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FOURIER TRANSFORMS OF UNBOUNDED MEASURES 

JAMES STEWART 

1. I n t r o d u c t i o n . One of the basic objects of s tudy in harmonic analysis is 
the Fourier transform (or Fourier-Stieltjes transform) /x of a bounded (com­
plex) measure /* on the real line R: 

/ : (1.1) £00 = e~uxdfi(x). 

More generally, if /x is a bounded measure on a locally compact abelian group 
G, then its Fourier transform is the function 

/ . 
(1.2) (i(x) = I [x,x]dfx(x) (x e G) 

j G 

where G is the dual group of G and [x, x] = x(x). One answer to the question 
' 'Which functions can be represented as Fourier transforms of bounded 
measures?" was given by the following criterion due to Schoenberg [11] for 
the real line and Eberlein [5] in general: / is a Fourier transform of a bounded 
measure if and only if there is a constant M such tha t 

I f I 
(1.3) I f<t> \ S M sup | 0 (x) | 

for all </> G Ll(G), where </>(x) = JG[X, x]cj>(x)dx. 
The integrals (1.1) and (1.2) do not exist if /x is unbounded, and so the 

question arises as to the existence of a meaningful notion of Fourier transform 
in the case of unbounded measures. One could, of course, interpret (1.1) or 
(1.2) as holding in a summabil i ty sense, and this has sometimes been done. 
(See [4], [12], and [7,8].) But Argabright and Gil de Lamadrid [1] have 
recently proposed a very general definition of a Fourier transform. T h e y 
defined a measure /x to be transformable if there exists a measure jl on G such 
tha t , for every 0 Ç CC(G) (the continuous functions with compact suppor t ) , 
$ e L2(jl) and 

(1.4) I 4>*$(x)dn(x) = I ^ | 0 ( -x ) | 2 ^ /x (x) , 
*J a v a G *> G 

where <j>(x) = <t>( — x) and * denotes convolution. If /x is transformable, then 
the measure A occurring on the right side of (1.4) is called the Fourier transform 
of /x. 
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This definition of Fourier transform is easily seen to be a generalization of 
both the Fourier-Stieltjes transform (1.2) and the classical Fourier transform 
of Lv functions, 1 ^ p ^ 2. It also encompasses the representation of un­
bounded positive definite functions as Fourier transforms of positive un­
bounded measures [4], [12]. 

Argabright and Gil de Lamadrid showed that any Fourier transform JU must 
be translation-bounded in the sense that 

(1.5) sup^êl/zK* + C) < oo 

for every compact set C in G. They also established extended versions of the 

Poisson Summation Formula and the Inversion Theorem for Fourier trans­

forms. 

The present paper has two main purposes. The first is to describe a class of 

measures which are transformable in the sense of (1.4). If X]«[|M| (Ka)]
r < o° , 

where 1 ^ r ^ 2 and the Ka's are certain subsets of the group G related to its 

structure as described in §3, then \x will be shown to be transformable. The 

second purpose is to generalize the Schoenberg-Eberlein criterion (1.3) to 

unbounded measures. If 2 ^ a ^ oo and there is a constant M such that 

(1.6) 
' / . 

/« \ SM Ẑ  SUP m\ 
l /<7 

for every <j> Ç CC(G), then it will be shown t h a t / is a Fourier transform. 
Some of the main theorems of this paper are generalizations of results of 

Finbarr Holland [7, 8] to the context of groups. Therefore we devote §2 to a 
short exposition of his work on amalgams of Lv and lQ. In § 3 we show how to 
extend some of his definitions and results to groups. Then in § 4 we apply 
these to prove the results stated in the above paragraph. 

2. Amalgams of Lp and lQ on the real line. If / is a measurable function on 
R and 1 ^ p, q ^ oo , define 

? J. 
11/11 

\f(x)\'dx 

" 1/8 

l /« 

E sup |/(x)|s 

—co n^x^n+1 

and let 

{V, /«) = { / ; | | / UP., < co ), (Co, /«) = Co C\ (Lro, /«). 

These spaces were introduced and studied systematically by Holland [7], 
although certain special cases had been used earlier by Wiener [13] (p = 2, 
g = oo ), [14], (p = oo, q = 1 and p = 1, q = co) and Cooper [4] (p = 2, 
q = 1), and certain related spaces had been used by Pitt [9] and Benedek and 
Panzone [2]. 
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We list here some of Holland's results. 

THEOREM A. (Lp, lQ) is a Banach space and for 1 ^ p, q < oo its dual space 
is isometrically isomorphic to (Lp>, lQf), where p~l + (p')~l = 1. 

THEOREM B. If T is a continuous linear functional on (Co, lq), where 
1 fg g ^ oo , then there exists a measure /* G Mq> such that 

T(<j>) = J 4dn (</>£ (Co,/*)) 

wfeere i7 r = {complex measures /x; X -̂COHMI ([W, W + l ] )] r < °o }. 

THEOREM C. Let 1 ^ p, q ^ 2. 7/ / 6 (7P, /*), then j1INe~itxf(x)dx converges 
to an element f £ (Lq', lp') as N ^> co . There is a constant MPtQ such that 

11/Ik,' ^ MpJ/H™ (/G (LM«)). 

THEOREM D. If 1 ^ g ^ 2 and /x 6 il7ff, then 

fi(t) = I °° e-itxdfi(x) 
J - o o 

exists in the sense of Cesàro summability. 

3. Amalgams on groups. Let G be a locally compact abelian group. The 
structure theorem for such groups [6, Theorem 24.30] allows us to write 
G = Ra X Gi, where a is a nonnegative integer and Gi is a group which con­
tains a compact open subgroup 77. (If G\ is compact, we take H = G\. If G\ is 
discrete and infinite, we take H = {0}. Otherwise H is arbitrary but fixed. 
If the relationship between 77 and G needs to be made explicit, then we write 
H = H (G).) We normalize the Haar measure m on Gi so that m(H) = 1. 

The dual group of G can then be written as G = Ra X Gi. If A is the 
annihilator of H, A = ( K G\\ [s, s] = 1 for all s £ H}, then A is a compact 
open subgroup of G\. (Since H is open, G\/H is discrete, and so A, being its 
dual group, is compact. Since H is compact, its dual Gi/A is discrete, and 
thus A is open.) We can therefore make the choice A = /7(G). This is consis­
tent with the conventions in the above paragraph and with the inversion 
theorems for Fourier transforms. 

Define K = [0, l ] a X H and L = [0, l ) a X H. We can then write G as a 
disjoint union 

G = {Ja^jLa 

where La = ga + L and each ga is of the form (niy . . . , wu, i) with nL £ Z, 
t G Gi, (the collection of fs being a transversal of H in Gi). It will sometimes 
be convenient to use the (nondisjoint) decomposition G = \JaeJKai where 
Ka = ga + K. 
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Definition. If / £ LP(C) for any compact subset C of G and 1 ^ p, g ^ co, 
define 

«/pi Vff 

Z sup |/(x) I 
1/ff 

and let 

(Z/, / ' ) = { / ; || / \\PtQ < ex) J, (Co, /*) = Co H (Lœ , /«) 

where C0 denotes the continuous functions on G which vanish at infinity. 

This definition clearly reduces to Holland's when G = R. Other reasons for 
choosing to define (Lp, lq) via the particular decomposition G = \JaKa will 
be seen in the proofs of Theorems 3.1, 3.3, and 4.3. 

We begin our study of the amalgams {LP, lq) by listing some relations 
between them. 

(3.1) (L ' .Z 'OC (L*, I'*) if 2 ! ^ 

(3.2) (L*; l<) C O A Z«) if p, £ p2 

(3.3) (LP, lp) = Lp 

(3.4) (Lp, lq) CLp C\L* if g ^ p. 

The last relation follows from the first two relations which are consequences 
of the following inequalities. 

(3.5) \\f\\P,Q2 g \\f\\PtQ1 iîqi ^q2 

(3.6) \\f\\P1,q^ \\f\\Pi.g a Pi SP2. 

The inequality (3.5) follows from Jensen's inequality while (3.6) is easily 
proved using Holder's inequality, remembering that the Haar measure of Ka 

is 1. 

THEOREM 3.1. Let C be a compact subset of G, and let 1 ^ p, g ^ oo. Then 
there is a function g £ CC(G) such that g = 1 on C and g £ (Lp, lq). 

Proof. Write C C C\ X C2 where C\ is compact in Ra and C2 is compact in 
Gi. Then C2 is covered by a finite number of cosets of H: 

C 2 C U*i„1st + H= F,say. 

Let g2 = XF, the characteristic function of F. Then g2 £ C c ( d ) . Since 
gafa) = X*- i X# (5 - st), we have 

i=i 
Ê*($) = H bu S]XH(S) = XA(S) ]T [st, s]. 

k 
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Since the support of £2 is A, we have £2 £ (Lv, lq)(G\). Let gi be a function 
which is equal to 1 on Ch has compact support, and is an a-fold product of 
functions which are m times differentiable functions of a real variable (where 
m is to be chosen). Then $1 is an a-fold product of continuous functions which 
are 0(x~m) as x —> ± co. Such functions are in (Lp, lq)(R) for sufficiently 
large m. (Specifically, m > (p + q)p~2 if p, g < 00 or m > g - 1 if p = 00.) 
Therefore | i 6 ( I / , /*)(Pa). If g is defined on G by g (s, t) = gi(s)g2(t), then g 
and I possess the desired properties. 

THEOREM 3.2. (Lp, lq) is a Banach space and for 1 ^ £>, q < 00 i/s dwaZ s/>ace 
is isometrically isomorphic to (Lpf, lqf). 

The proof of this theorem is virtually identical with the proof of Theorem A 
given in [7]. 

THEOREM 3.3. Translation is a bounded operator on (L°°, I1). Specifically, if 
ft(x) = fix - t) andf £ (L00, ll), then 

i i / i ik i^z i / iu . ! . 

II/«IU,1 = H«ZJsuPxÇKa\f(x ~ t)\ = Y,"suPxtt+Ka\f(x)\ 

where i£a = ga + K and X = [0, l ] a X H. 
li t = ga for some a, then clearly | | // | |œfi = || / lU.i- Otherwise t + Ka 

intersects the interiors of at most 2a Kp's and so we can write 

ll/*IL,i = H<*ejsupx£t+Ka\f(x)\ ^ 2a ^2^jSupx€Ka\f(x)\ 
— 9a\\ f II 
— Z \\J l l o o . l -

THEOREM 3.4. Suppose f £ LT(G) and supp ( / ) C C, where C is compact 
and 1 ^ r S 2. PAew 

||/lL.r' ^ M||/|| r, 

where M is a constant depending only on C and r. 

Proof. By Theorem 3.1 there exists a real function g G CC(G) with g = 1 on 
C a n d g G (Lœ, Z1). Then 

/ (*) = I /(#)[#, #]dx = I /(x)g(:x;)[x, x]dx = I f(t)g(t — x)dt 
J c J G J & 

by the Parseval formula. So Holder's inequality yields 

|/(*)f ^ / ô |/0) r ||(2 - x)\dt • [fô \g(t - *)|d*J 

= / 1/0) I '' \i (x - i) \dt [ f || (2) |dl] ' " 

r' /r 

= fjfW\gmdt-\\g\w'/ 
•J a 
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Thus 

ll/ll».r'= ZSUP | / (X) | 
a x£Ka 

^ 2Z SUP L 
a TEAT «^ G 

\fW\ttmdt-\\g\wr 

a x£Ka 

c , , , 
I \ £ f'i\\T IM II 7Î I M M T - ' /?" ^" o O I I ̂  I I I I XI I T I I <* I I ' / ? * 

= I J / ( 0 | \\gl\L,ldt- \\g\\l ' ^ 2 | |g |Ll | | / | | r ' | |g | | l 
by Theorem 3.3. Therefore the inequality holds with 

M = 2a/r 'iiini /.ï||éiii1/r. 
THEOREM 3.5. / / / Ç (Lp, ll) where 1 ̂  p S 2, *fow / Ç (L00, /*'). rfere w 

a constant Av such that 

11/L.p' ^ ^ l l / k i ( / e (tf,/1)). 

Pr00/. Write/ = 2^<//«> where supp (/«) C Ka. This series converges in 
Ll and s o / = £ / a is uniformly convergent. Applying Theorem 3.4 to/a with 
C = Ka) we obtain 

|| / a | | oo ,p ' = Ap\\ Ja\\p'-

(Note t ha t Av is independent of a because each Ka is a t ranslate of K = 
[0, l ] a X iif. The corresponding functions g = ga in the proof of Theorem 3.4 
can be chosen to be translates of each other, and so \ga\ is independent of a.) 

T h e Hausdorff-Young inequali ty [6, (31.21)] then gives 

HAIL.,' ^ „ H / a | | , . 

Thus 

Z«II/«IU.,' ^ ^ I l / L . i . 

Since (Lœ, lp') is a Banach space, this shows t h a t 

/ € ( L " , / " ) and \\f\\^p, ^Ap\\f\\p,,. 

4. U n b o u n d e d m e a s u r e s . T h e word "measu re" will mean a set function 
Id which is locally a complex measure, i.e., for each compact subset C of G, 
y.c(E) = n(E C\ C) is a complex measure (in the usual sense of the word 
[10, Ch. 6]) on the Borel subsets of G. This is consistent with the point of view 
taken by Argabright and Gil de Lamadr id in discussing transformable measures 
[1] which is the continuous functional point of view of Bourbaki [3]. (The 
functional J U ( / ) = Jofd^ = / c j à ^ c , where C = supp ( / ) , is a continuous 
linear functional on CC{G) topologized as the inductive limit of the spaces 
C(G, A ) = { / £ Cc(G) ; supp ( / ) C A}, A compact in G, i.e., for each com­
pact A there is a constant MA such t ha t | M ( / " ) | = MA\\f\\œ for every 
fe C(G,A). Indeed MA = \n\(A).) 
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Before exhibiting a class of unbounded measures that are transformable, 
we state, for ease of reference, a Parseval formula for transforms of bounded 
measures. 

LEMMA 4.1. (Extended Parseval Formula) Suppose that \i is a bounded 
complex measure on G and let <£ denote the inverse Fourier transform of 
4> £ Ll(G): 4>(x) = JG[x, x\(j>(x)dx, x £ G. Then 

(4.1) I <t>(x)dn(x) = I 4>(x)jl(x)dx 
J Q J Q 

holds whenever <f> £ Ll(G) and 

(4.2) I <j>(pc)dij,(x) — I (f)(x)jl(x)dx 
J G J G 

holds whenever (/> G Ll(G), $ G Ll(G), and </> is continuous. 

Proof. (4.1) is a straightforward consequence of Fubini's Theorem and (4.2) 
follows from (4.1) and the Inversion Theorem. 

Definition. Let Mr = Mr(G) be the set of all measures /x on G such that 

h\\Mr = Œa,ÂM(Ka)Y]^ <œ. 

THEOREM 4.2. Let ix Ç Mr, 1 ^ r g 2. Then 
(i) /x w transformable (in the sense of (1.4)), 

(ii) jl is a function, p. £ (Lr/, /°°), aw(/ //zere is a constant A r such that 

Proof. Let ^ = {Va'.a ^ 1} be the set of all finite unions of the sets Kp, 
(3 (z J. For each a Ç / , define a finite measure jua on G by 

Ma CE) = n(Er\ Va) (£ a Borel set in G) 

and let 

(4.3) Ta(4>) = J *(*)]&«(*)<& (0Ç ( r , / 1 ) ^ ) ) . 
^ G 

The integral in (4.3) exists since jXa G Lœ(G) and (Lr, Z1) C Ll(G). Theorem 
3.2 gives ||r«|| = llAalIr'.œ- Using (4.1) we also have 

(4.4) Ta(4>) = f W)d»a(x) (<pe (Lr,ï)(Ô)) 
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and so 

\Ta(4)- 7>(«)| ^ £ I \4>(x)\d\fxa-
n£j *s Kn 

M/9 (*) 

^ X) SUP \4>M\ ' I Ma — M/ï|C*Q 

2 sup | <£(*)!' 
x£Kn 

1/r' 

Sd/xa-^i^or 
1/r 

I^IL.r' 
1/r 

^ r | | * | | X (|/Xa - Hp\(Kn))
T 

1/r 

using Theorem 3.5. Thus 

\\Ta- Tp\\ S [ Z » ( k - M ^ | ( ^ n ) ) T / r -

If ^ 3 Fp, then (/*« — np)(Kn) = n(Kn) if Kn C K A ^ and is 0 otherwise. 
Therefore 

\\Ta - 7>|| S Ar[ZKn<zya\yfi(\n\(Kn)n'r 

which can be made arbitrarily small since /x Ç Mr. Hence \\p.a — fiflllr'.œ "~* 0 
along 7^. 

Let /2 = lima/xa in (L r ' , Z00). Then the above gives 

llAlkco è Ar[Za(\n\(Ka)yy<r = Ary\\«r-

To prove (i) we must show that 

/ <t>*4>{x)dix(x) = I ^ \4>( — x)\2jl(x)dx (<fi Ç Cc(<?)), 
G J G 

or, equivalently, 

(4.5) I (j>*4>(x)dii(x) = I ^ |0(x)|2A(x)^x (0 G Cc(G)). 
^ (5 J G 

First let us check that the integral on the right side of (4.5) exists. Since 
M e (!/ ' , F) it will exist if |<£|2 G (Lr, Z1)- Now 0 6 CC(G) C (L*, lq) for all 
p, q ^ 1. We claim that 0 Ç (Lff/, lp'). To prove this, write </> = X«0« a s m the 
proof of Theorem 3.5. Then 

||<?a || <?',?' S H^allœ.p ' = ^ p | | 0 a | 

and so 

T,a\\4>a\\q>,P> S Ap\\4>\\Ptl < 00. 

Since (LQ', lp') is a Banach space, this shows t h a t $ = X)$« £ (£ ç ' , / p ' ) - I n par-
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ticular $ G (L2r, I2) and so 

I 2/2r 

a L •/ jr J « L t/ K 

>(x) | ^ X < oo, 

i.e., |£|2 € (Z/, Z1). 
To prove (4.5) we apply (4.2) to the bounded measure /x«. This gives 

(4.6) I 4>*4>(x)dixa{x) = I A 0(x)|2/xa(x)^x (0 G CC(G)). 

It is clear from the definition of /xa, and the fact that </> * 0 has compact support, 
that the left side of (4.6) converges to the left side of (4.5). The same is true 
of the right sides because |^|2 £ (LT, ll) and ||jûa — £||r\œ —> 0. Therefore n is 
transformable with Fourier transform fl. 

Remark. It follows from (i) of Theorem 4.2 and a result of Argabright and 
Gil de Lamadrid [1] that if M £ Mr then fl is translation-bounded (see (1.5)). 
But an easier way of seeing this is to note that p. Ç (Lr/, /œ) C (L1, lœ). It is 
not hard to see that the class of translation-bounded functions is precisely 
(L\r) = { / ; sup a J*J / | < o o ! . 

THEOREM 4.3. If $ is a continuous linear functional on (C0, l
Q), then there 

exists a measure /x £ MQ> such that 

-I, (4.7) $ ( / ) = I fd» (/<E (Co,/5)). 
U G 

Proof. Let Ca = C(Ka), the continuous functions on Ka with the usual 
topology, and let fa=f\ Ka. Now (C0, l

Q) is isometrically isomorphic to a 
closed subspace S of (UaCa, lq) via / —> {/«}, where { /«} £ £ if and only if 
fa = //s on i£a P\ i ^ . If $a is a continuous linear functional on Ca, then the 
Riesz Representation Theorem gives a finite measure jua on Ka such that 

- / . 
$«(g) = I g^u« whenever g £ Ca. 

J *a 

If $ G (Co, lq)* = (5, /*)*, extend $ by the Hahn-Banach Theorem to a 
functional $ in (UaCa, lq)* = (naCa*, lq). There exist $a G Ca* such that 

Define JJL by 

M(£) = Z « M a ( £ n i Q , 

the domain of /x consisting of those Borel sets in G for which the series con­
verges. Clearly juc(£) = n(E C\ C) is a complex measure whenever C is a 
compact subset of G. 
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We give a detailed proof of (4.7) for the case a = 2. For general a the proof 
is similar but there are 2a groups of terms in the corresponding sums. For 
a = 2 we index a G J as a = (m, n, /3) where m, n G Z and /3 G I. If 
{//s; /5 G /} is a transversal of H in Gi, we can write 

Ka = jKTmro3 = {(x,y,t)\m S- x ^ m + l,n ^ y ï* n + l,t £ tp + H} 

La = Lmn& = {(x ,y, t) ; m ^ x < m + 1, n S y < n + 1, / G t0 + 77} 

m̂n/s = {(w, y, /) ; n g 3/ < w + 1, / 6 h + H\ 

Hmna = {(x, «, /) ; m ^ x < m + 1, t G ^ + H] 

PmnP = {{m,n,t)\ t G h + # } 

so that 

is a disjoint union. 
Now suppose that £ C Ann/3 is a Borel set. Since n(E) = X X (£ H i£a) 

and the cosets t$ -\- H are disjoint, we have 

M CE) = Vmnp(E) + Hm-i,n,fi(Er^ Km-itntp) + j ^ - i ^ C E H Km^i^) 

or 

(4.8) /x(£) = ixmnô(E) + /zw_ifWt0(£ H Fmnj8) + /xm>n_if^(£n i / ^ ) 

+ V>m-l,n-l,p(E ^ Pmnp) 

whenever £ C ^mn^ Therefore 

*( / ) = E IL jmn$d\±mn$ + 1 
«n/3 ^ Fm+1, 

fmnp* 

^ # m , n + l /S Jrn + 1,71+1 (3 J 

mnp 1 
l/3 

£ 
^ 7mn 

m— 

3 
l,n,(3 

m ,n-l,( 3 + Z^ / /m-1 n - l , ^ M w - -1,71-1,0 

'^mnô 

m—l,n—l,0 
HmnR " Pmnft 

m—l,n,8 

+ I fmnpdnmtn-i,p + I 

(since / a = //? on i^„ H il/?) 

= Y, I fmnpd» (by 4.8) 
J L,nn0 
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THEOREM 4.4. Let 1 ^ r ^ 2, and suppose there is a constant M such that 

(4.9) / J £M\\*\ls 
\ J G I 

whenever <t> Ç Cc. Then f is a Fourier transform, i.e., there exists M £ Mr(G) 
such that f = /x. 

Proof. The inequality (4.9) shows that the linear functional 

n$) = f f<t> 
J G 

is continuous on the subspace {<£ Ç (C0 , / r ' ) ; 0 G Cc} of (C0,/ r ')- Use the 
Hahn-Banach Theorem to extend T to a continuous linear functional on 
(Co, lT'). Then Theorem 4.3 yields a measure JU G M r such that 

(4.10) [ / < / > = [ fan (* G CC(G), 0 6 (Co, / r ' )) . 

Combining Theorem 3.5 with inequality (4.9) we get a constant Br such that 

m ^ Br\\4>\\r,i ( * G c« 0G (c 0 ,r ' ) ) . 
/ . 

This shows that the linear functional F(<t>) = J/0 is continuous on a dense 
subspace of (Lr, I1) and s o / G (Z/', /œ) . Consequently (4.10) is valid whenever 
<t> G (Z/f Z

1). 
Given \p (i Cc we know that |i£|2 G (L7", Z1) as in the proof of Theorem 4.2. 

Applying (4.10) with <£(x) = \\p(x)\2 we obtain 

J G *̂  G 

and this is, by definition, the statement t h a t / = £. 
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