FOURIER TRANSFORMS OF UNBOUNDED MEASURES

JAMES STEWART

1. Introduction. One of the basic objects of study in harmonic analysis is the Fourier transform (or Fourier-Stieltjes transform) μ of a bounded (complex) measure μ on the real line R :
(1.1) $\hat{\mu}(t)=\int_{-\infty}^{\infty} e^{-i t x} d \mu(x)$.

More generally, if μ is a bounded measure on a locally compact abelian group G, then its Fourier transform is the function

$$
\begin{equation*}
\hat{\mu}(\hat{x})=\int_{G} \overline{[x, \hat{x}]} d \mu(x) \quad(\hat{x} \in \hat{G}) \tag{1.2}
\end{equation*}
$$

where \hat{G} is the dual group of G and $[x, \hat{x}]=\hat{x}(x)$. One answer to the question "Which functions can be represented as Fourier transforms of bounded measures?" was given by the following criterion due to Schoenberg [11] for the real line and Eberlein [5] in general: f is a Fourier transform of a bounded measure if and only if there is a constant M such that

$$
\begin{equation*}
\left|\int_{G} f \phi\right| \leqq M \sup _{x \in G}|\hat{\phi}(\hat{x})| \tag{1.3}
\end{equation*}
$$

for all $\phi \in L^{1}(G)$, where $\hat{\phi}(\hat{x})=\int_{G}[x, \hat{x}] \phi(x) d x$.
The integrals (1.1) and (1.2) do not exist if μ is unbounded, and so the question arises as to the existence of a meaningful notion of Fourier transform in the case of unbounded measures. One could, of course, interpret (1.1) or (1.2) as holding in a summability sense, and this has sometimes been done. (See [4], [12], and $[7,8]$.) But Argabright and Gil de Lamadrid [1] have recently proposed a very general definition of a Fourier transform. They defined a measure μ to be transformable if there exists a measure $\hat{\mu}$ on \hat{G} such that, for every $\phi \in C_{c}(G)$ (the continuous functions with compact support), $\hat{\phi} \in L^{2}(\hat{\mu})$ and

$$
\begin{equation*}
\int_{G} \phi * \tilde{\phi}(x) d \mu(x)=\int_{\hat{G}}|\phi(-\hat{x})|^{2} d \hat{\mu}(\hat{x}), \tag{1.4}
\end{equation*}
$$

where $\tilde{\phi}(x)=\overline{\phi(-x)}$ and ${ }^{*}$ denotes convolution. If μ is transformable, then the measure $\hat{\mu}$ occurring on the right side of (1.4) is called the Fourier transform of μ.

Received September 16, 1977.

This definition of Fourier transform is easily seen to be a generalization of both the Fourier-Stieltjes transform (1.2) and the classical Fourier transform of L^{p} functions, $1 \leqq p \leqq 2$. It also encompasses the representation of unbounded positive definite functions as Fourier transforms of positive unbounded measures [4], [12].

Argabright and Gil de Lamadrid showed that any Fourier transform μ must be translation-bounded in the sense that

$$
\begin{equation*}
\sup _{x \in \hat{G}}|\hat{\mu}|(\hat{x}+C)<\infty \tag{1.5}
\end{equation*}
$$

for every compact set C in \hat{G}. They also established extended versions of the Poisson Summation Formula and the Inversion Theorem for Fourier transforms.

The present paper has two main purposes. The first is to describe a class of measures which are transformable in the sense of (1.4). If $\sum_{\alpha}\left[|\mu|\left(K_{\alpha}\right)\right]^{r}<\infty$, where $1 \leqq r \leqq 2$ and the $K_{\alpha}{ }^{\prime}$ s are certain subsets of the group G related to its structure as described in $\S 3$, then μ will be shown to be transformable. The second purpose is to generalize the Schoenberg-Eberlein criterion (1.3) to unbounded measures. If $2 \leqq q \leqq \infty$ and there is a constant M such that

$$
\begin{equation*}
\left|\int_{G} f \phi\right| \leqq M\left[\sum_{\alpha} \sup _{x \in K_{\alpha}}|\hat{\phi}(\hat{x})|^{q}\right]^{1 / q} \tag{1.6}
\end{equation*}
$$

for every $\phi \in C_{c}(G)$, then it will be shown that f is a Fourier transform.
Some of the main theorems of this paper are generalizations of results of Finbarr Holland $[7,8]$ to the context of groups. Therefore we devote $\S 2$ to a short exposition of his work on amalgams of L^{p} and l^{l}. In §3 we show how to extend some of his definitions and results to groups. Then in $\S 4$ we apply these to prove the results stated in the above paragraph.
2. Amalgams of L^{p} and l^{q} on the real line. If f is a measurable function on R and $1 \leqq p, q \leqq \infty$, define

$$
\begin{aligned}
& \|f\|_{p, q}=\left[\sum_{-\infty}^{\infty}\left[\int_{n}^{n+1}|f(x)|^{p} d x\right]^{q / p}\right]^{1 / q} \\
& \|f\|_{\infty, q}=\left[\sum_{-\infty}^{\infty} \sup _{n \leqq x \leqq n+1}|f(x)|^{q}\right]^{1 / q}
\end{aligned}
$$

and let

$$
\left(L^{p}, l^{q}\right)=\left\{f ;\|f\|_{p, q}<\infty\right\}, \quad\left(C_{0}, l^{q}\right)=C_{0} \cap\left(L^{\infty}, l^{q}\right)
$$

These spaces were introduced and studied systematically by Holland [7], although certain special cases had been used earlier by Wiener $[\mathbf{1 3}]$ ($p=2$, $q=\infty),[\mathbf{1 4}],(p=\infty, q=1$ and $p=1, q=\infty)$ and Cooper [4] $(p=2$, $q=1$), and certain related spaces had been used by Pitt [9] and Benedek and Panzone [2].

We list here some of Holland's results.
Theorem A. $\left(L^{p}, l^{q}\right)$ is a Banach space and for $1 \leqq p, q<\infty$ its dual space is isometrically isomorphic to $\left(L^{p^{\prime}}, l^{\prime^{\prime}}\right)$, where $p^{-1}+\left(p^{\prime}\right)^{-1}=1$.

Theorem B. If T is a continuous linear functional on $\left(C_{0}, l^{q}\right)$, where $1 \leqq q \leqq \infty$, then there exists a measure $\mu \in M_{q^{\prime}}$ such that

$$
T(\phi)=\int_{-\infty}^{\infty} \phi d \mu \quad\left(\phi \in\left(C_{0}, l^{q}\right)\right)
$$

where $M_{r}=\left\{\right.$ complex measures $\left.\mu ; \sum_{-\infty}^{\infty}[|\mu|([n, n+1])]^{r}<\infty\right\}$.
Theorem C. Let $1 \leqq p, q \leqq 2$. If $f \in\left(L^{p}, l^{q}\right)$, then $\int_{-N}^{N} e^{-i t x} f(x) d x$ converges to an element $\hat{f} \in\left(L^{q^{\prime}}, l^{p^{\prime}}\right)$ as $N \rightarrow \infty$. There is a constant $M_{p, q}$ such that

$$
\|\hat{f}\|_{q^{\prime}, p^{\prime}} \leqq M_{p, q}\|f\|_{p, q}\left(f \in\left(L^{p}, l^{q}\right)\right)
$$

Theorem D. If $1 \leqq q \leqq 2$ and $\mu \in M_{q}$, then

$$
\hat{\mu}(t)=\int_{-\infty}^{\infty} e^{-i t x} d \mu(x)
$$

exists in the sense of Cesàro summability.
3. Amalgams on groups. Let G be a locally compact abelian group. The structure theorem for such groups [6, Theorem 24.30] allows us to write $G=R^{a} \times G_{1}$, where a is a nonnegative integer and G_{1} is a group which contains a compact open subgroup H. (If G_{1} is compact, we take $H=G_{1}$. If G_{1} is discrete and infinite, we take $H=\{0\}$. Otherwise H is arbitrary but fixed. If the relationship between H and G needs to be made explicit, then we write $H=H(G)$.) We normalize the Haar measure m on G_{1} so that $m(H)=1$.

The dual group of G can then be written as $\hat{G}=R^{a} \times \hat{G}_{1}$. If A is the annihilator of $H, A=\left\{\hat{s} \in \hat{G}_{1} ;[s, \hat{s}]=1\right.$ for all $\left.s \in H\right\}$, then A is a compact open subgroup of \hat{G}_{1}. (Since H is open, G_{1} / H is discrete, and so A, being its dual group, is compact. Since H is compact, its dual \hat{G}_{1} / A is discrete, and thus A is open.) We can therefore make the choice $A=H(\hat{G})$. This is consistent with the conventions in the above paragraph and with the inversion theorems for Fourier transforms.

Define $K=[0,1]^{a} \times H$ and $L=[0,1)^{a} \times H$. We can then write G as a disjoint union

$$
G=\bigcup_{\alpha \in J} L_{\alpha}
$$

where $L_{\alpha}=g_{\alpha}+L$ and each g_{α} is of the form $\left(n_{1}, \ldots, n_{u}, t\right)$ with $n_{i} \in Z$, $t \in G_{1}$, (the collection of t 's being a transversal of H in G_{1}). It will sometimes be convenient to use the (nondisjoint) decomposition $G=\bigcup_{\alpha \in J} K_{\alpha}$, where $K_{\alpha}=g_{\alpha}+K$.

Definition. If $f \in L^{p}(C)$ for any compact subset C of G and $1 \leqq p, q \leqq \infty$, define

$$
\begin{aligned}
& \|f\|_{p, q}=\left[\sum_{\alpha \in J}\left[\int_{K_{\alpha}}|f|^{p}\right]^{q / p}\right]^{1 / q} \\
& \|f\|_{\infty, q}=\left[\sum_{\alpha \in J} \sup _{x \in K_{\alpha}}|f(x)|^{q}\right]^{1 / q}
\end{aligned}
$$

and let

$$
\left(L^{p}, l^{q}\right)=\left\{f ; \quad\|f\|_{p, q}<\infty\right\},\left(C_{0}, l^{q}\right)=C_{0} \cap\left(L^{\infty}, l^{q}\right)
$$

where C_{0} denotes the continuous functions on G which vanish at infinity.
This definition clearly reduces to Holland's when $G=R$. Other reasons for choosing to define (L^{p}, l^{q}) via the particular decomposition $G=\bigcup_{\alpha} K_{\alpha}$ will be seen in the proofs of Theorems 3.1, 3.3, and 4.3.

We begin our study of the amalgams $\left(L^{p}, l^{q}\right)$ by listing some relations between them.

$$
\begin{array}{ll}
\left(L^{p}, l^{q_{1}}\right) \subset\left(L^{p}, l^{q_{2}}\right) & \text { if } q_{1} \leqq q_{2} \\
\left(L^{p_{2}}, l^{q}\right) \subset\left(L^{p_{1}}, l^{q}\right) & \text { if } p_{1} \leqq p_{2} \\
\left(L^{p}, l^{p}\right)=L^{p} & \\
\left(L^{p}, l^{q}\right) \subset L^{p} \cap L^{q} & \text { if } q \leqq p \tag{3.4}
\end{array}
$$

The last relation follows from the first two relations which are consequences of the following inequalities.

$$
\begin{array}{ll}
\|f\|_{p, q_{2}} \leqq\|f\|_{p, q_{1}} & \text { if } q_{1} \leqq q_{2} \\
\|f\|_{p_{1}, q} \leqq\|f\|_{p_{2}, q} & \text { if } p_{1} \leqq p_{2} \tag{3.6}
\end{array}
$$

The inequality (3.5) follows from Jensen's inequality while (3.6) is easily proved using Holder's inequality, remembering that the Haar measure of K_{α} is 1 .

Theorem 3.1. Let C be a compact subset of G, and let $1 \leqq p, q \leqq \infty$. Then there is a function $g \in C_{c}(G)$ such that $g \equiv 1$ on C and $\hat{g} \in\left(L^{p}, l^{q}\right)$.

Proof. Write $C \subset C_{1} \times C_{2}$ where C_{1} is compact in R^{a} and C_{2} is compact in G_{1}. Then C_{2} is covered by a finite number of cosets of H :

$$
C_{2} \subset \cup_{i=1}^{k} s_{i}+H=F, \text { say }
$$

Let $g_{2}=\chi_{F}$, the characteristic function of F. Then $g_{2} \in C_{c}\left(G_{1}\right)$. Since $g_{2}(s)=\sum_{i=1}^{k} \chi_{H}\left(s-s_{i}\right)$, we have

$$
\hat{\mathrm{g}}_{2}(\hat{s})=\sum_{i=1}^{k} \overline{\left[s_{i}, \hat{s}\right]} \hat{\chi}_{H}(\hat{s})=\chi_{A}(\hat{s}) \sum_{i=1}^{k} \overline{\left[s_{i}, \hat{s}\right]} .
$$

Since the support of \hat{g}_{2} is A, we have $\hat{g}_{2} \in\left(L^{p}, l^{q}\right)\left(\hat{G}_{1}\right)$. Let g_{1} be a function which is equal to 1 on C_{1}, has compact support, and is an a-fold product of functions which are m times differentiable functions of a real variable (where m is to be chosen). Then \hat{g}_{1} is an a-fold product of continuous functions which are $0\left(x^{-m}\right)$ as $x \rightarrow \pm \infty$. Such functions are in $\left(L^{p}, l^{q}\right)(R)$ for sufficiently large m. (Specifically, $m>(p+q) p^{-2}$ if $p, q<\infty$ or $m>q^{-1}$ if $p=\infty$.) Therefore $\hat{g}_{1} \in\left(L^{p}, l^{q}\right)\left(R^{a}\right)$. If g is defined on G by $g(s, t)=g_{1}(s) g_{2}(t)$, then g and \hat{g} possess the desired properties.

Theorem 3.2. ($\left.L^{p}, l^{q}\right)$ is a Banach space and for $1 \leqq p, q<\infty$ its dual space is isometrically isomorphic to ($L^{p^{\prime}}, l^{q^{\prime}}$).

The proof of this theorem is virtually identical with the proof of Theorem A given in [7].

Theorem 3.3. Translation is a bounded operator on (L^{∞}, l^{1}). Specifically, if $f_{t}(x)=f(x-t)$ and $f \in\left(L^{\infty}, l^{1}\right)$, then

$$
\left\|f_{l}\right\|_{\infty, 1} \leqq 2^{a}\|f\|_{\infty, 1} .
$$

Proof.

$$
\left\|f_{t}\right\|_{\infty, 1}=\sum_{\alpha \in J} \sup _{x \in K_{\alpha}}|f(x-t)|=\sum_{\alpha} \sup _{x \in t+K_{\alpha}}|f(x)|
$$

where $K_{\alpha}=g_{\alpha}+K$ and $K=[0,1]^{a} \times H$.
If $t=g_{\alpha}$ for some α, then clearly $\left\|f_{t}\right\|_{\infty, 1}=\|f\|_{\infty, 1}$. Otherwise $t+K_{\alpha}$ intersects the interiors of at most $2^{a} K_{\beta}$'s and so we can write

$$
\left\|f_{t}\right\|_{\infty, 1}=\sum_{\alpha \in J} \sup _{x \in t+K_{\alpha}}\left|f(x)!\leqq 2^{a} \sum_{\beta \in J} \sup _{x \in K_{\alpha}}\right| f(x) \mid \quad=2^{a}\|f\|_{\infty, 1} .
$$

Theorem 3.4. Suppose $f \in L^{r}(G)$ and supp $(f) \subset C$, where C is compact and $1 \leqq r \leqq 2$. Then

$$
\|\hat{f}\|_{\infty, r^{\prime}} \leqq M\|\hat{f}\|_{r^{\prime}}
$$

where M is a constant depending only on C and r.
Proof. By Theorem 3.1 there exists a real function $g \in C_{c}(G)$ with $g \equiv 1$ on C and $\hat{g} \in\left(L^{\infty}, l^{1}\right)$. Then

$$
\hat{f}(\hat{x})=\int_{C} f(x)[x, \hat{x}] d x=\int_{G} f(x) g(x)[x, \hat{x}] d x=\int_{\hat{G}} \hat{f}(\hat{t}) \hat{g}(\hat{t}-\hat{x}) d \hat{t}
$$

by the Parseval formula. So Holder's inequality yields

$$
\begin{aligned}
&|f(x)|^{r^{\prime}} \leqq\left.\int_{\hat{G}}|\hat{f}(\hat{t})|\right|^{r^{\prime}}|\hat{g}(\hat{t}-\hat{x})| d t \cdot\left[\int_{\hat{G}}|\hat{g}(\hat{t}-\hat{x})| d \hat{t}\right]^{r^{\prime} / r} \\
&=\int_{\hat{G}}|\hat{f}(\hat{t})|^{r^{\prime}}|\hat{g}(\hat{x}-\hat{t})| d \hat{t}\left[\int_{\hat{G}}|\hat{g}(\hat{t})| d \hat{t}\right]^{r^{\prime} / r} \\
&=\int_{\hat{G}}|\hat{f}(\hat{t})|^{r^{\prime}}|\hat{g} \hat{\imath}(\hat{x})| d \hat{t} \cdot\|\hat{g}\|_{1^{\prime} / r}^{r^{\prime}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \|\hat{f}\|_{\infty, r^{\prime}}^{r^{\prime}}=\sum_{\alpha} \sup _{x \in K \alpha}|\hat{f}(\hat{x})|^{r^{\prime}} \\
& \quad \leqq \sum_{\alpha} \sup _{x \in K_{\alpha}} \int_{\hat{G}}|\hat{f}(\hat{f})|^{r^{\prime}}\left|\hat{g}_{\hat{i}}(\hat{x})\right| d \hat{t} \cdot\|\hat{g}\|_{1}^{r^{\prime} / r} \\
& \quad=\int_{\hat{G}} \mid f\left(\left.\hat{f}(\hat{t})\right|^{r^{\prime}}\left\|\hat{g}_{\hat{\imath}}\right\|_{\infty, 1} d \dot{t} \cdot\|\hat{g}\|_{1}^{r^{\prime} / r} \leqq\left. 2^{a}|\hat{g}|\left\|_{\infty, 1}| | \hat{f}\right\|\right|_{r^{\prime}} ^{r^{\prime}}\|\hat{g}\|_{1}^{r^{\prime} / \tau}\right.
\end{aligned}
$$

by Theorem 3.3. Therefore the inequality holds with

$$
M=2^{a / \tau^{\prime}}\|\hat{g}\|_{\infty, 1}^{1 / \tau^{\prime}}\|\hat{g}\|_{1}{ }^{1 / \tau} .
$$

Theorem 3.5. If $f \in\left(L^{p}, l^{1}\right)$ where $1 \leqq p \leqq 2$, then $\hat{f} \in\left(L^{\infty}, l^{p^{\prime}}\right)$. There is a constant A_{p} such that

$$
\|\hat{f}\|_{\infty, p^{\prime}} \leqq A_{p}\|f\|_{p, 1}\left(f \in\left(L^{p}, l^{1}\right)\right)
$$

Proof. Write $f=\sum_{\alpha \in J} f_{\alpha}$, where supp $\left(f_{\alpha}\right) \subset K_{\alpha}$. This series converges in L^{1} and so $\hat{f}=\sum \hat{f}_{\alpha}$ is uniformly convergent. Applying Theorem 3.4 to f_{α} with $C=K_{\alpha}$, we obtain

$$
\left\|\hat{f}_{\alpha}\right\|_{\infty, p^{\prime}} \leqq A_{p}\left\|\hat{f}_{\alpha}\right\|_{p^{\prime}}
$$

(Note that A_{p} is independent of α because each K_{α} is a translate of $K=$ $[0,1]^{a} \times H$. The corresponding functions $g=g_{\alpha}$ in the proof of Theorem 3.4 can be chosen to be translates of each other, and so $\left|\hat{\mathrm{g}}_{\alpha}\right|$ is independent of α.)

The Hausdorff-Young inequality $[\mathbf{6},(31.21)]$ then gives

$$
\left\|\hat{f}_{\alpha}\right\|_{\infty, p^{\prime}} \leqq A_{p}\left\|f_{\alpha}\right\|_{p}
$$

Thus

$$
\sum_{\alpha}\left\|\hat{f}_{\alpha}\right\|_{\infty, p^{\prime}} \leqq A_{p}\|f\|_{p, 1} .
$$

Since ($L^{\infty}, l^{p^{\prime}}$) is a Banach space, this shows that

$$
\hat{f} \in\left(L^{\infty}, l^{p^{\prime}}\right) \text { and }\|\hat{f}\|_{\infty, p^{\prime}} \leqq A_{p}\|f\|_{p, 1}
$$

4. Unbounded measures. The word "measure" will mean a set function μ which is locally a complex measure, i.e., for each compact subset C of G, $\mu_{C}(E)=\mu(E \cap C)$ is a complex measure (in the usual sense of the word $[\mathbf{1 0}, \mathrm{Ch} .6]$) on the Borel subsets of G. This is consistent with the point of view taken by Argabright and Gil de Lamadrid in discussing transformable measures [1] which is the continuous functional point of view of Bourbaki [3]. (The functional $\mu(f)=\int_{G} f d \mu \equiv \int_{C} f d \mu_{C}$, where $C=\operatorname{supp}(f)$, is a continuous linear functional on $C_{c}(G)$ topologized as the inductive limit of the spaces $C(G, A)=\left\{f \in C_{c}(G) ; \operatorname{supp}(f) \subset A\right\}, A$ compact in G, i.e., for each compact A there is a constant M_{A} such that $|\mu(f)| \leqq M_{A}\|f\|_{\infty}$ for every $f \in C(G, A)$. Indeed $M_{A}=|\mu|(A)$.)

Before exhibiting a class of unbounded measures that are transformable, we state, for ease of reference, a Parseval formula for transforms of bounded measures.

Lemma 4.1. (Extended Parseval Formula) Suppose that μ is a bounded complex measure on G and let $\check{\phi}$ denote the inverse Fourier transform of $\phi \in L^{1}(\hat{G}): \check{\phi}(x)=\int_{\hat{G}}[x, \hat{x}] \phi(\hat{x}) d \hat{x}, x \in G$. Then

$$
\begin{equation*}
\int_{G} \bar{\phi}(x) d \mu(x)=\int_{\hat{G}} \overline{\phi(\hat{x})} \hat{\mu}(\hat{x}) d \hat{x} \tag{4.1}
\end{equation*}
$$

holds whenever $\phi \in L^{1}(\hat{G})$ and

$$
\begin{equation*}
\int_{G} \overline{\phi(x)} d \mu(x)=\int_{\hat{G}} \overline{\phi(\hat{x})} \hat{\mu}(\hat{x}) d \hat{x} \tag{4.2}
\end{equation*}
$$

holds whenever $\phi \in L^{1}(G), \hat{\phi} \in L^{1}(\hat{G})$, and ϕ is continuous.
Proof. (4.1) is a straightforward consequence of Fubini's Theorem and (4.2) follows from (4.1) and the Inversion Theorem.

Definition. Let $M_{r}=M_{r}(G)$ be the set of all measures μ on G such that

$$
\|\mu\|_{M_{r}}=\left[\sum_{\alpha \in J}\left[|\mu|\left(K_{\alpha}\right)\right]^{r}\right]^{1 / r}<\infty .
$$

Theorem 4.2. Let $\mu \in M_{r}, 1 \leqq r \leqq 2$. Then
(i) μ is transformable (in the sense of (1.4)),
(ii) $\hat{\mu}$ is a function, $\hat{\mu} \in\left(L^{r^{\prime}}, l^{\infty}\right)$, and there is a constant A_{r} such that

$$
\|\hat{\mu}\|_{r^{\prime}, \infty} \leqq A_{r}\|\mu\|_{M_{r}}\left(\mu \in M_{r}\right)
$$

Proof. Let $\mathscr{V}=\left\{V_{\alpha}: \alpha \in I\right\}$ be the set of all finite unions of the sets K_{β}, $\beta \in J$. For each $\alpha \in I$, define a finite measure μ_{α} on G by

$$
\mu_{\alpha}(E)=\mu\left(E \cap V_{\alpha}\right)(E \text { a Borel set in } G)
$$

and let

$$
\begin{equation*}
T_{\alpha}(\phi)=\int_{\hat{G}} \overline{\phi(\hat{x})} \hat{\mu}_{\alpha}(\hat{x}) d \hat{x} \quad\left(\phi \in\left(L^{\tau}, l^{\mathbf{l}}\right)(\hat{G})\right) . \tag{4.3}
\end{equation*}
$$

The integral in (4.3) exists since $\hat{\mu}_{\alpha} \in L^{\infty}(\hat{G})$ and $\left(L^{r}, l^{1}\right) \subset L^{1}(\hat{G})$. Theorem 3.2 gives $\left\|T_{\alpha}\right\|=\left\|\hat{\mu}_{\alpha}\right\|_{r^{\prime}, \infty}$. Using (4.1) we also have
(4.4) $\quad T_{\alpha}(\phi)=\int_{G} \overline{\phi(x)} d \mu_{\alpha}(x) \quad\left(\phi \in\left(L^{r}, l^{1}\right)(\hat{G})\right)$
and so

$$
\begin{aligned}
& \left|T_{\alpha}(\phi)-T_{\beta}(\phi)\right| \leqq \sum_{n \in J} \int_{K_{n}}|\check{\phi}(x)| d\left|\mu_{\alpha}-\mu_{\beta}\right|(x) \\
& \quad \leqq \sum \sup _{x \in K_{n}}|\check{\phi}(x)| \cdot\left|\mu_{\alpha}-\mu_{\beta}\right|\left(K_{n}\right) \\
& \quad \leqq\left[\sum \sup _{x \in K_{n}}|\check{\phi}(x)|^{r^{\prime}}\right]^{1 / r^{\prime}} \cdot\left[\sum\left(\left|\mu_{\alpha}-\mu_{\beta}\right|\left(K_{n}\right)\right)^{r}\right]^{1 / r} \\
& =\left\|\left.\check{\phi}\right|_{\infty, r^{\prime}}\left[\sum\left(\left|\mu_{\alpha}-\mu_{\beta}\right|\left(K_{n}\right)\right)^{r}\right]^{1 / r} \leqq A_{r}| | \phi\right\|_{r, 1}\left[\sum\left(\left|\mu_{\alpha}-\mu_{\beta}\right|\left(K_{n}\right)\right)^{r}\right]^{1 / r}
\end{aligned}
$$

using Theorem 3.5. Thus

$$
\left\|T_{\alpha}-T_{\beta}\right\| \leqq\left[\sum_{n}\left(\left|\mu_{\alpha}-\mu_{\beta}\right|\left(K_{n}\right)\right)^{r}\right]^{1 / \tau} .
$$

If $V_{\alpha} \supset V_{\beta}$, then $\left(\mu_{\alpha}-\mu_{\beta}\right)\left(K_{n}\right)=\mu\left(K_{n}\right)$ if $K_{n} \subset V_{\alpha} \backslash V_{\beta}$ and is 0 otherwise. Therefore

$$
\left\|T_{\alpha}-T_{\beta}\right\| \leqq A_{r}\left[\sum_{K_{n} \subset V_{\alpha} \backslash V_{\beta}}\left(|\mu|\left(K_{n}\right)\right)^{\tau}\right]^{1 / \tau}
$$

which can be made arbitrarily small since $\mu \in M_{r}$. Hence $\left\|\hat{\mu}_{\alpha}-\hat{\mu}_{\beta}\right\|_{r^{\prime}, \infty} \rightarrow 0$ along $\sqrt[V]{ }$.

Let $\hat{\mu}=\lim _{\alpha} \hat{\mu}_{\alpha}$ in $\left(L^{r^{\prime}}, l^{\infty}\right)$. Then the above gives

$$
\|\hat{\mu}\|_{r^{\prime}, \infty} \leqq A_{r}\left[\sum_{\alpha}\left(|\mu|\left(K_{\alpha}\right)\right)^{r}\right]^{1 / r}=A_{r}\|\mu\|_{M_{r}} .
$$

To prove (i) we must show that

$$
\int_{G} \phi * \tilde{\phi}(x) d \mu(x)=\int_{\hat{G}}|\hat{\phi}(-\hat{x})|^{2} \hat{\mu}(\hat{x}) d \hat{x} \quad\left(\phi \in C_{c}(G)\right),
$$

or, equivalently,

$$
\begin{equation*}
\int_{G} \phi * \check{\phi}(x) d \mu(x)=\int_{\hat{G}}|\hat{\phi}(\hat{x})|^{2} \hat{\mu}(\hat{x}) d \hat{x} \quad\left(\phi \in C_{c}(G)\right) . \tag{4.5}
\end{equation*}
$$

First let us check that the integral on the right side of (4.5) exists. Since $\mu \in\left(L^{r^{\prime}}, l^{\infty}\right)$ it will exist if $|\hat{\phi}|^{2} \in\left(L^{r}, l^{1}\right)$. Now $\phi \in C_{c}(G) \subset\left(L^{p}, l^{q}\right)$ for all $p, q \geqq 1$. We claim that $\hat{\phi} \in\left(L^{q^{\prime}}, l^{p^{\prime}}\right)$. To prove this, write $\phi=\sum{ }_{\alpha} \phi_{\alpha}$ as in the proof of Theorem 3.5. Then

$$
\left\|\hat{\phi}_{\alpha}\right\|_{\left.{p^{\prime}, p^{\prime}} \leqq\left\|\hat{\phi}_{\alpha}\right\|_{\infty, p^{\prime}} \leqq A_{p}\left\|\phi_{\alpha}\right\|_{p},{ }^{2}\right)}
$$

and so

$$
\sum_{\alpha}\left\|\hat{\phi}_{\alpha}\right\|_{q^{\prime}, p^{\prime}} \leqq A_{p}\|\phi\|_{p, 1}<\infty .
$$

Since ($L^{q^{\prime}}, l^{p^{\prime}}$) is a Banach space, this shows that $\hat{\boldsymbol{\phi}}=\sum \hat{\phi}_{\alpha} \in\left(L^{q^{\prime}}, l^{p^{\prime}}\right)$. In par-
ticular $\hat{\phi} \in\left(L^{2 r}, l^{2}\right)$ and so

$$
\sum_{\alpha}\left[\int_{K_{\alpha}}\left(|\hat{\phi}(\hat{x})|^{2}\right)^{r} d \hat{x}\right]^{1 / r}=\sum_{\alpha}\left[\int_{K_{\alpha}}|\hat{\phi}(\hat{x})|^{2 r} d \hat{x}\right]^{2 / 2 r}<\infty,
$$

i.e., $|\hat{\phi}|^{2} \in\left(L^{r}, l^{1}\right)$.

To prove (4.5) we apply (4.2) to the bounded measure μ_{α}. This gives

$$
\begin{equation*}
\int_{G} \overline{\phi * \tilde{\phi}(x)} d \mu_{\alpha}(x)=\int_{\hat{\alpha}}|\tilde{\phi}(\hat{x})|^{2} \hat{\mu}_{\alpha}(\hat{x}) d \hat{x} \quad\left(\phi \in C_{c}(G)\right) \tag{4.6}
\end{equation*}
$$

It is clear from the definition of μ_{α}, and the fact that $\phi * \tilde{\phi}$ has compact support, that the left side of (4.6) converges to the left side of (4.5). The same is true of the right sides because $|\hat{\phi}|^{2} \in\left(L^{r}, l^{1}\right)$ and $\left\|\hat{\mu}_{\alpha}-\hat{\mu}\right\|_{r^{\prime}, \infty} \rightarrow 0$. Therefore μ is transformable with Fourier transform $\hat{\mu}$.

Remark. It follows from (i) of Theorem 4.2 and a result of Argabright and Gil de Lamadrid [1] that if $\mu \in M_{r}$ then $\hat{\mu}$ is translation-bounded (see (1.5)). But an easier way of seeing this is to note that $\hat{\mu} \in\left(L^{r \prime}, l^{\infty}\right) \subset\left(L^{1}, l^{\infty}\right)$. It is not hard to see that the class of translation-bounded functions is precisely $\left(L^{1}, l^{\infty}\right)=\left\{f ; \sup _{\alpha} \int_{K_{\alpha}}|f|<\infty\right\}$.

Theorem 4.3. If Φ is a continuous linear functional on $\left(C_{o}, l^{l}\right)$, then there exists a measure $\mu \in M_{q^{\prime}}$ such that

$$
\begin{equation*}
\Phi(f)=\int_{G} f d \mu \quad\left(f \in\left(C_{0}, l^{q}\right)\right) . \tag{4.7}
\end{equation*}
$$

Proof. Let $C_{\alpha}=C\left(K_{\alpha}\right)$, the continuous functions on K_{α} with the usual topology, and let $f_{\alpha}=f \mid K_{\alpha}$. Now (C_{o}, l^{l}) is isometrically isomorphic to a closed subspace S of $\left(\Pi_{\alpha} C_{\alpha}, l^{q}\right)$ via $f \rightarrow\left\{f_{\alpha}\right\}$, where $\left\{f_{\alpha}\right\} \in S$ if and only if $f_{\alpha}=f_{\beta}$ on $K_{\alpha} \cap K_{\beta}$. If Φ_{α} is a continuous linear functional on C_{α}, then the Riesz Representation Theorem gives a finite measure μ_{α} on K_{α} such that

$$
\Phi_{\alpha}(g)=\int_{K_{\alpha}} g d \mu_{\alpha} \quad \text { whenever } \quad g \in C_{\alpha} .
$$

If $\Phi \in\left(C_{0}, l^{q}\right)^{*}=\left(S, l^{q}\right)^{*}$, extend Φ by the Hahn-Banach Theorem to a functional Φ in $\left(\Pi_{\alpha} C_{\alpha}, l^{q}\right)^{*}=\left(\Pi_{\alpha} C_{\alpha}{ }^{*}, l^{q}\right)$. There exist $\Phi_{\alpha} \in C_{\alpha}{ }^{*}$ such that

$$
\Phi(f)=\sum_{\alpha} \Phi_{\alpha}\left(f_{\alpha}\right)=\sum_{\alpha} \int_{K_{\alpha}} f_{\alpha} d \mu_{\alpha} \quad\left(f \in\left(C_{0}, l^{q}\right)\right) .
$$

Define μ by

$$
\mu(E)=\sum_{\alpha} \mu_{\alpha}\left(E \cap K_{\alpha}\right),
$$

the domain of μ consisting of those Borel sets in G for which the series converges. Clearly $\mu_{C}(E)=\mu(E \cap C)$ is a complex measure whenever C is a compact subset of G.

We give a detailed proof of (4.7) for the case $a=2$. For general a the proof is similar but there are 2^{a} groups of terms in the corresponding sums. For $a=2$ we index $\alpha \in J$ as $\alpha=(m, n, \beta)$ where $m, n \in \mathbf{Z}$ and $\beta \in \mathbf{I}$. If $\left\{t_{\beta} ; \beta \in I\right\}$ is a transversal of H in G_{1}, we can write

$$
\begin{aligned}
& K_{\alpha}=K_{m n}=\left\{(x, y, t) ; m \leqq x \leqq m+1, n \leqq y \leqq n+1, t \in t_{\beta}+H\right\} \\
& L_{\alpha}=L_{m n \beta}=\left\{(x, y, t) ; m \leqq x<m+1, n \leqq y<n+1, t \in t_{\beta}+H\right\} \\
& V_{m n \beta}=\left\{(m, y, t) ; n \leqq y<n+1, t \in t_{\beta}+H\right\} \\
& H_{m n \beta}=\left\{(x, n, t) ; m \leqq x<m+1, t \in t_{\beta}+H\right\} \\
& P_{m n \beta}=\left\{(m, n, t) ; t \in t_{\beta}+H\right\}
\end{aligned}
$$

so that

$$
K_{m n \beta}=L_{m n \beta} \cup V_{m+1, n, \beta} \cup H_{m, n+1, \beta} \cup P_{m+1, n+1, \beta}
$$

is a disjoint union.
Now suppose that $E \subset L_{m n \beta}$ is a Borel set. Since $\mu(E)=\sum \mu_{\alpha}\left(E \cap K_{\alpha}\right)$ and the cosets $t_{\beta}+H$ are disjoint, we have

$$
\begin{aligned}
\mu(E)=\mu_{m n \beta}(E)+\mu_{m-1, n, \beta}\left(E \cap K_{m-1, n, \beta}\right) & +\mu_{m, n-1, \beta}\left(E \cap K_{m, n-1, \beta}\right) \\
& +\mu_{m-1, n-1, \beta}\left(E \cap K_{m-1, n-1, \beta}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\mu(E)=\mu_{m n \beta}(E)+\mu_{m-1, n, \beta}\left(E \cap V_{m n \beta}\right)+\mu_{m, n-1, \beta}\left(E \cap H_{m n \beta}\right) \tag{4.8}
\end{equation*}
$$

$$
+\mu_{m-1, n-1, \beta}\left(E \cap P_{m n \beta}\right)
$$

whenever $E \subset L_{m n}$. Therefore

$$
\begin{aligned}
\Phi(f)= & \sum_{m, n, \beta} \int_{K_{m n \beta}} f_{m n \beta} d \mu_{m n \beta}=\sum\left[\int_{L_{m n \beta}} f_{m n \beta} d \mu_{m n \beta}+\int_{V_{m}+1, n, \beta} f_{m n \beta} d \mu_{m n \beta}\right. \\
& \left.+\int_{H_{m, n}+1, \beta} f_{m n \beta} d \mu_{m n \beta}+\int_{P_{m}+1, n+1, \beta} f_{m n \beta} d \mu_{m n \beta}\right] \\
= & \sum \int_{L_{m n \beta}} f_{m n \beta} d \mu_{m n \beta}+\sum \int_{V_{m n \beta}} f_{m-1, n, \beta} d \mu_{m-1, n, \beta} \\
& +\sum \int_{H_{m n \beta}} f_{m, n-1, \beta} d \mu_{m, n-1, \beta}+\sum \int_{P_{m n \beta}} f_{m-1, n-1, \beta} d \mu_{m-1, n-1, \beta} \\
= & \sum\left[\int_{L_{m n \beta}} f_{m n \beta} d \mu_{m n \beta}+\int_{V_{m n} \beta} f_{m n \beta} d \mu_{m-1, n, \beta}\right. \\
& \left.+\int_{H_{m n \beta}} f_{m n \beta} d \mu_{m, n-1, \beta}+\int_{P_{m n \beta}} f_{m n \beta} d \mu_{m-1, n-1, \beta}\right]
\end{aligned}
$$

(since $f_{\alpha}=f_{\beta}$ on $K_{\alpha} \cap K_{\beta}$)

$$
\begin{aligned}
& =\sum \int_{L_{m n \beta}} f_{m n \beta} d \mu \quad \text { by 4.8) } \\
& =\int f d \mu .
\end{aligned}
$$

Theorem 4.4. Let $1 \leqq r \leqq 2$, and suppose there is a constant M such that

$$
\begin{equation*}
\left|\int_{G} f \phi\right| \leqq M| | \hat{\phi}| |_{\infty, r^{\prime}} \tag{4.9}
\end{equation*}
$$

whenever $\phi \in C_{c}$. Then f is a Fourier transform, i.e., there exists $\mu \in M_{r}(\hat{G})$ such that $f=\hat{\mu}$.

Proof. The inequality (4.9) shows that the linear functional

$$
T(\hat{\phi})=\int_{G} f \phi
$$

is continuous on the subspace $\left\{\hat{\phi} \in\left(C_{0}, l^{r^{\prime}}\right) ; \phi \in C_{c}\right\}$ of $\left(C_{0}, l^{r^{\prime}}\right)$. Use the Hahn-Banach Theorem to extend T to a continuous linear functional on $\left(C_{0}, l^{r^{\prime}}\right)$. Then Theorem 4.3 yields a measure $\mu \in M_{r}$ such that

$$
\begin{equation*}
\int_{G} f \phi=\int_{G} \hat{\phi} d \mu \quad\left(\phi \in C_{c}(G), \hat{\phi} \in\left(C_{0}, l^{r^{\prime}}\right)\right) . \tag{4.10}
\end{equation*}
$$

Combining Theorem 3.5 with inequality (4.9) we get a constant B_{τ} such that

$$
\left|\int_{G} f \phi\right| \leqq B_{r}\|\phi\|_{r, 1} \quad\left(\phi \in C_{c}, \hat{\phi} \in\left(C_{0}, l^{\prime}\right)\right) .
$$

This shows that the linear functional $F(\phi)=\int f \phi$ is continuous on a dense subspace of (L^{r}, l^{1}) and so $f \in\left(L^{r^{\prime}}, l^{\infty}\right)$. Consequently (4.10) is valid whenever $\phi \in\left(L^{r}, l^{1}\right)$.

Given $\psi \in C_{c}$ we know that $|\check{\psi}|^{2} \in\left(L^{r}, l^{1}\right)$ as in the proof of Theorem 4.2. Applying (4.10) with $\phi(x)=|\check{\psi}(x)|^{2}$ we obtain

$$
\int_{\hat{G}} \overline{\psi * \tilde{\psi}(\hat{x})} d \mu(\hat{x})=\int_{G}|\check{\psi}(x)|^{2} f(x) d x
$$

and this is, by definition, the statement that $f=\check{\mu}$.

References

1. L. Argabright and J. Gil de Lamadrid, Fourier analysis of unbounded measures on locally compact abelian groups, Memoirs Amer. Math. Soc. 145, Providence, R.I., 1974.
2. A. Benedek and R. Panzone, The spaces L^{p} with mixed norm, Duke Math. J. 28 (1961), 301-324.
3. N. Bourbaki, Eléments de mathématique. Intégration, Chaps. 1-4 (1952), Chap. 6 (Act. Sci. et Ind. 1175, 1281, Hermann, Paris, 1959).
4. J. L. B. Cooper, Positive definite functions of a real variable, Proc. London Math. Soc. (3) 10 (1960), 53-66.
5. W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465-468.
6. E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I (1963), Vol. II (1970) (SpringerVerlag, New York).
7. F. Holland, Harmonic analysis on amalgams of L^{p} and l^{q}, J. London Math. Soc. (2) 10 (1975), 295-305.
8. On the representation of functions as Fourier transforms of unbounded measures, Proc. London Math. Soc. (3) 30 (1975), 347-365.
9. H. R. Pitt, On Wiener's general harmonic analysis, Proc. London Math. Soc. (2) 46 (1940), 1-18.
10. W. Rudin, Real and complex analysis (McGraw-Hill, New York, 1966).
11. I. J. Schoenberg, A remark on a preceding note by Bochner, Bull. Amer. Math. Soc. 40 (1934), 277-278.
12. J. Stewart, Unbounded positive definite functions, Can. J. Math. 21 (1969), 1309-1318.
13. N. Wiener, On the representation of functions by trigonometric integrals, Math. Z. 24 (1926), 575-616.
14. Tauberian theorems, Ann. of Math. 33 (1932), 1-100.

McMaster University,
Hamilton, Ontario

