Y \xrightarrow{r=\langle 1,0\rangle} C \rightarrow 0 .
$$

Then $y=\langle\mu, c\rangle$ and $z=\{b, \mu\}$, so $\{v, y\}: P \rightarrow B \oplus Y$ in (7) becomes $\{\langle 1,0\rangle,\langle\mu, c\rangle\}: B \oplus X \rightarrow B \oplus Y$ and $e=\{a, 0\}: A \rightarrow B \oplus X$. This allows us to set $h=b \oplus 1: B \oplus X \rightarrow C \oplus X$. Similarly, $\langle z,-q\rangle$ becomes $\langle\{b, \mu\},\{0,-1\}\rangle: B \oplus Y \rightarrow C \oplus Y$ and $k=1 \oplus c: C \oplus X \rightarrow C \oplus Y$. It follows from this that $h u=\{0,1\}: X \rightarrow C \oplus X$ and $r k=\langle 1,0\rangle: C \oplus X \rightarrow C$. Therefore, \mathbf{G} is the split s.e.s.

$$
0 \rightarrow X \xrightarrow{\{0,1\}} C \oplus X \xrightarrow{\langle 1,0\rangle} C \rightarrow 0
$$

if (4) has a lifting. (The congruence class of the s.e.s. \mathbf{G} in (8) is independent of the choice of pullback P in (5) and pushout Q in (6). We shall omit the proof of this fact.)

Corollary. If \mathbf{G} splits, (4) has $|\operatorname{Hom}(C, X)|$ liftings.
Proof. Since \mathbf{G} splits, there is at least one lifting λ of (4). If $\theta: C \rightarrow X$ is any morphism of $\operatorname{Hom}(C, X)$, then $\lambda+c \theta b$ will also be a lifting of (4). If $\lambda+c \theta b=\lambda+c \rho b$, then $\theta=\rho$.

If μ is any other lifting of (4), then $(\mu-\lambda) a=\mu a-\lambda a=f-f=0$, so $\mu-\lambda=\psi b$ for a unique morphism $\psi: C \rightarrow Y$. Similarly, $d \psi b=d(\mu-\lambda)=0$, so $d \psi=0$ because b is an epimorphism. Therefore, there is a unique morphism $\theta: C \rightarrow X$ such that $\psi=c \theta$. That is, $\mu=\lambda+c \theta b$.
4. The obstructions. If one follows the notation of § 1 , the commutative square (1) gives rise to the canonical commutative diagram (9), where $u_{i} t_{i}=\varphi_{i}$ for $i=1,2 . J_{i}$ denotes the image of φ_{i}.

Let us suppose that square II has a lifting $\eta: J_{1} \rightarrow A_{2}$. This implies that $\alpha=\eta t_{1}$, so $s_{2} k=\alpha s_{1}=\eta t_{1} s_{1}=0$. Since s_{2} is a monomorphism, it follows that $k=0$. Conversely, if $k=0$, then the second square must have a unique lifting η. Dually, the third square has a lifting ν if and only if $c=0$.

Lemma 3. Square II (respectively, III) has a unique lifting if and only if $k=0$ (respectively, $c=0$).

If both k and c are zero and $j=t_{2} \eta=\nu u_{1}$, then there is a commutative diagram (10).

$$
\begin{align*}
& 0 \longrightarrow J_{1} \xrightarrow{u_{1}} B_{1} \xrightarrow{v_{1}} C_{1} \longrightarrow 0 \\
& \left.0 \longrightarrow K_{2} \xrightarrow{s_{2}} \begin{array}{lll}
\begin{array}{lll}
\eta & \mathbf{V} \\
l^{2}
\end{array} & \begin{array}{l}
\nu \\
t_{2}
\end{array} & J_{2}
\end{array}\right] 0 . \tag{10}
\end{align*}
$$

The central square \mathbf{V} of (10) is a special square in the sense of $\S 3 . \mathbf{V}$ has a lifting if and only if the short exact sequence (2) splits, where H in (2) is the homology of \mathbf{V}, and the sequence is obtained in the usual manner. Let us denote the class of this s.e.s. in the abelian group $\operatorname{Ext}^{1}\left(C_{1}, K_{2}\right)$ by $\left[\mathbf{G}_{V}\right]$.

Let us introduce the following abelian group elements as our obstructions to finding a lifting:

OB 1: the element k in the group $\operatorname{Hom}\left(K_{1}, K_{2}\right)$.
OB 2: the element c in the group $\operatorname{Hom}\left(C_{1}, C_{2}\right)$.
OB 3: $\left[\mathbf{G}_{V}\right]$ in the group $\operatorname{Ext}^{1}\left(C_{1}, K_{2}\right)$.
Theorem 2. The commutative square (1) has a lifting λ if and only if OB 1 , OB 2, and OB 3 are all zero. If there is one lifting, then there are precisely $\left|\operatorname{Hom}\left(C_{1}, K_{2}\right)\right|$ liftings.

References

1. Peter J. Hilton, Homotopy theory and duality (Gordon and Breach, New York, 1965).
2. Saunders MacLane, Homology (Springer, Berlin, 1963).
3. Paul Olum, Homology of squares and factoring of diagrams, pp. 480-489, Lecture Notes in Mathematics, No. 99 (Springer-Verlag, New York, 1969).
4. Irwin S. Pressman, Endomorphisms of exact sequences, Bull. Amer. Math. Soc. 77 (1971), 239-242.

The Ohio State University, Columbus, Ohio

[^0]: Received March 5, 1971. This research was supported by NSF Grant GP-9631. The paper was presented at the AMS 1971 Winter Meeting in Atlantic City, N.J.

