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Spatio-temporal dynamics of turbulent
separation bubbles
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The spatio-temporal dynamics of separation bubbles induced to form in a fully
developed turbulent boundary layer (with Reynolds number based on momentum
thickness of the boundary layer of 490) over a flat plate is studied via direct
numerical simulations. Two different separation bubbles are examined: one induced
by a suction–blowing velocity profile on the top boundary and the other by a
suction-only velocity profile. The latter condition allows reattachment to occur without
an externally imposed favourable pressure gradient and leads to a separation bubble
more representative of those occurring over airfoils and in diffusers. The suction-only
separation bubble exhibits a range of clearly distinguishable modes, including a
high-frequency mode and a low-frequency ‘breathing’ mode that has been observed
in some previous experiments. The high-frequency mode is well characterized by
classical frequency scalings for a plane mixing layer and is associated with the
formation and shedding of spanwise-oriented vortex rollers. The topology associated
with the low-frequency motion is revealed by applying dynamic mode decomposition
to the data from the simulations and is shown to be dominated by highly elongated
structures in the streamwise direction. The possibility of Görtler instability induced
by the streamwise curvature on the upstream end of the separation bubble as the
underlying mechanism for these structures and the associated low frequency is
explored.

Key words: boundary layer separation, turbulence simulation

1. Introduction
Flow separation is ubiquitous in external as well as internal flows: wings and

fuselages at high angles of attack, flow past external objects, shock-wave/boundary
layer interactions, diffusers, corners, inlets and junctions are just a few examples
of this kind of flow. In most of these applications, the incoming boundary layer
is turbulent and separates either because of an adverse pressure gradient (APG) or
a geometric discontinuity (e.g. backward-facing step). The separated flow typically
exhibits unsteadiness across a broad range of time scales (see Eaton & Johnston
1982; Cherry, Hillier & Latour 1984; Kiya & Sasaki 1985; Najjar & Balachandar
1998; Tenaud et al. 2016; among others). These unsteady modes can dominate the
dynamics of the separation bubble and they have significant implications for the
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performance of the flow device/system at hand. They also introduce difficulties for
prediction, but might also offer opportunities for active and passive control of these
flows.

For turbulent separation bubbles (TSBs), a low-frequency unsteadiness at a time
scale significantly larger than the convective time scale corresponding to the bubble
is often observed (Wu et al. 2005; Hudy & Naguib 2007; Nadge & Govardhan 2014;
Mohammed-Taifour & Weiss 2016; Tenaud et al. 2016). The phenomenon has been
described as a ‘breathing’ or ‘shrinkage and enlargement’ of the separation bubble, or
a ‘flapping’ of the separated shear layer. Compared with the high-frequency unsteady
mode that represents the vortex generation in the shear layer (and whose time scale is
still much larger than the small turbulent eddies’ time scales), the low-frequency one is
less well understood. Besides its impact on engineering equipment, the low-frequency
motion is also a major source of uncertainty in measurements with relatively short
averaging times and can cause significant difficulties in the modelling of these flows.
It should be pointed out that most authors have not directly observed a distinctive
low-frequency behaviour of the separation bubble itself, but they only detected a low
frequency in velocity or in wall pressure fluctuations and attributed this frequency
to a slight flapping motion of the separated shear layer. In what follows, we will
summarize the previous work on the unsteadiness of various separating flows with
particular focus on the low-frequency mode. Some of the important questions will be
outlined, and the objectives to be pursued in this paper will be presented.

1.1. Unsteadiness of separating flows
Large-scale unsteadiness is observed in a wide range of configurations that produce
flow separation. For geometry-induced flow separation, for example, researchers have
examined flow separation at the leading edge of a blunt flat plate (Cherry et al.
1984), at the sharp corner of a backward-facing step (Eaton & Johnston 1982) or a
diffuser (Kaltenbach et al. 1999) and around a hump (Marquillie & Ehrenstein 2003)
or bluff body (Najjar & Balachandar 1998). Here, we briefly summarize the previous
investigations that have described the unsteadiness quantitatively and proposed some
possible mechanisms.

Among others, Cherry et al. (1984) and Kiya & Sasaki (1985) conducted
experiments on flow separation on a two-dimensional rectangular leading-edge
geometry and observed low-frequency motions. Cherry et al. (1984) described a
low-frequency process as a slow modulation of the vorticity shedding from the
reattachment zone, wherein the flow goes through pseudo-periodic shedding of
large-scale vortical structures followed by a large-scale but irregular shedding of
vorticity, and a relatively quiescent phase with the absence of any large-scale shedding
structures. The relaxation time scale between shedding phases is approximately six
times the primary vortex-shedding period. The cause of this low-frequency process
was not explained. Kiya & Sasaki (1985) observed a low-frequency process at
a similar time scale. Their observations, however, described the low-frequency
kinematics as the slight lifting of the shear layer in the vertical direction (less
than 4 % of the shear layer thickness) at a low frequency, which leads to a change
in the vortices that are shed from the separation bubble. The passage and decay
of the varying discrete vortices generate multiple crossings of the zero velocity in
the reattachment region and with a short-time averaging it appears as a shrinkage
and enlargement of the separation bubble. Following Eaton & Johnston (1982), they
proposed that the origin of the low-frequency unsteadiness may be the change of
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the spanwise coherence of the vortices and the variation in their ability to entrain
momentum. Some high-fidelity simulations of similar configurations also show the
presence of the low-frequency process whose cause was not elucidated (Tafti & Vanka
1991; Tenaud et al. 2016).

Another widely used configuration for the study of flow separation is the backward-
facing step. Eaton & Johnston (1982) were the first to describe the low-frequency
unsteadiness in this flow and they proposed several possible mechanisms for the
low-frequency motions. Durst & Tropea (1982) and Nadge & Govardhan (2014),
among others, support one proposed mechanism, namely of an instantaneous
imbalance between shear layer ‘entrainment from the recirculating zone’ and
‘reinjection of fluid near reattachment’. Heenan & Morrison (1998) employed a
permeable plate in their experiments and suggested that the low frequency was due
to a feeding back of the disturbances from the impingement point to the separation
point. Some others attributed the low-frequency motion to the cutting off of the
recirculation region from the separation bubble by a large structure which reaches
the wall well upstream of the mean reattachment point (McGuineess 1978; Troutt,
Scheelke & Norman 1984; Driver, Seegmiller & Marvin 1987; Hasan 1992). Other
mechanisms that have been proposed include the growth and breakdown of the
secondary recirculation region near the lower step corner (Spazzini et al. 2001; Hall,
Behnia & Morrison 2003), and the absolute unstable mode of the recirculation region
(Wee et al. 2004; Hudy & Naguib 2007). It is clear from this short and by no means
exhaustive review that not only is a commonly accepted physical explanation for
the low-frequency motion unknown presently, but evidence about whether a specific
observed behaviour is a cause or a consequence of the unsteadiness is still lacking.

There are also numerous studies on the unsteadiness in the wake of bluff bodies
that have implications for this research. Owing to the complex vortex shedding in
the wake, the unsteadiness and occurrence of the low-frequency motion is usually
explained by the imperfect synchronization and interaction between different types
of vortical structures present in the flow (see Gerich & Eckelmann 1982; Najjar &
Balachandar 1998; Wu et al. 2005; among others). In general, a geometry-induced
flow separation is configuration-dependent and the mechanisms of the unsteadiness
may vary from one configuration to another.

Flow separation can also be induced by an APG without the presence of a
surface divergence. Compared with the geometry-induced fixed-point separation, a
pressure-induced separation is not influenced by the surface curvature, thus being less
configuration-dependent. Many investigations on flow separation fall in the category
of APG-induced separation. Before reviewing previous research on pressure-induced
separation, we will briefly summarize flow separation over airfoils, which is caused
by a combination of a mild surface curvature and an APG. Because airfoils are
streamline-shaped, the change in geometry is relatively moderate and the separation
point is usually not at a fixed position, e.g. a sharp leading edge or step corner.

The study on flow separation over airfoils originates back to the observations of
Jones (1934) and mainly focuses on laminar incoming flow. One critical feature of
laminar flow separation over airfoils is an abrupt increase in the bubble length that
occurs occasionally. Owen & Klanfer (1953) classified the closed separation region
into ‘short’ and ‘long’ bubbles. The former were found where the length of the
bubble is of the order of 1 % of the chord length and O(10δ∗s ) to O(1000δ∗s ), and
‘long’ bubbles with length of the order O(10 000δ∗s ) (with δ∗s being the displacement
thickness at the point of separation). The ‘bursting’ from short to long bubbles
crucially impacts the aerodynamic performance of the airfoil because a short bubble
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only affects the pressure distribution locally while a long bubble can alter the overall
pressure distribution around an airfoil (Tani 1964). Parameters such as local Reynolds
number or pressure gradient in the region of the bubble (Gaster 1963), as well as
semi-empirical models (Horton 1968), have been proposed to characterize the bubble
bursting. While most studies have found that the bursting into a long bubble is caused
by a small change in the incidence or speed, more recent investigation indicates the
possibilities of an absolute instability that causes the bursting (Alam & Sandham
2000; Jones, Sandberg & Sandham 2008), or an acoustic feedback mechanism
(Jones, Sandberg & Sandham 2010), or a coupling of viscous–inviscid interaction
and free-stream disturbances (Marxen & Rist 2010). It is still an open question as
to whether bubble bursting is driven by a change in the stability characteristics of
the bubble or by some global instability of the flow. The low-frequency ‘flapping’
motion in the aft part of the separated shear layer is also reported in some studies
on laminar separation bubbles (LSBs) over airfoils, but the reason is unknown (Hain,
Kähler & Radespiel 2009).

To examine flow separation in the absence of surface curvature, experiments have
employed the use of aspirated boundaries or contoured ceilings (either concave
diverging–converging (Perry & Fairlie 1975; Patrick 1987; Weiss, Mohammed-Taifour
& Schwaab 2015; Mohammed-Taifour & Weiss 2016) or convex converging–diverging
(Marxen, Rist & Sagner 2003; Michelis, Yarusevych & Kotsnois 2018) configurations).
Simulations have employed a variety of suction–blowing type boundary conditions on
the top boundary of the computational domain (Na & Moin 1998a; Alam & Sandham
2000; Spalart & Strelets 2000; Kotapati et al. 2010; Marxen & Henningson 2010;
Abe 2017; Seo et al. 2018; Wu & Piomelli 2018). For LSBs, it has been reported
that the disturbance amplification agrees well with linear stability theory, often with
an instability of the convective Kelvin–Helmholtz (KH) type. This is followed by
a sudden breakdown to three-dimensional small-scale turbulence (Spalart & Strelets
2000; Rist & Maucher 2002; Marxen & Henningson 2010). Unsteadiness of the flow
is mainly characterized by the shedding of spanwise rollers. Pauley, Moin & Reynolds
(1990) were the first to attempt to simulate two-dimensional LSBs (Reθ from 162
to 325). They found that some bursting reported in early studies (see Gaster 1963;
among others) is actually periodic shedding that has been time-averaged. Spalart &
Strelets (2000) reported a slight flapping of the separated shear layer in their study of
LSBs at Reθ = 180 but claimed that the three-dimensionality sets in rapidly, thereby
not allowing time for the development of other longer-time-scale unsteady motions.

Recently, Weiss et al. (2015) and Mohammed-Taifour & Weiss (2016) investigated
the unsteady behaviour of a massively separated TSB generated by a combination of
APG and favourable pressure gradient (FPG) (Reθ = 5000). In addition to broadband
fluctuations associated with turbulence, the flow displayed a low-frequency ‘breathing’
or ‘flapping’ mode and a high-frequency ‘shedding’ mode (Weiss et al. 2015;
Mohammed-Taifour & Weiss 2016). The frequencies of the two modes are centred
at Strouhal number St = fLsep/U∞ of 0.01 and 0.35 (Lsep is the length of the mean
separation bubble), respectively. The shedding mode, as in the geometry-induced
separations, can be characterized quite well by the KH instability of the separated
shear layer. The origin of the low-frequency mode, however, is less clear. Weiss et al.
(2015) and Mohammed-Taifour & Weiss (2016) mentioned that the counter-rotating
vortices near the sidewalls of the tunnel may affect the unsteadiness. The frequency
ranges they reported are close to that in the literature. Hudy & Naguib (2007)
compared the frequencies observed in different experiments on geometry-induced
separation and showed that they are nearly constant: St ≈ 0.08–0.2 for the flapping
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motion and 0.5–1.0 for the shedding motion. It is, however, unclear as to why the
breathing mode appears to have a frequency that is approximately 10 times lower
than that in fixed-separation flows.

Simulations provide the capability to examine the spatio-temporal dynamics of these
TSBs in a way that is difficult to accomplish in experiments. The first direct numerical
simulations (DNS) of a TSB were performed by Na & Moin (1998a) with Reθ = 300
and they observed that both the separation and reattachment were highly unsteady.
However, these simulations did not exhibit any low-frequency motion and neither have
any of the subsequent ones at Reθ = 300, 600 and 900 (Abe 2017), at Reθ = 500–1500
(Coleman, Rumsey & Spalart 2018) and at Reθ = 2500 (Wu & Piomelli 2018).

In order to address this gap, we conduct DNS of two types of separation bubble
induced on a turbulent boundary layer developing on a flat plate. The first is a
separation bubble similar to these previous studies, where separation is induced by
applying a suction–blowing velocity on the top boundary of the computational domain.
The second bubble is induced by a velocity profile that has suction only.

Flow separation is also a topic that has been studied extensively in the high-speed
flow community. Two shock-induced separation configurations that have been
extensively used in research are the compression ramp and the reflection of an
incident shock wave impinging on the boundary layer. Low-frequency unsteadiness
in both settings appears as a large-scale motion of the shock. There remain
some outstanding questions and debates about the source and mechanism of the
low-frequency motion in shock-induced separations (Dussauge, Dupont & Debiève
2006; Touber & Sandham 2009; Clemens & Narayanaswamy 2014). It has been shown
that the source of the shock oscillations could be from either the upstream condition
or the unsteady recirculating zone. There are, however, fundamental differences
between the current TSB and shock-induced separation, including the presence of
wave-propagation-associated feedback within the separated flow region and forced
reattachment due to downstream shocks in the latter, and the relative shortness of
shock-induced bubbles (approximately (40–100)θo compared to (100–10 000)θo for
pressure-gradient-induced TSBs).

1.2. Motivations and objectives
The vast majority of computational studies and many experimental studies of
APG-induced separation have employed a suction-and-blowing configuration (Perry &
Fairlie 1975; Patrick 1987; Na & Moin 1998a; Weiss et al. 2015; Abe 2017; Wu &
Piomelli 2018; Wu et al. 2018). An advantage of this configuration is that the total
mass flux at the inflow and outflow planes remains the same, and this might simplify
the experiments as well as the analysis. However, this type of configuration generates
an APG followed by an FPG and the latter leads to a forced reattachment of the flow.
However, natural separating flows such as on airfoils and in diffusers do not have this
type of forced FPG-driven reattachment, and we expect that this would also impact
any low-frequency modes (breathing/flapping) that involve the opening and closing of
the bubble. Motivated by these expectations, we initially compare a suction–blowing
(or APG–FPG) induced separation bubble with a suction-only (APG only) induced
separation bubble at the same Reynolds number. Subsequently, our attention focuses
exclusively on the latter configuration, since it is more representative of separation
flows in most applications, and we conduct a detailed analysis of the unsteadiness
and spatio-temporal structure of this ‘natural’ TSB.

The suction-only pressure distribution has been used in previous experiments
(Dianat & Castro 1991; Alving & Fernholz 1996; Song, DeGraaff & Eaton 2000;
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Cases Reθ,o Reτ ,o Reδ,o [Lx × Ly × Lz]/θo Nx ×Ny ×Nz 1x+o 1y+o,min 1z+o
TSB-SB 490 200 4150 935× 100× 117 2304× 408× 384 9.6 0.58 7.2
TSB-SO 490 200 4150 1170× 100× 117 3072× 408× 384 9.0 0.58 7.2

TABLE 1. Simulation parameters: Ni is the number of grid points in the entire domain.

Dandois, Garnier & Sagaut 2007) and simulations (Pauley et al. 1990; Alam &
Sandham 2000; Spalart & Strelets 2000), many of which have focused on LSBs
(Pauley et al. 1990; Alam & Sandham 2000; Spalart & Strelets 2000). The mean
features of the separation bubble have been extensively reported, but less attention has
been given to the dynamics of suction-only separation bubbles or the low-frequency
‘breathing’ or ‘flapping’ behaviour. The present study on TSBs focuses on the
low-frequency behaviour and provides detailed comparisons between the dynamics of
suction–blowing and suction-only separation bubbles.

In the present DNS of natural TSBs, a massive, long separation bubble is induced,
and the reattachment of the mean flow is due to the turbulent diffusion of momentum.
Special attention is given to the unsteadiness of the separated flow. In particular,
we examine the different time scales of the unsteadiness near the separation and
reattachment point both in the vicinity of the wall and in the separated shear layer.
We discuss the mechanisms that determine the unsteadiness by relating them to
certain types of flow instability.

In the following, we first present details of the numerical methodology, and then
discuss the mean field features, as well as the instantaneous flow evolution. We then
describe the unsteadiness of the separation bubble and discuss possible underlying
mechanisms. Finally, we draw the main conclusions and make recommendations for
future work.

2. Methodology
2.1. Configuration

We perform DNS of a turbulent boundary layer (TBL) at Reθ = Uoθo/ν = 490,
induced to separate via an APG generated by suitable application of a velocity
boundary condition on the top of the computational domain. This Reynolds number
is comparable to recent DNS of separating TBLs (e.g. Coleman et al. (2018) at
Reθ = 500–1500 in the zero-pressure-gradient (ZPG) region, and Abe (2017) at
Reθ = 300, 600 and 900). The Reynolds number is limited by the resolution
demands imposed by the very long separation bubble that develops in this flow
and the particularly long simulation time required to characterize the low-frequency
motion. The subscript (·)o refers to scales used for non-dimensionalization, namely
the free-stream streamwise velocity and the momentum thickness at a streamwise
location upstream of the APG region. The corresponding Reτ = uτ ,oδo/ν, where δo is
the boundary layer thickness at the reference plane, is Reτ = 200. The domain size,
grid points and resolution used are listed in table 1 and the computational domain is
shown in figure 1.

2.2. Turbulent boundary layer upstream of the TSB
The recycling and rescaling method by Lund, Wu & Squires (1998) is utilized to
generate the inflow TBL. We also employ a constant spanwise shift of Lz/2 for the
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Flow

Rescaling

Recycling
plane

Reference
plane

y
xz

FIGURE 1. Computational domain. An instantaneous flow field of the TSB-SO case
is shown in the domain, visualized by the isosurfaces of the second invariant of the
velocity-gradient tensor Q = − 1

2 (∂uj/∂xi)(∂ui/∂xj) = 0.0165U2
o/θ

2
o . Note that x, y and z

are, respectively, the streamwise, spanwise and wall-normal directions.

fluctuating components at each time step to reduce the streamwise correlation of
the turbulence between the inlet and the recycling plane (Spalart, Strelets & Travin
2006). In the current configuration, the distance between the inflow and the recycling
plane is greater than 17δrcy, or 125θo, larger than the minimum 11δrcy recovery length
suggested by Morgan et al. (2011) to avoid spurious periodicity. We use a large
spanwise domain to prevent an artificial constraint to the turbulent structures in the
separated shear layer (Abe et al. 2012; Asada & Kawai 2018). A doubling of the
domain size in the spanwise direction shows negligible changes in the first- and
second-order statistics of the flow (figure 3). We have also verified from shorter
spatio-temporal maps (not shown) that the key features of the unsteadiness of the
separation bubble, including the low frequency, also remain unchanged.

2.3. Boundary conditions
A convective boundary condition is used at the outflow and periodic conditions are
employed at the spanwise boundaries. At the top boundary, a non-zero vertical velocity
is prescribed so as to generate an APG in the domain, while the streamwise velocity
satisfies zero vorticity and the spanwise velocity component has zero vertical gradient.
Two different vertical velocity profiles are used in this study. The first is a suction–
blowing (SB) type of profile, which is similar to the profile used in Abe (2017) and
others, and is given by

Vtop = Vmax

√
2
(

xc − x
σ

)
exp

[
ψ −

(
xc − x
σ

)2
]
, (2.1)

with Vmax/Uo = 0.3325, xc/θo = 106/212 + 62.5, σ/θo = 100
√

2 × 52/25 and ψ =
0.95. This profile corresponds to a suction followed by blowing and leads to an APG
followed by an FPG on the bottom wall, forming an inverted bell-shaped inviscid
pressure profile on the lower wall (see figure 2). The net mass flux over the entire
top boundary is zero. This case will be referred as ‘TSB-SB’ hereafter and used as a
reference for comparison.

The other, suction-only (SO), profile is obtained by aiming to impose a pressure
distribution over the bottom wall that has an APG profile that is similar to that over
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FIGURE 2. Profiles of the vertical velocity at the top boundary (– – –) and inviscid Cp at
the bottom boundary (——). Lines with markers, TSB-SB; lines only, TSB-SO.

a typical airfoil section near stall. In particular, we use the pressure distribution of
inviscid flow over the suction surface of a NACA 0012 airfoil at six degree angle of
attack as a guide to obtain a suction velocity profile on the top surface. We employ a
two-dimensional, inviscid solver for our rectangular computational domain and employ
an iterative approach to adjust the free parameters (V ′max, x′c and α) in the following
velocity profile (see Pauley et al. 1990; Alam & Sandham 2000; Spalart & Strelets
2000)

Vtop = V ′max exp

[
−
(

x− x′c
αLy

)2
]

(2.2)

until we reach an APG profile that is a reasonable match to the target. The so obtained
values of the profile parameters are V ′max/Uo= 0.9, x′c/θo= 171.9 and α= 0.3375. The
resulting profile and inviscid pressure coefficient Cp = 2(Pw − Pw,o)/U2

o (where (·)w
denotes quantities at the wall) are also shown in figure 2. With this suction velocity
applied at the top boundary, the nominal deceleration (Pauley et al. 1990)

S= 1
LyUo

∫
Vtop(x) dx (2.3)

is 0.54. This is much higher than the range that has been presented in previous studies
on LSBs, i.e. 0.09 to 0.3 (Pauley et al. 1990; Spalart & Strelets 2000). The value
is in line with the fact that a TBL is harder to separate than a laminar one due to
the turbulence-enhanced momentum transfer. Downstream of x= 300θo we have ZPG
and allow the separation bubble to develop naturally without any imposed pressure
gradient. This suction-only case will be referred as ‘TSB-SO’ hereafter. Note that the
start of these two velocity profiles imposed at the top boundary is far downstream of
the recycling plane to ensure that the TBL at the recycling plane is not affected by
suction.

In the current simulation, we employed a very long domain (the domain length
is 935θo, although most figures do not show the entire domain) in the streamwise
direction, and particular attention has been paid to ensure that large-scale structures
have decayed significantly near the outflow. It should be noted that, in this
incompressible flow simulation, there is no mechanism for propagation of spurious
reflections from the outflow boundary (Don & Gottlieb 1990). Usually in an
incompressible flow simulation, spurious reflected waves accumulate at the exit
and lead to numerical instability; this does not happen in the current simulations due
to the large domain chosen. Finally, the flow-through time of a fluid particle between
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0 0.010 0.010 0.010 0.010 0.010 0.010.01 0.02

0 0.50 0.50 0.50 0.5
U/Uo

0 0.50 0.50.5 1.0

100(b)

50y/
œ o

0

100(a)

50y/
œ o

0

u�
iu�

i/2Uo
2

FIGURE 3. Profiles of mean (a) streamwise velocity and (b) turbulent kinetic energy of the
TSB-SO case. Solid line, coarse grid; dashed line, fine grid; dash-dotted line, coarse grid
with spanwise domain size doubled. The examining locations are x/θo= 100, 200, . . . , 700
(showing from left to right). Each profile is shifted to the right by 1 unit in (a) and
0.02 units in (b) for clarity.

the inflow and outflow is approximately 1500θo/Uo (note that the mean streamwise
velocity is approximately 0.6Uo after the suction extracts 54 % of the incoming fluid)
and this is substantially larger than the time scale associated with the low-frequency
motion, further indicating that the low-frequency mode is not associated with the
domain size.

2.4. Numerics
The calculations are carried out using a well-established flow solver that solves
the incompressible Navier–Stokes equations on a Cartesian cell-centred, collocated
(non-staggered) grid (Mittal et al. 2008; Wu et al. 2018). The spatial derivatives are
computed using a second-order-accurate, central-difference scheme. A second-order
Adams–Bashforth scheme is employed for the convective terms and the diffusion
terms in the horizontal directions. The diffusion term in the vertical direction is
discretized using an implicit Crank–Nicolson scheme that eliminates the viscous
stability constraint. The equations are integrated in time using a two-stage fractional
step method. The Poisson equation for the pressure is solved by a pseudo-spectral
method wherein the three-dimensional Poisson equation is transformed into a set of
one-dimensional equations in the wall-normal direction using a Fourier transform in
the periodic spanwise direction and a cosine transform in the streamwise direction.
Each one-dimensional Helmholtz equation is then solved with the Thomas algorithm
for each wavenumber set (kx, kz) before transforming back into the physical space
coordinates. The method is second-order-accurate in time and space.

The grid resolutions are listed in table 1. A uniform grid is employed in the
streamwise and spanwise directions, and a stretched grid in the wall-normal direction
near the bottom wall with a maximum stretching rate of 1.6 %. The grid is also
clustered in the wall-normal direction near the upper boundary. For the near-wall
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FIGURE 4. Comparison of (a) mean velocity and (b) Reynolds normal stresses in wall
units at Reθ = 670 for validation: ——, current results; – – –, Schlatter & Örlü (2010);
and — · —, Wu et al. (2017).

1x/δ∗o 1ymax/δ
∗
o 1z/δ∗o

Present 0.24 0.25 0.19
Spalart & Coleman (1997) 0.57 0.27 0.21
Na & Moin (1998a) 0.85 0.41 0.48
Skote & Hanningson (2002) 0.65 0.30 0.21
Abe (2017) 0.32 0.26 0.13

TABLE 2. Comparison of grid resolution between present simulation (case TSB-SO) and
previous DNS of TSB.

flow, the grid size in wall units (wall units are obtained using the local friction
velocity uτ ) are comparable to the values used in other DNS studies on separating
TBLs (refer to table 2). Compared with the Kolmogorov scale η, the present resolution
gives 1x/η6 1.3, 1z/η6 1.1 and 1h/η6 2 (where 1h=√1x2 +1y2 +1z2 ). Since
the maximum dissipation of turbulence occurs at a length scale of approximately 24η
(Pope 2000), the present grid is able to resolve a substantial part of the dissipation
spectrum.

For the TSB-SO case, a grid that is 20 % finer in each direction (i.e. 1h is halved)
over the entire calculation domain shows minor differences in the mean velocity and
Reynolds stresses, showing that the calculation is grid-converged (figure 3). The code
has been validated by performing an initial simulation of a ZPG TBL at Reθ = 670
and comparing the results with previous DNS by Schlatter & Örlü (2010) and Wu
et al. (2017). The mean velocity and velocity fluctuations are shown in figure 4 and
the agreement is very good.

The data are sampled at a regular time interval of 1t = 3.89θo/Uo, once a
statistically stationary state was reached. To characterize the unsteadiness at low
frequency, the simulation is integrated over a very long duration of T = 20 000 θo/Uo

and statistics are obtained by averaging over time and in the spanwise direction. The
difference between the first- and second-order statistics obtained using only half of
the sample and the ones using the entire data series is less than 1 %. In the following
discussion, the averaged quantities will be denoted via capital letters for primary flow
variables, and by (·) for turbulent statistics. Quantities that are only averaged in the
spanwise direction are denoted by 〈·〉z, and other arbitrary averaging by 〈·〉.
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Cases xsep/θo xratt/θo Lsep/θo hsep/θo

TSB-SB 188 379 191 18.5
TSB-SO 164 614 450 16.4

TABLE 3. Characteristics of the mean separation bubble. The mean separation point xsep is
where Cf = 2τw/U2

o = 0 and dCf /dx< 0; the mean reattachment point xratt is where Cf = 0
and dCf /dx> 0; and hsep is the maximum distance between the contour line of U= 0 and
the wall.

3. Results and discussion
3.1. Suction–blowing (SB) versus suction-only (SO) separation bubble

In this section, we compare the key features of these two separation bubbles. This is
followed by a detailed analysis of the unsteadiness in the TSB-SO bubble.

3.1.1. Vortex topology
Figure 5 shows instantaneous snapshots of the vortex structures in the two

separation bubbles via the second invariant of the velocity-gradient tensor

Q =−1
2
∂uj

∂xi

∂ui

∂xj
= 1

2
(ΩijΩij − SijSij), (3.1)

where Ωij and Sij are the antisymmetric and symmetric parts of the velocity-gradient
tensor, respectively. It can be seen that many elongated low-speed regions are present
in the separated shear layer. The size of these structures in the spanwise direction is
relatively small near the separation point and they merge into larger structures as the
flow separated. Each of them is surrounded by a group of streamwise-aligned hairpin-
like structures. In the TSB-SB case these structures are broken by the blowing, and
near-wall streaks form during its recovery to TBL after reattachment. In the TSB-SO
cases the structures in the separated shear layer sustain for a long time and break
around x = 450θo at the time instant shown. A large vorticity packet is observed
downstream, including small-scale turbulent eddies nested inside the packet.

3.1.2. Characteristics of the mean flow
Figure 6 shows contours of mean streamwise velocity U/Uo in the x–y plane

together with several selected mean streamlines for both the separation bubbles. The
characteristic properties of the mean separation bubble are also compared in table 3.
The mean separation bubble in the TSB-SO configuration is significantly longer
than that in the TSB-SB case but slightly thinner. Furthermore, the reversed flow
in the TSB-SO configuration has a lower magnitude, and the streamwise velocity
gradient near the reattachment point is also lower due to the absence of the forced
impingement of the flow. The peak reversed flow amplitude, scaled with the far-field
velocity at each streamwise location, is approximately 8 % in TSB-SO and 11 % in
TSB-SB.

The time-mean profiles of skin-friction coefficient (Cf ) and pressure coefficient on
the wall (Cp) for both the bubbles are compared in figure 7. In both cases the wall
pressure agrees well with that for an inviscid solution up to the separation point. The
suction-and-blowing configuration produces a bell-shaped inviscid wall pressure profile
over the surface that consists of an APG followed by an FPG (Na & Moin 1998a;
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FIGURE 5. Vortex structures at one time instant for two separation bubbles: (a) TSB-SB
and (b) TSB-SO. Vortex structures are visualized by the isosurfaces of the second invariant
of the velocity-gradient tensor Q= 0.0165U2

o/θ
2
o (see text), coloured by the distance from

the wall. The dark-grey isosurfaces are u′ =−0.1Uo.

Abe 2017; Wu & Piomelli 2018). Pressure profiles of realistic separated flow are,
however, quite different. For an airfoil at large angle of attack, a steep APG appears
near the leading edge of the airfoil and gradually decreases towards the trailing
edge. However, there is usually no region of FPG (Rinoie & Takemura 2004; Kim
et al. 2009; Asada & Kawai 2018). In diffusers with fixed opening angle in the
streamwise direction (Kaltenbach et al. 1999), strong APG occurs at the beginning
of the deflected wall and decreases rapidly to ZPG downstream. Unless the wall
itself is not parallel to the free-stream flow (e.g. a shock-induced separated flow at
a compression corner), there is no common mechanism to have a driving mean flow
that impinges towards the surface after the flow separates.

The Cp in the TSB-SO configuration consists only of the APG as expected, and
there is no local pressure peak due to the stagnation of the mean flow such as
the one observed at x/θo ∼ 390 in the TSB-SB case. In both cases, the Clauser
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FIGURE 6. Contours of mean streamwise velocity with selected streamlines (solid):
(a) TSB-SB and (b) TSB-SO.
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FIGURE 7. Streamwise profiles of Cf and Cp. Lines with markers, TSB-SB; lines only,
TSB-SO; dash-dotted lines in right panel, inviscid wall Cp.

pressure-gradient parameter

β = δ
∗

τw

dPe

dx
, (3.2)

where (·)e denotes the quantity measured at the edge of the boundary layer, is β= 0.5
at x=60θo, β=3 at x=100θo, and then rapidly increases to β=85 before uτ becomes
smaller than 0.01Ue upstream of the separation bubble.

The probability distribution of reverse flow occurring in the x–y plane is shown in
figure 8 for both bubbles. The point of the separation region in both cases shows a
very steep gradient in probability, indicating a stationary separation point. However,
the reattachment behaviour of the two bubble is quite different. In particular, unlike
the TSB-SB bubble, for the TSB-SO bubble there is a large region beyond the
reattachment point where reverse flow can occur up to 10 % of the time. This is
because the reattachment of the mean flow in the case of the TSB-SO bubble is
due to the transport of momentum by turbulence and not forced due to the imposed
blowing at the top. In order to confirm this statement, we examine the balance of
momentum flux (Abe 2019) in the aft portion (i.e. the region between the bubble
crest and the reattachment point) of both separation bubbles (figure 9). In the TSB-SB
case, the convection term dominates the positive gain in the momentum balance near
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FIGURE 8. Probability of occurrence of reversed flow as a function of position: (a) TSB-
SB; (b) TSB-SO. Light solid lines are selected mean streamlines.
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FIGURE 9. Budget of the mean x-momentum balance. Dash-dotted line, advective term
−Uj∂U/∂xj; solid line, pressure term −∂P/∂x; dashed line, viscous term ν∂2U/∂x2

j ; solid
line with marker, Reynolds stress term −∂u′u′j/∂xj; horizontal dotted line, local y|U=0.
(a) TSB-SB at x/θo= 342. (b) TSB-SO at x/θo= 467. The examining x-location is chosen
as the middle point between the bubble crest and the mean reattachment point. The
residual in both cases is smaller than 2× 10−4 U2

o/θo.

the U = 0 ‘interface’, with a small turbulent transport term. In the TSB-SO case, on
the contrary, the turbulent transport becomes the leading term in TSB-SO at such
interface, and the mean flow only contributes near the edge of the boundary layer.
On the wall, the region between x/θo = 600 and x/θo = 706 experiences backflow
during 50 % to 30 % of the time for the TSB-SO bubble. The extent of this region
in the TSB-SB case, in comparison, is only approximately 6θo (x/θo ∈ [379, 385]).
The periodic formation of a discrete vorticity packet causes remarkable intermittency
in flow reattachment: for 30 % (10 %) of time the bubble is 20 % (40 %) longer than
the mean. As will be described later in the paper, this feature of the reattachment is
associated with a low-frequency ‘breathing’ or ‘flapping’ of the TSB-SO bubble.

Eliminating the forced impingement due to the imposed blowing also significantly
impacts the development of turbulence in the two flows as shown in figure 10. While
the two cases share a similar turbulence profile near the region of initial separation,
the TSB-SO case also exhibits another large area of high turbulence down near and
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FIGURE 10. Time- and spanwise-averaged Reynolds normal stresses: (a–c) TSB-SB;
(d–f ) TSB-SO; (a,d) u′u′/U2

o ; (b,e) v′v′/U2
o ; and (c, f ) w′w′/U2

o .

above the mean reattachment point. As will be shown later in the paper, this large
region of turbulent fluctuations is associated with unsteady motions that occur at a
large time and spatial scale. In general, the observed Reynolds stress distributions
obtained for the TSB-SO case are in much better qualitative agreement with the ones
in flow separation over an airfoil (Jones et al. 2008; Balakumar 2017) than those for
the TSB-SB case. More details about the statistics of the TSB-SB bubble may be
found in Wu, Meneveau & Mittal (2019).

3.1.3. Low-frequency unsteadiness in the separation bubbles
In this section, we examine the two separation bubbles for the presence of a

low-frequency ‘breathing’ or ‘flapping’ mode. In figure 11 we show contours of
instantaneous streamwise velocity and the velocity vectors in the x–y plane at centre
span at two different time instants. The TSB-SO bubble shows large variation of shape
in time: the bubble is long, enclosing a continuous backflow region (figure 11c) at
some times, and has several distinct backflow regions at other times (figure 11d).
The TSB-SB bubble, on the other hand, does not show any such large-scale changes
in the size of the bubble with time (figure 11a,b). This behaviour also explains the
differences in the probability distributions observed in figure 8 in the rear part of the
TSB-SO bubble.

The change in the size of the separation bubble versus time serves as a simple
parameter that measures large-scale unsteadiness of a separation bubble. The history
of the total reversed flow area in the x–y plane, i.e. Ar,xy=

∫
Ωr

dx dy, where Ωr is the
region where 〈u〉z < 0, is plotted in figure 12. A large-amplitude, low-frequency
variation of the total backflow area is clearly observed for the TSB-SO bubble,
whereas a similar behaviour is missing the TSB-SB bubble. Thus, taken together,
figures 11 and 12 clearly suggest that, while the TSB-SO bubble exhibits a large-scale
low-frequency unsteadiness of the type that has been characterized as the ‘breathing’
or ‘flapping’ mode in previous studies, the TSB-SB bubble does not show any such
distinct behaviour.

Note that the low-frequency motion we observed here does not have a very
significant separation in time scale with respect to the high-frequency ones. As we
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FIGURE 11. Instantaneous streamwise velocity and velocity vector in the x–y plane at
z=Lz/2: (a) TSB-SB, tUo/θo≈ 9260; (b) TSB-SB, tUo/θo≈ 11 170; (c) TSB-SO, tUo/θo≈
15 000; and (d) TSB-SO, tUo/θo ≈ 16 950. For colour maps, refer to figure 6.
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FIGURE 12. Time history of the total reversed flow area in the x–y plane.

will describe in detail in the next section, the frequencies of the two motions differ
only by a factor of 2–2.5. As summarized in the Introduction, researchers have
reported low-frequency motions that occur at a time scale ranging from 6 to 35
times longer than the vortex shedding mode. One reason for this discrepancy may
be that we are observing a different type of low-frequency motion in flow separation.
It also is possibly related to the relatively low Reynolds number of the current
flow since it is expected that, while the vortex shedding frequency scales with the
inverse of the boundary layer thickness (which decreases with increasing Reynolds
numbers), the low-frequency mode scales with the size of the separation bubble,
which would be less dependent on the Reynolds number. Indeed, in the experiments
of TSBs conducted by Weiss et al. (2015) and Mohammed-Taifour & Weiss (2016),
the boundary Reynolds number was Reθ = 5000 and they observed a low-frequency
peak in the spectrum that was 35 times lower than the vortex shedding peak. Note
that, in their experiments, which employed a ceiling with an expansion and mass
removal followed by a contraction, there is an FPG following the APG but the net
FPG is smaller than the net APG. Thus their configuration falls in between what we
define as SB and SO configurations.

3.2. Characteristics of unsteadiness in the TSBs
We begin by examining more closely the reversed flow in the vicinity of the wall for
the TSB-SO bubble. The spatio-temporal map of the spanwise-averaged streamwise
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FIGURE 13. Spatio-temporal map of the spanwise-averaged streamwise velocity at the first
grid point away from the bottom wall for: (a) TSB-SB bubble; (b) TSB-SO bubble. Some
region in the left panel is left blank intentionally so that the two panels have the same
axis range, because the TSB-SB case was integrated to t = 14 300 θo/Uo with a smaller
domain in x.

velocity at the first grid point away from the wall is plotted in figure 13. For this
separation bubble, besides the fluctuation of the incoming TBL at a very short time
scale, a high-frequency unsteadiness is featured as parallel stripes separated in time
by approximately TUo/θo≈O(400) in the map. Also, strong forward flow is observed
to penetrate into the reversed flow region up to x/θo= 400, and this occurs on a time
scale that is larger than that at the upstream region of the separation bubble. The low-
frequency motion does not appear in the TSB-SB case, in which the reversed flow
stripes exhibit the same temporal interval near the separation and reattachment regions.

Note that the time scale shown here has no direct link to the ones described in
figure 12: figure 13 represents the local (i.e. x) intermittency of the flow on the wall,
describing the streamwise motion of a band-like, quasi-two-dimensional separated
region. Figure 12, on the other hand, is an integral quantity over the entire x–y
domain describing the total reversed flow area. When a discrete vorticity packet
sheds off from the separating shear layer, for instance, it will show as unsteadiness
in figure 13 but not in figure 12 until the discrete vorticity packet decays and the
reversed flow diminishes.

Figure 14 plots the pre-multiplied power density spectra of the velocity shown
in figure 13. The data series is windowed and detrended and the analysis uses a
total of 11 equal-length segments in time with 50 % overlap (Na & Moin 1998b;
Abe 2017). Each segment contains 896 samples (stored every 100 time steps). The
resulting resolved frequency range is 0 6 f θo/Uo 6 0.129. On the upstream end
of the separation bubble (i.e. x/θo ≈ 200), a clear peak appears at a frequency of
approximately fhθo/Uo≈0.0025. At the other end of the separation bubble (x/θo>400)
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FIGURE 14. Pre-multiplied energy spectrum of the streamwise velocity shown in figure 13:
dash-dotted, TSB-SB; solid, TSB-SO. Each plot is shifted upwards by 7 × 10−7 units
for clarity. The thin red vertical solid line marks the high frequency fh = 0.0025Uo/θo;
the dashed black vertical line represents the low frequency fl = 0.001Uo/θo; and the
dash-dotted blue vertical line is fm = 0.002Uo/θo.

the spectrum is dominated by a low frequency corresponding to approximately
flθo/Uo ≈ 0.001. The spectrum also indicates a peak corresponding to a frequency of
fmθo/Uo ≈ 0.002 in the region (350–400)θo. We refer to this as the ‘mid-frequency’
but, as we will discuss later in the paper, this mode and the one at flθo/Uo ≈ 0.0025
seem to be driven by the same vortex rollup mechanism. Overall, the low and high
frequencies show a clear separation in both scale ( fhθo/Uo ≈ 0.0025 versus 0.001)
and location (high frequency for x/θo < 250 and low frequency for x/θo > 250), with
the x/θo from 350 to 400 appearing as a region of transition between these two
distinct regions of the flow. The low frequency coincides with the subharmonic of
the medium-frequency motion, which indicates that the former could be a result of
vortex pairing.

The unsteadiness exhibited in the spanwise-averaged field should not be interpreted
as implying that the underlying mechanism is dominated by two-dimensional motions.
Instead, it suggests that the spatial signature of the low-frequency motion is visible
in the spanwise-averaged flow and this is indeed consistent with the notion of
‘breathing’ or expansion and contraction of the bubble. While figure 13 corresponds
to the data extracted very near the wall, similar frequency peaks and scale separation
are also observed within the separated shear layer. Figure 15(a) shows contours
of the fluctuating pressure p′rms and figure 15(b–d) shows the pre-multiplied energy
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FIGURE 15. Pre-multiplied energy spectrum of the pressure fluctuation at several locations
in the separated shear layer. (a) Contour map of p′rms; the cross markers indicate the
locations where the spectra are obtained (that is, x/θo = 207.3 for (b), 310.3 for (c) and
540.0 for (d)). The square markers are the locations where the two-point correlation is
evaluated; the solid line is the selected mean streamline passing the high-p′rms regions.
(b–d) Pressure spectra. The thin red solid vertical line marks the high-frequency fh =
0.0025Uo/θo; the black dashed vertical line represents the low frequency fl = 0.001Uo/θo;
and the blue dash-dotted vertical line marks fm = 0.002Uo/θo.

spectrum of pressure fluctuations at several locations within the high-p′rms regions.
As for the velocity spectrum shown above, the pressure data series are windowed and
detrended with 50 % overlap, and the spectra are averaged over all the grid points in
the spanwise direction at each location. The peaks of the spectrum agree well with
those for the reversed flow on the wall. One difference is that the low-frequency
motion already appears at x = 200θo in the separated shear layer, while it shows up
much further downstream on the wall. This indicates that this low-frequency mode
originates from the separated shear layer and impacts the near-wall flow after its
effects spread downstream. Note that the ellipticity of the pressure does not seem to
be the cause for this because such low-frequency motion is not observed in figures 13
and 14 near the separation point.

The Strouhal number defined as StLsep = fLsep/Uo is 1.125, 0.9 and 0.45 for fh,
fm and fl, respectively, in the TSB-SO case. The high-frequency mode also appears
in the TSB-SB case but the Strouhal number differs by a factor of 2.4 due to the
different Lsep. In previous studies using the suction–blowing configuration (Na &
Moin 1998a; Abe 2017), a motion at St ≈ 0.35 has been reported as the ‘shedding
mode’. In our TSB-SB case, this value is close to 0.4, which agrees reasonably well
with the literature. The fact that the same phenomenon (i.e. KH vortex shedding)
in the two configurations gives different StLsep indicates that Lsep is not the best
parameter to characterize the unsteadiness of a separation bubble. In the current
study we associate the motion at frequency fl with the low-frequency motion even
though its Strouhal number is higher than in some previous studies, because this
motion agrees phenomenologically with the ‘breathing’ phenomenon associated with
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FIGURE 16. (a) Profile of the normalized vorticity thickness: ——, TSB-SO; — · —,
dδω/dx = Cδω(Umax − Umin)/(Umax + Umin), Cδω = 0.16. (b) Dominant frequency of mixing
layer predicted by canonical mixing layer relationship: ——, Stδω = 0.25; grey hatched
region, Stδω ∈ [0.2, 0.3]. The thin solid horizontal line marks the high frequency fh =
0.0025Uo/θo; the dash-dotted horizontal line marks fm = 0.002Uo/θo; and the dashed
horizontal line represents the low frequency fl = 0.001Uo/θo.

the low-frequency motion in earlier studies of incompressible separation bubbles
(Pauley et al. 1990; Spalart & Strelets 2000; Weiss et al. 2015; Mohammed-Taifour
& Weiss 2016).

Previous studies have shown that the separated shear layer is similar to a canonical
plane turbulent mixing layer (e.g. velocity and Reynolds stress scale well by the
mixing layer scaling) and the high-frequency motion may be generated by KH
instability (e.g. large-scale spanwise structures) (Na & Moin 1998a; Spalart & Strelets
2000; Rist & Maucher 2002; Marxen & Henningson 2010; Abe et al. 2012; Abe
2017). To examine the degree of similarity to a mixing layer, we have examined the
profile of the vorticity thickness δω defined as

δω = (Umax −Umin)/(∂U/∂y)max, (3.3)

where Umax and Umin are the maximum and minimum time- and spanwise-averaged
streamwise velocities in the two sides of the separated shear layer. We find that
(see figure 16a) δω exhibits a linear growth with x after an initial transition at the
beginning of the separation. The growth rate also agrees very well with the one
found in previous studies on plane mixing layers (Liepmann & Laufer 1947; Brown
& Roshko 1974; Pantano & Sarkar 2002; Abe 2017).

It has been widely reported in previous studies that the dominant frequency in a
turbulent mixing layer corresponds to a Strouhal number Stδω = f δω/Usl≈0.2–0.3 (with
Usl= (Umax+Umin)/2). Figure 16(b) plots the frequency predicted by this relationship
in the current simulation where we have used the local δω. It can be seen that with
Stδω = 0.25 the scaling predicts a frequency f θo/Uo ranging from approximately 0.004
to 0.002 in the 200 < x/θo < 250 region, which is very much in line with the two
observed high frequencies of fmθo/Uo = 0.002 and fhθo/Uo = 0.0025 in this region of
the bubble. In particular, the profile shows one plateau upstream of x/θo = 350 and
another downstream. This agrees very well with the locations where the spectral peaks
appear in figure 14. This provides strong support for the notion that the mechanism
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FIGURE 17. (a) Contours of two-point correlation coefficient of streamwise velocity
fluctuations with levels of correlation indicated by text. The reference locations are
selected along a mean streamline passing the high-p′rms regions and are indicated by square
markers in figure 15(a). The contours for different reference locations are superposed.
(b) The nominal radius of the roller vortex determined from the area enclosed by the
R11 = 0.2 contour line, i.e. r/θo =√A/π.

of high- and medium-frequency unsteadiness is the KH instability of the mixing layer.
Moreover, the plot shows that, despite a decrease in this predicted frequency with
downstream distance, it never reaches the observed low frequency of flθo/Uo = 0.001.
This suggests that some mechanism other than KH instability drives the low-frequency
unsteadiness in the rear part of the separation bubble.

Because the vortices generated by KH instability are spanwise rollers, we have
examined the length scale of the flow in the separated shear layer, using the two-point
autocorrelation coefficient in the x–y plane,

R11(xref , xref +1x)= 〈u
′(xref )u′(xref +1x)〉
〈u′(xref )u′(xref )〉 , (3.4)

where 1x is the spatial separation between the reference location and the other
locations in the computational domain. Several reference locations are chosen along a
mean streamline passing through the high-p′rms regions and the correlation is calculated
between each of them and all the other locations in the flow fields. The contours of
the correlation coefficients are shown in figure 17, where the R11 contour lines for
selected reference location are presented on the same plot. If we define non-negligible
correlation as R11 > 0.2, it can be seen (figure 17b) that the spanwise roller starts to
generate near x/θo = 250 and gradually grows in size. Between x/θo = 400 and 500,
the vortex length scale increases abruptly, suggesting the formation of large-scale
vortex structures, possibly associated with the merging of the spanwise rollers.

Contours of the second invariant of the velocity-gradient tensor at one selected time
(corresponding to the time instant shown in figure 5b) are shown in figure 18 and in
the turbulent shear layer, the spanwise rollers consist of small-scale eddies. A large-
scale conglomeration of vortices is formed near x/θo=450 at the time shown, and this
seems to be in line with the notion that the large scales at this downstream location
may be caused by a vortex merging process.
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FIGURE 18. Contours of instantaneous secondary invariant of the velocity-gradient tensor
in the x–y plane z= Lz/2 at tUo/θo = 16 950. Only the positive Q are shown for clarity.
The mean separating streamline is shown as the dashed line for reference.

It is, however, not clear whether this vortex merging is the mechanism underlying
the low-frequency unsteadiness or whether the latter arises due to some other distinct
mechanism. In particular, there are a number of possible candidate mechanisms for
the low-frequency unsteadiness of the separation bubble, which include the following.

(a) Imbalance of entrainment from the recirculation region by the shear layer and the
reinjection of fluid near the reattachment point (Eaton & Johnston 1982); this
makes the separating shear layer flap towards the wall and significantly slows
down its convection downstream.

(b) Shear layer switches from a convective instability to a global instability, which
leads to local amplification. In laminar flows, researchers have found that global
instability occurs when the mixing layer is formed by counter-streams and when
Ru = (Umax − Umin)/(Umax + Umin) exceeds 1.315 (Huerre & Monkewitz 1985;
Strykowski & Niccum 1991), or the peak reversed flow amplitude exceeds 20 %
of the free-stream velocity (Hammond & Redekopp 1998; Rist & Maucher 2002).
In the current flow, the maximum value of Ru is 1.25 and the peak reversed flow
magnitude is 0.08Uo. Thus, this is not likely to be the mechanism.

(c) Some mechanism unrelated to the KH vortices, which breaks down the sheet of
the spanwise vortices.

In general, it is not straightforward to separate cause from effect in a fully saturated,
highly turbulent flow with a large range of temporal and spatial scales. In the current
study, we employ dynamic mode decomposition (DMD) (Schmid 2010; Chen, Tu &
Rowley 2012) to examine the flow field and to extract features/modes of the flow that
correspond to the dominant time scales in the flows. The topology of these extracted
modes is then used as the basis to further investigate the underlying mechanism for
the low-frequency ‘breathing’ mode.

3.3. DMD-based analysis of the three-dimensional flow field
The basic idea of DMD analysis is to extract a low-dimensional description of a
linear transformation that maps any snapshot of data from a dynamical system into
the subsequent snapshot. The eigenvalue decomposition of this linear transformation
then provides frequency information as well as the corresponding spatial structures.
Furthermore, a projection of the snapshots onto these structures gives the amplitude
(contribution) information (Schmid 2010; Sayadi et al. 2014). Eventually, the
snapshots can be approximated using the DMD modes as

Φr(x, t)=
r∑

k=1

bkψk(x) exp(ωkt), k= 1, 2, . . . , r, (3.5)
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FIGURE 19. (a) Eigenvalues of the DMD modes. (b) Spectrum of the DMD modes; the
range of the x-axis is limited to the frequency range of concern. Modes whose |λ|< 0.995
are shown by blue markers in (a) and are not included in (b). The three thin vertical lines
refer to figure 15. The red triangular markers show the selected DMD modes closest to
the three target frequencies.

in which Φr, ψk and bk are the field reconstructed by the r DMD modes, the kth
spatial DMD mode (shape of the mode) and the magnitude of the kth DMD mode,
respectively. The term exp(ωt) = λt/1t, where λ is the eigenvalue of the modes,
describes the growth/decay and oscillation of the mode.

In this study, our objective of using DMD is to extract the modes corresponding
to the key frequencies identified in the earlier part of the paper and to examine
the topology of the modal reconstructions based on these modes as a means for
identifying potential generation mechanisms. Discrete Fourier transform (DFT)
based techniques such as notch filtering could be used for the purpose of modal
reconstruction, but these DFT techniques require the data series to cover an integer
number of the corresponding periods, and suffer from spectral leakage (Sayadi et al.
2014). Proper orthogonal decomposition (POD) analysis is another decomposition
approach that could be used, but POD modes may contain multiple frequencies and
therefore are not suitable for our analysis.

The total sample for the DMD analysis extends over a period of 11 230 θo/Uo,
which corresponds roughly to 11.2 periods of the observed low frequency. Snapshots
are extracted at every 400 time steps; this corresponds to a sampling frequency of
0.0642Uo/θo and results in the extraction of a total of 721 snapshots. Each sample
consists of the three velocity components u, v and w. In order to capture the key
regions of the separated and reattaching flow, the spatial region over which the data
are extracted covers 0 6 x/θo 6 700 and 0 6 y/θo 6 100.

In order to reduce the overall size of the dataset used in the DMD analysis to
manageable levels, we employ a spatial subsampling where we first filter the velocity
components by a box filter with width of 3θo, and then extract every eighth grid point
in the x and z directions and every other point in y. This procedure leads to a total
of 2.35 million samples per snapshot per observable, which is approximately 0.8 % of
the total mesh nodes in the sample region. Finally, to avoid overfitting the complex
dynamics of the fully turbulent field, instead of using the velocity data directly, we
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FIGURE 20. Isosurfaces of the real part of the high-frequency DMD mode fhθo/Uo =
2.49 × 10−3, StLsep = 1.125: (a) udmd/Uo = ±0.02; (b,c) vdmd/Uo = ±0.01, top and side
views, respectively. The solid line in (b) is for U = 0.

employ a 361-mode POD projection (one real mean mode and 180 complex-conjugate
complex pairs), which serves as a spatio-temporal filter. This projection retains 98 %
of the total kinetic energy, and 94 % of the turbulent kinetic energy of the flow.

The eigenvalues and (discrete) spectrum of the DMD modes are shown in figure 19.
Since the flow is in a statistically saturated state, the eigenvalues lie mostly on or
slightly inside the unit circle on the complex plane. Furthermore, due to the broadband
nature of the flow, the spectrum exhibits a relatively continuous distribution of modes
without any distinct and isolated peaks. This indicates that a significant number
of modes are required to accurately reconstruct the dynamics of this flow. In the
following, we focus on three modes whose frequencies are closest to those identified
as the high ( f θo/Uo = 0.0025), medium ( f θo/Uo = 0.002) and low ( f θo/Uo = 0.001)
frequencies in the previous sections, i.e. fhθo/Uo= 2.49× 10−3, fmθo/Uo= 1.97× 10−3

and flθo/Uo = 1.03× 10−4.
Figures 20 and 21 show DMD modes corresponding to the high- and mid-frequency

spectral peaks. The key characteristic of these two modes that is visible from these
plots is the highly regular arrangement of alternating structures separated in the
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FIGURE 21. Isosurfaces of the real part of the mid-frequency DMD mode
fmθo/Uo = 1.97× 10−3, StLsep = 0.90. Colour/line style refers to figure 20.

streamwise direction. These structures also exhibit a considerable degree of coherence
in the spanwise direction (figures 20c and 21c). The high-frequency mode appears
similar to the λ-vortex structure formed by the oblique modes in a transitional
boundary layer (Schmid & Henningson 2012). Both these features correspond well
to the notion that these two modes are associated with the KH instability, and the
modal structure corresponds primarily with spanwise vortex rollers.

The topology of the low-frequency mode (shown in figure 22) is quite different
from that of the high-frequency modes discussed above and appears to be dominated
by highly elongated streamwise structures. For example, the structure located near
z= 0 starts from x/θo = 40 and extends to x/θo = 410; another one generated around
[x, z]/θo = [100, 86] extends to x/θo = 270 (figure 22a). Note that the simulation
is periodic in the spanwise direction so that the structure at z = Lz connects with
the one at z = 0. Further downstream in the region where the free-stream APG
vanishes, the streamwise structures connect and form larger structures. However, their
two-dimensionality along the streamwise direction seems to be preserved. When
compared with the high-frequency modes, the low-frequency mode has a much larger
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FIGURE 22. Isosurfaces of the real part of the low-frequency DMD mode
flθo/Uo = 1.03× 10−3, StLsep = 0.45. Colour/line style refers to figure 20.

wavelength in the streamwise direction (figure 22a). The size of the structures grows
abruptly near x/θo = 400 (figure 22b,c).

The side view of this mode shows that there is also a significant spanwise-oriented
signature in this mode. Furthermore, even structures that show a streamwise-oriented
topology can ‘shed’ in a spanwise homogeneous manner, resulting in a noticeable
spanwise-averaged signal, and that is likely what is happening in this flow: figure 23
shows the streamwise velocity component for the low-frequency DMD mode at four
equally spaced phases in one cycle. The shedding of structures can be observed in the
x–y slice contour, while the streamwise coherence persists in the x–z slices.

3.4. Görtler instability as a mechanism for the low-frequency mode
The topology of the low-frequency mode suggests that it could be related to Görtler
vortices, which appear as streamwise-elongated structures in the boundary layers
over concave walls. These Görtler vortices are generated by a centrifugal instability
that destabilizes the flow when the direction of the wall-normal velocity gradient
is opposite to the centrifugal force associated with the curvature of the streamlines
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FIGURE 23. Contour of the streamwise velocity of the low-frequency DMD mode (refer
to figure 22) at four equally spaced phases in one cycle (i.e. period of T).

(Görtler 1954), and previous studies on separated flows have suggested the presence
of Görtler-type vortices (Settles, Fitzpatrick & Bogdonoff 1979; Loginov, Adams &
Zheltovodov 2006; Priebe et al. 2016). Numerous previous studies on Görtler vortices
have proposed a variety of threshold criteria for Görtler instability as well as the
characteristic wavelength of the generated structures. In general, it is widely accepted
that Görtler instability appears when the Görtler number, defined as

GT = Ueθ

ν

√
θ

R
, (3.6)

where Ue, θ and R are the free-stream velocity at the edge of the boundary layer, the
local momentum thickness and the radius of curvature of the mean flow, respectively,
exceeds 0.3 (Görtler 1954; Smith 1955). The most amplified wavelength in the
spanwise direction is found to be λT , corresponding to UeλT/ν

√
λT/R ≈ 220–270

(Smith 1955; Floryan & Saric 1982; Luchini & Bottaro 1998) or λT ≈ δ − 2δ (Smits
& Dussauge 2006). However, the above scaling laws are for laminar flows and their
applicability to turbulent flows is unclear. Tani (1962) proposed that the criterion
for the onset of the Görtler instability is valid for turbulent flows provided the
molecular viscosity is replaced by the eddy viscosity. It has also been suggested that
δ/R > 0.01 is the applicable criterion instigating Görtler instability for the case of
TBLs (Hoffmann, Muck & Bradshaw 1985; Floryan 1991).

To examine these proposed criteria for the present flow, we calculate the effective
turbulent eddy viscosity as (Spalart & Strelets 2000)

νt,eff =− u′iu′jSij

2SijSij
, (3.7)

and use νtot = ν + νt,eff to estimate the Görtler number. The analysis is applied in
the region of mean streamline concavity shown in figure 24. It can be seen that,
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√
λT/R = 250. The red solid line with crosses is δ/θo

for reference. Black markers are the length scale in the separated shear layer measured
by the streamwise fluctuating velocity (figure 26).

when the boundary layer separates from the wall, the Görtler number ranges from
approximately 5 to 21 in the near-wall region and δ/R ranges from 0.08 to 0.5.
These values are well above the threshold proposed in previous studies, indicating
the viability of the occurrence of Görtler instability. The most amplified spanwise
wavelength (see figure 24d) is predicted to range from approximately 25θo to 50θo at
x= 180θo, which is in the range of (1–2)δ. The low-frequency DMD mode exhibits
approximately four pairs of counter-rotating streamwise vortices in the spanwise
direction near x = 200θo (figure 22a). This corresponds to a wavelength of 0.9δ,
consistent with the predicted range of the most amplified wavelength of possible
Görtler instability modes.

It is noted that, downstream of x= 200θo, the mean streamlines become convex in
shape but the sign of the velocity gradient remains unchanged except for the very near-
wall region inside the separation bubble. Thus, while the conditions required for the
Görtler instability no longer exist in this region, Görtler vortices that were generated
upstream of the region continue to develop and grow on this region. As observed from
the structures of the low-frequency DMD modes, the scale of the elongated streamwise
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FIGURE 25. Top view of the instantaneous vortical structures shown by the isosurfaces of
the secondary invariant of the velocity-gradient tensor Q, coloured by the distance from
the wall. The dark-grey isosurfaces are u′ = −0.1Uo. For an isometric view and colour
map, refer to figure 5(b).

structures grows in the streamwise direction and the structures break down around
x= 400θo.

3.5. Breakdown of Görtler vortices and turbulence structures
In this section we examine the elongated streamwise structures in the TSB and
their possible relationship to structures in the incoming TBL upstream of the
separation bubble. The prominence of large-scale streamwise structures in ZPG
TBLs at high Reynolds numbers is well known (Adrian, Meinhart & Tomkins 2000;
Ganapathisubramani, Longmire & Marusic 2003; Hutchins & Marusic 2007), and
these structures are amplified in the presence of an APG (Skote, Hanningson &
Henkes 1998; Lee & Sung 2009; Harun et al. 2013). In studies on flow separation
that employ suction and blowing (Abe et al. 2012; Abe 2017), large-scale structures
identified by the streamwise velocity fluctuations were also observed but were
attributed to the lifted and energized outer layer structures after flow separation. Our
results of the DMD analysis, on the other hand, indicate that the streamwise-elongated
structures are mostly amplified when the flow separates and streamline curvature
becomes significant. This, however, does not necessarily imply that there is no link
between the low-speed regions (‘streaks’) in the incoming boundary layer and the
large-scale streamwise-oriented structures we have identified as Görtler vortices. The
low-speed regions could serve as the perturbations for the initial development of
the Görtler vortices. Similar to Priebe et al. (2016), we identified a time-delayed
correlation between the appearance of a low-speed region in the incoming boundary
layer and the occurrence of the Görtler vortices (not shown). This could be the reason
why the occurrence of the elongated structures in the spanwise direction is highly
unsteady, instead of being at fixed locations when the Görtler instability is triggered
by prescribed upstream disturbances (see Floryan & Saric 1982; among others).

Figure 25 shows the top view of the turbulent structures exhibited in figure 5. The
streamwise alignment of the structures (x < 450θo) is quite evident and the scale of
the low-speed region increases as the flow travels downstream (e.g. the dark grey
isosurface of u′ =−0.1Uo at x/θo = 300 is much thicker than the ones at x/θo = 100
and 200, which appear to be thin rod-like regions). The growth of Görtler vortices in
a laminar flow over a concave wall has been examined in previous studies (Bippes &
Görtler 1972; Swearingen & Blackwelder 1983; Smith & Walker 1989; Li & Malik
1995) and one observation is that the continuous ejection of fluid from the low-speed
region by the counter-rotating vortices creates a marked retardation of flow in the
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FIGURE 26. Pre-multiplied spanwise energy spectrum of the streamwise fluctuating
velocity, examined at several streamwise locations. Each map is normalized by its
maximum, and contours are shown at level 0.8, 0.6, 0.4 and 0.2, from dark to light,
respectively.

upwash region and an APG in the streamwise direction, which has the dual effect of
both forcing the vortices away from the wall and also increasing the spanwise distance
between the vortices (Bippes & Görtler 1972; Smith & Walker 1989). The behaviour
of the streamwise structures shown in our simulation is in line with this observation.

The scale of the streamwise structures in the spanwise direction is examined using
the pre-multiplied energy spectrum of u′, and figure 26 shows the spectrum at several
streamwise locations. The growth of the spanwise length scale is clearly seen. The
spanwise length scale of these structures is approximately 20θo to 30θo in the upstream
side of the separation bubble, which agrees reasonably well with the most unstable
wavelength predicted by the Görtler instability (refer to figure 24d). From x= 300θo

the wavelength changes to 60θ , consistent with the observation of the low-frequency
DMD mode, which shows that the structures merge after the crest of the separation
bubble.

In previous studies, it has been proposed that Görtler vortices may break down
due to four processes: (a) Tollmien–Schlichting waves. (b) Nonlinear development
of Görtler vortices and energy cascades down from the fundamental into the higher
harmonics and the mean flow. (c) Secondary instabilities that generate a retarded
region in the upstream flow region between Görtler vortices and the formation of
transverse vortices (Bippes & Görtler 1972; Hall 1982; Smith & Walker 1989). Linear
stability theory has revealed two types of secondary instabilities that help break down
the Görtler vortices in laminar flows: a sinuous (odd) mode that perturbs the Görtler
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vortices in a wavy manner, and a varicose (even) mode that breaks up Görtler vortices
into a series of ‘knotty’ structures (see Swearingen & Blackwelder 1983; Li & Malik
1995; among others). None of these processes is clearly evident in the single DMD
mode reconstruction, and the structures in the flow velocity seem to exhibit both
streamwise waviness and breakup. Which mode (if any) dominates the breakup
of vortices in this flow is unclear from the current simulations. (d) The vortex
merging/pairing process. As discussed regarding the frequency change (figure 14)
and the vortex development (figures 17 and 18), it is possible that the breakup of
the Görtler vortices is associated with the merging/pairing of the spanwise roller
vortices. The DMD mode at the low frequency does exhibit a spanwise staggered
signature (figure 22b), which provides further support for this possibility. However,
this correlation does not necessarily imply causation.

4. Conclusions
Direct numerical simulations of a turbulent boundary layer over a flat plate with

induced separation are performed with the aim of investigating the spatio-temporal
dynamics of turbulent separation bubbles (TSBs). The separation is induced
by employing a transpiration boundary condition on the top boundary of the
computational domain. Two different transpiration velocity profiles are employed:
one with suction followed by blowing and the other with suction only. Compared
with the TSB created by the suction–blowing profile, the suction-only case exhibits a
pressure gradient and Reynolds stress distribution that are in much better qualitative
agreement with separated flows over airfoils and in diffusers.

Focusing on the suction-only case, we show that the high- and mid-frequency
motion is well characterized by flow physics that corresponds to that observed in
a plane turbulent mixing layer. In particular, these modes are associated with the
formation and shedding of spanwise-oriented rollers, as also confirmed by DMD
analysis. The characteristic frequency of these modes does not scale with U/Lsep
because in both the TSB-SB and TSB-SO cases this mode occurs at a similar
frequency, while the length of the mean separation bubble differs by a factor of
approximately 2.4.

The suction-only case exhibits a low-frequency unsteadiness (i.e. breathing/flapping)
in the separation bubble at a frequency that is two-and-a-half times smaller than
the dominant high frequency. A similar low-frequency motion is not observed in
the suction–blowing case. The low-frequency motion observed here appears as
a spatio-temporal variation of the separation region: the separation bubble opens
at regular intervals corresponding to this low frequency and releases a large-scale
conglomeration of vortices that convects downstream and is associated with low-speed
and even reversed flow. DMD analysis of the flow, however, shows that the topological
signature of this mode does not simply correspond to the merging of spanwise rollers.
The single DMD mode at the low frequency exhibits a topology that is dominated
by highly elongated streamwise structures that extend from nearly the point of
separation to downstream of the mean reattachment point. Analysis of the data shows
that the streamline curvature does exceed the threshold for Görtler instability and
the properties of the elongated streamwise structures, such as spanwise wavelength,
agree with the values reported in the literature. Their periodic breakdown, possibly a
secondary instability, could cause the observed low-frequency mode or modulate the
vortex merger. The absence of the low-frequency motion in the TSB-SB case may
be due to the forced closure (reattachment) of the separation bubble, which does not
allow natural instabilities, especially those with large time and length scales, to grow.
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The simulations, however, do not indicate the mechanism for the breakdown of
the elongated streamwise structures and the subsequent formation of the large-scale
eddies that are released from the separation bubble. The scale separation between
the low and high frequencies in the current study is limited due to the relatively
low Reynolds numbers. The KH instability is inviscid in nature and the characteristic
vortex shedding frequency scales with the outer scales. Therefore, the high- and
medium-frequency motions are not expected to change much with the Reynolds
number. In the simulation by Abe (2017), the peaks in the spectra of wall pressure
do not change much between Reθ = 300 and 900 (refer to figure 21 in Abe (2017)),
given the minor change in Lsep. Ongoing studies are focused on higher Reynolds
numbers where a larger scale separation will enable a clearer distinction between
the dominant spatio-temporal scales in the flow. Lastly, the effects of streamline
curvature cannot be dismissed in the separation bubble but the curvature can be
altered by changing the magnitude of the APG. A very mild APG may cause small
streamline curvature and prevent the amplification of the Görtler vortices. Some of
these issues are presently under study.
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Appendix. Dynamic mode decomposition

The DMD analysis and field reconstruction are performed by the following
procedure:

(a) Collect snapshots of data (φ = [φ1, φ2, . . . , φN], where each column of matrix
φ consists of a vector of observables (reshaped to one dimension if sampled in
two or three dimensions) at ti and N is the total number of snapshots) from
the simulation at several time instants that are equally spaced in time. Vector φ
might correspond, for instance, to the velocity components or pressure for a set
of grid points in a region of the flow. Each column vector φ can include several
observables. If the observables are sampled at M spatial locations and a total of
P observables are used, the size of the matrix φ is [M× P, N].

(b) Arrange the data φ into matrices:

X ≡ [φ1, φ2, . . . , φN−1], Y ≡ [φ2, φ3, . . . , φN]. (A 1)

(c) Dimensionality reduction: compute the (reduced) singular value decomposition of
X, i.e.

X ′ = UΣV T, (A 2)

where U is of size [M×P, r], Σ is r× r and V is [N, r], where r is the reduced
rank of X ′, or the total number of the conjugated modes.

(d) Define the matrix (size [r, r])
Ã≡ UTYVΣ−1. (A 3)
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(e) Compute eigenvalues (λ) and eigenvectors (w) of Ã, writing

Ãw= λw. (A 4)

( f ) The DMD mode corresponding to the DMD eigenvalue λ is then given by

ψ ≡ YVΣ−1w. (A 5)

In this study, the modes are normalized by their initial amplitudes in φ1.
(g) Calculate the (initial) amplitude of each mode, i.e. the contribution of each mode

to the first snapshot:
b=ψ−1φ1. (A 6)

(h) Obtain the frequency of each mode,

f = Im(ln λ)/(2π1t) (A 7)

or f = tan−1[Im(ψ)/Re(ψ)]/(2π1t).
(i) Define ω= ln(λ)/1t, and reconstruct the data series by

φdmd(t)≡ψ exp(ωt)b, (A 8)

where on the right-hand side ψ gives the shape of the mode, b determines the
magnitude and the exponential term represents decay/growth.
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