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Interval Pattern Avoidance for Arbitrary
Root Systems

Alexander Woo

Abstract. We extend the idea of interval pattern avoidance defined by Yong and the author for Sn to

arbitrary Weyl groups using the definition of pattern avoidance due to Billey and Braden, and Billey

and Postnikov. We show that, as previously shown by Yong and the author for GLn, interval pattern

avoidance is a universal tool for characterizing which Schubert varieties have certain local properties,

and where these local properties hold.

1 Introduction

The purpose of this brief note is to extend the notions of interval pattern embedding

and avoidance introduced by Yong and the author in type A [21] to Schubert vari-

eties of arbitrary Lie type. This extension is the natural common generalization of

the definition in type A and the definition of pattern avoidance coming from root

subsystems, as introduced combinatorially by Billey and Postnikov [4] and explained

geometrically via the pattern map by Billey and Braden [3]. (In type A, the pattern

map was also implicit in work of Bergeron and Sottile [1].)

The main reason for our definition of interval pattern avoidance is that it gives a

universal tool for describing local properties on Schubert varieties, in the sense that

the set of points on all Schubert varieties satisfying any given local property (except

for dimension) has a characterization using only interval pattern avoidance. The

main example of such a property for which results are known is smoothness. The

Schubert varieties which are smooth everywhere can be characterized by ordinary

pattern avoidance [2, 4, 14]. The locus of singular points in any Schubert variety

of type A was described independently in several papers [5, 10, 12, 16]; this descrip-

tion can be easily reformulated in terms of interval pattern embeddings [21, Theo-

rem 6.1]. One purpose for our more general formulation of interval pattern embed-

dings is to provide the appropriate language for a similar description of the singular

locus in other Lie types.

For geometric properties other than smoothness, ordinary pattern avoidance is

sometimes insufficient even for characterizing which Schubert varieties have the

given property globally. For example, the Schubert varieties which are everywhere

Gorenstein [20] or everywhere factorial [7] cannot be characterized by ordinary pat-

tern avoidance. However, Schubert varieties having these properties, or any local

property preserved under products with affine space, can be characterized using in-

terval pattern avoidance.
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This universality is demonstrated by showing that interval pattern embeddings

give an isomorphism of slices of different Schubert varieties. This isomorphism is

proven using the pattern map of Billey and Braden; when written in coordinates, the

proof becomes essentially the same as the one previously given for type A. However,

this new proof shows the isomorphism extends to the Richardson varieties which are

the closures of the slices, which is a new result even in type A.

2 Pattern Avoidance and Interval Pattern Avoidance

Fix a ground field k. Let G be a connected semisimple linear algebraic group over k,

B a fixed Borel subgroup, and T ⊆ B ⊆ G a maximal torus. Let Φ be the roots

of G under the action of T, Φ+ and Φ− the positive and negative roots correspond-

ing to our choice of Borel subgroup, and ∆+ the set of simple positive roots. Let

V be the inner product space spanned by the root lattice. The Weyl group W of G

is the group generated by the reflections {sα ∈ End(V ) | α ∈ Φ}, where sα(v) =

v − 2(v, α)/(α, α)α. The length ℓ(w) of an element in a Weyl group is the minimal

length of any expression w = sβ1
sβ2

· · · sβk
, where each β j is a simple root. The Weyl

group can also be recovered from G as the group N(T)/T. Pattern avoidance de-

pends not only on the abstract Weyl group but also on the root system it acts on; to

emphasize this, in the remainder of the paper, we denote a Weyl group by the triple

(W,Φ,V ).

The variety G/B is known as the flag variety. The group G acts on G/B via multi-

plication on the left. To each element of u ∈ (W,Φ,V ) (here considered as N(T)/T)

we can associate the T-fixed point eu := uB, and these are all the T-fixed points

of G/B. There is a Bruhat decomposition of G/B into Schubert cells X◦

w := BewB/B,

one for each w ∈ W , and the Schubert variety Xw is the closure of the Schubert cell

X◦

w. There is also a decomposition of G/B into opposite Schubert cells Ω
◦

w = B−ewB/B,

where B− is the Borel subgroup opposite to B; the closure of the opposite Schubert

cell Ω
◦

w is called an opposite Schubert variety and is denoted Ωw. The Richardson va-

riety Xu
v is the intersection of Ωu and Xv; Richardson showed that it is reduced and

irreducible (when nonempty) [19]. The dimension of Xw and the codimension in

G/B of Ωw are both ℓ(w). The dimension of Xu
v is ℓ(v) − ℓ(u).

The Schubert variety Xw is a union of Schubert cells. We define the Bruhat order

on (W,Φ,V ) by declaring that u ≤ v if X◦

u ⊆ Xv. Alternatively, Bruhat order can

be defined combinatorially by declaring it to be the reflexive transitive closure of the

relation ≺ under which u ≺ v if both u = sαv for some α ∈ Φ and ℓ(u) < ℓ(v). This

combinatorial definition has a geometric explanation; when u and v are so related,

the curve Uα · ev is a P
1 inside Xv connecting eu and ev. Here, Uα is the root subgroup

of B corresponding to the root α. The Richardson variety Xu
v is nonempty if and only

if u ≤ v.

Now we recall the definitions of pattern embeddings and pattern avoidance found

in [3], [4]. Let (W ′,Φ ′,V ′) and (W,Φ,V ) be Weyl groups. A subsystem embedding i

of (W ′,Φ ′,V ′) into (W,Φ,V ) is an embedding of V ′ as a subspace of V so that

Φ
′ ∼= Φ∩ i(V ′); this induces an embedding of W ′ into W as the subgroup generated

by the reflections {sα | α ∈ i(Φ ′)}.

Define the flattening map φi from (W,Φ,V ) to (W ′,Φ ′,V ′) as follows. An ele-
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ment w ∈ (W,Φ,V ) is uniquely determined by its inversion set I(w) = Φ+ ∩w(Φ−).

Therefore we can define φi(w) as the element of (W ′,Φ ′,V ′) whose inversion set is

i−1
(

I(w) ∩ i(Φ ′+)
)

. Then i (pattern) embeds v ∈ (W ′,Φ ′,V ′) in w ∈ (W,Φ,V ) if

φi(w) = v. The Weyl group element w is said to (pattern) avoid v if φi(w) 6= v for

every embedding i of (W ′,Φ ′,V ′) into (W,Φ,V ).

Our definition of interval pattern avoidance is now as follows. Let u ≤ v ∈
(W ′,Φ ′,V ′) and x ≤ w ∈ (W,Φ,V ), where ≤ denotes the Bruhat order. Let i be

a subsystem embedding of (W ′,Φ ′,V ′) into (W,Φ,V ). We say i (interval pattern)

embeds [u, v] in [x, w] if the following three conditions are all satisfied.

(i) φi(w) = v and φi(x) = u.

(ii) x and w are in the same right i(W ′) coset.

(iii) [u, v] and [x, w] are isomorphic as intervals in Bruhat order.

The third condition implies in particular that ℓ(v) − ℓ(u) = ℓ(w) − ℓ(x). This

equality in lengths is actually sufficient to imply the third condition, given the first

two; a combinatorial proof of this fact is possible, but the geometry below also shows

it.

Note that the first two conditions imply that x = i(uv−1)w. Since x is deter-

mined by u, v, w, and i, we will say that w (interval pattern) avoids [u, v] if, for every

subsystem embedding i of (W ′,Φ ′,V ′) into (W,Φ,V ), [u, v] does not embed in

[i(uv−1)w, w].

In Type A, where W and W ′ are respectively Sn and Sm for some n ≥ m, argu-

ments of Billey and Braden [3, Section 2.3] show that the notion of interval pattern

avoidance found here is the same (up to the Dynkin diagram automorphism realized

by conjugation by the longest element w0) as the previous definition of Yong and the

author [21]. When u = v and x = w, our notion is the same as that introduced by

Billey and Postnikov [4].

3 Main Theorem and Corollary

Our main theorem can now be stated as follows.

Theorem 3.1 Suppose there is some subsystem embedding i which embeds [u, v] in

[x, w]. Then the Richardson varieties Xu
v and Xx

w are isomorphic. This isomorphism

sends Ω
◦

σ ∩ X◦

τ to Ω
◦

φi (σ) ∩ X◦

φi (τ ) for every σ, τ ∈ [x, w].

The main application of this theorem we have in mind is to the study of singular-

ities of Schubert varieties. Call a local property P semicontinuously stable if it is pre-

served under products with affine space, and the P-locus on any variety is closed. Ex-

amples include being singular, being non-Gorenstein, or having multiplicity greater

than some fixed number k. In addition, the dimension of the i-th local intersection

homology group and hence the i-th coefficient of the Kazhdan–Luzstig polynomial

being greater than a fixed number k is not in general semicontinuously stable, but

behaves as such on Schubert varieties by a theorem of Irving [11].

Now define a poset on the set of all intervals in all Weyl groups (where, as through-

out, the root system is considered part of the data of the Weyl group) by taking the

reflexive transitive closure of the following two relations.

(i) [u, v] ≺ [x, w] if there is some embedding of [u, v] into [x, w].
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(ii) [u, v] ≺ [u ′, v] if u ≤ u ′.

Now we can state our corollary.

Corollary 3.2 Let P be a semicontinuously stable property. Then the set of intervals

such that {[u, v] | P holds at eu on Xv} is an upper order ideal on the aforementioned

poset. The set {w | P holds on no points of Xw} is the set of w avoiding some list of

intervals [u, v].

Notice that this corollary holds separately for different ground fields, in that the

order ideal for the same property may depend on k. The list of intervals to be avoided

may be infinite, but we hope that for any particular property it has a nice form.

Proof The point eu has a neighborhood u · Ω
◦

id in G/B, so u · Ω
◦

id ∩ Xv is a neigh-

borhood of eu on Xv. This neighborhood is isomorphic to (Ω◦

u ∩ Xv) × A
ℓ(u) [13,

Lemma A.4]. Therefore, any semicontinuously stable property P depends only on

Ω
◦

u ∩Xv, which is commonly called the slice of Xv at eu. Our theorem now shows that

P is preserved under going up in our poset by the first type of generating relation,

since Ω
◦

u ∩ Xv is isomorphic to Ω
◦

x ∩ Xw.

As for the second type of generating relation, we can by induction on Bruhat order

reduce to the case where u ′
= sαu. In that case, Uα · eu is a curve in Xv all of whose

points have neighborhoods isomorphic to the neighborhood at eu (since Xv has a B-

action). The closure of Uα ·eu includes the additional point eu ′ . Since the set at which

P holds is closed, P is also preserved under going up by the second type of generating

relation.

The last statement follows by taking a generating set for the order ideal.

We also have the following corollary about Kazhdan–Luzstig polynomials, gener-

alizing a lemma of Polo [17, Lemma 2.6]. (See also [3, Theorem 6].) This corol-

lary can also be deduced from the algorithm introduced by Braden and Macpherson

in [8] to calculate intersection cohomology from moment graphs, as a subsystem

embedding gives an isomorphism of intervals in moment graphs and not merely an

isomorphism of intervals in Bruhat order.

Corollary 3.3 Suppose a subsystem embedding embeds [u, v] into [x, w]. Then the

Kazhdan–Luzstig polynomials Pu,v(q) and Px,w(q) are equal.

It is conjectured that Pu,v(q) = Px,w(q) whenever [u, v] and [x, w] are isomor-

phic as intervals, and this theorem confirms a very special case of this conjecture.

Kazhdan–Luzstig polynomials and this conjecture are discussed with further refer-

ences in [6].

4 The Pattern Map

To prove the theorem, we use the geometric pattern map introduced by Billey and

Braden [3]. Let T0 be a one parameter subgroup of T which is generic among sub-

groups satisfying α(T0) = 1 for every α ∈ i(Φ ′). (Recall that roots are actually

characters of T, which are homomorphisms from T to k
×.) Let G ′ be the centralizer

ZG(T0) of T0. The Weyl group and roots of G ′ are then i(W ′) and i(Φ ′). In G ′ we fix

the Borel subgroup B ′
= G ′ ∩ B.
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Now Billey and Braden define a map ψ : (G/B)T0 → (G ′/B ′) as follows. There

is a bijection between points of G/B and Borel subgroups of G given by associating

to the coset gB the Borel subgroup gBg−1. Now define ψ(gB) to be the point in

G ′/B ′ associated with the Borel subgroup gBg−1 ∩ G ′. This is a Borel subgroup of

G ′ whenever gB is fixed by T0 [18, Theorem 6.4.7]. Billey and Braden prove the

following theorem.

Theorem 4.1 ([3, Theorem 10])

(i) The map ψ restricts to an isomorphism on each connected component of (G/B)T0 .

(ii) For any w ∈ (W,Φ,V ), the restriction of ψ is an isomorphism between X◦

w ∩
(G/B)T0 and X◦

φi (w) taking ew to eφi (w).

Their proof of part (ii) (which is a combination of parts (ii) and (iii) of their orig-

inal statement) also shows that ψ restricts to an isomorphism between Ω
◦

w ∩ (G/B)T0

and Ω
◦

φi (w).

As remarked by Billey and Braden [3] (see also [15, Proposition 4.2]), this geo-

metric pattern map explains why ordinary pattern avoidance characterizes singular

Schubert varieties. Given any one parameter torus T0
∼= k

× acting on a Schubert

variety, if the T0 fixed locus is singular, the entire Schubert variety must be singu-

lar. If there is a pattern embedding i of v into w, and Xv is singular, then ψ gives an

isomorphism between Xw ∩ (G/B)T0 and Xv, showing that Xw is singular.

5 Proof of Main Theorem

We will show that Xu
v and Xx

w are isomorphic under the map ψ. First we show that ew

and ex are in the same connected component of (G/B)T0 , as follows. Since x and w are

in the same right W ′ coset, we can successively multiply x on the left by reflections sα,

with α ∈ Φ
′, to get w. If σ = sατ for some α ∈ Φ

′, then eσ and eτ are in the same

connected component of (G/B)T0 since the points are connected by the Schubert

curve Uα · eσ (assuming σ ≥ τ ), and Uα is T0 fixed as α ∈ Φ
′.

Now, by part (ii) of the theorem, X◦

w ∩ (G/B)T0 and Ω
◦

x ∩ (G/B)T0 are connected,

so, given that ew and ex are in the same connected component of (G/B)T0 , (X◦

w∩Ω
◦

x )∩
(G/B)T0 is contained in a single connected component of (G/B)T0 . Therefore, ψ is

an isomorphism when restricted to X◦

w ∩ Ω
◦

x ∩ (G/B)T0 .

We show that the image of X◦

w ∩ Ω
◦

x ∩ (G/B)T0 is X◦

v ∩ Ω
◦

u . If p ∈ X◦

v ∩ Ω
◦

u ,

then p = ψ(p1) for some p1 ∈ X◦

w ∩ (G/B)T0 , and p = ψ(p2) for some p2 ∈ Ω
◦

x ∩
(G/B)T0 . Since X◦

w ∩(G/B)T0 and Ω
◦

x ∩(G/B)T0 lie in the same connected component

of (G/B)T0 , by part (i) of the theorem, p1 = p2 ∈ X◦

w ∩Ω
◦

x ∩ (G/B)T0 . Conversely, for

p ∈ X◦

w ∩Ω
◦

x ∩ (G/B)T0 , ψ(p) ∈ ψ
(

X◦

w ∩ (G/B)T0
)

∩ψ
(

Ω
◦

x ∩ (G/B)T0
)

= X◦

v ∩Ω
◦

u .

In particular, X◦

w ∩ Ω
◦

x ∩ (G/B)T0 has dimension ℓ(v) − ℓ(u). Since we have a

pattern embedding from [u, v] to [x, w], ℓ(v)− ℓ(u) = ℓ(w)− ℓ(x), so the dimension

of X◦

w ∩ Ω
◦

x ∩ (G/B)T0 is the same as the dimension of X◦

w ∩ Ω
◦

x . As the latter is

known to be irreducible [19] (or [9, Proposition 1.3.2]), X◦

w ∩ Ω
◦

x , and therefore its

closure Xx
w, must be pointwise T0-fixed.

Since Xx
w is connected and pointwise T0-fixed, it must be isomorphic to its image

under ψ. This image is the closure of X◦

v ∩ Ω
◦

u , which is Xu
v .
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The calculation of the image can be repeated for every σ, τ ∈ [x, w], proving the

second statement.
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