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We study the coupled settling, deformation and mixing dynamics of a dense blob of
fluid falling in an axially (vertically) linearly stratified Taylor–Couette cell (operated in
a laminar stable regime). This configuration allows the independent analysis of stretching
dynamics, driven by radial (horizontal) velocity variations, and settling dynamics, driven
by buoyancy forces associated with vertical density variations. As the blob settles, it is
stretched in the horizontal plane and forms an elongated lamella. Through the competing
effects of transverse compression of the lamella due to this shear-induced stretching
and broadening due to diffusion, the lamella irreversibly mixes with ambient fluid, thus
progressively adjusting its own density towards that of the ambient fluid. Eventually, the
lamella settling stops at a final equilibrium position that depends on the ambient vertical
density gradient and the rate at which it has been deformed by the horizontal shear. We
show how this final position is determined by stretching-enhanced diffusion, i.e. mixing.
We demonstrate that a theoretical mixing model compares favourably with experiments
with various Froude numbers (quantifying the relative strength of the horizontal shear and
the vertical stratification) and construct a new criterion for the energetic ‘efficiency’ of
this mixing process that explicitly captures its inherently diffusive character.

Key words: laminar mixing

1. Introduction

Mixing, i.e. the way in which a composition or scalar field irreversibly evolves from a
segregated state towards homogeneity, is a key process for a large variety of settings with
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length and time scales spanning orders of magnitude. A particularly significant setting is
within geophysical flows, as both the atmosphere and the oceans are (on average) vertically
stratified in density. As the average density gradient is anti-parallel to the (vertical)
direction in which gravity acts, fluid elements vertically displaced from their equilibrium
position experience a restoring buoyancy force which tends to bring them back to their
equilibrium. However, buoyancy forces can also trigger a wide range of instabilities,
inducing relatively large-scale and nominally reversible ‘stirring’ motions that actually
increase the rate of (irreversible) mixing and thus affect (and typically reduce) the driving
buoyancy forces of the stirring. When classified in this way, mixing in stratified flows is an
interesting example of a ‘two-way coupling’ phenomenon. Stirring enhances mixing but
is itself sensitive to the effects of mixing, as the scalar being mixed is ‘dynamic’, in the
sense that its instantaneous spatial distribution affects the fluid flow (Caulfield 2021).

Understanding (and quantifying) irreversible stratified mixing is exceptionally important
because of its considerable (and still somewhat uncertain) impact on basin-scale transport
of heat and salinity in the oceans (Munk 1966; Wunsch & Ferrari 2004), a key component
of the global climate system. There has been a huge amount of effort devoted to
constructing useful and robust parametrisations of this mixing (Gregg et al. 2018; Caulfield
2021). In particular, mixing properties, especially a measure of mixing efficiency, are
often described from an energetic viewpoint, as irreversible mixing of a statically stable
density distribution tends to increase the ‘background potential energy’ (i.e. the minimum
potential energy associated with the notional adiabatic rearrangement of density parcels
(Winters et al. 1995)).

Therefore, measures of the efficiency of mixing are often quantified cumulatively as the
proportion of injected kinetic energy that irreversibly increases the background potential
energy, or instantaneously in terms of the relative size of the rate of destruction of
‘available’ potential energy (i.e. the difference between the actual potential energy and the
background potential energy, notionally available to drive motion) to the dissipation rate
of kinetic energy. Although this energetic approach to mixing quantification is appealing
and can (in some circumstances) be connected directly to actual irreversible scalar mixing
via the diffusive reduction in scalar variance (Caulfield 2021), there are non-trivial issues
with this conflation of energy reservoir exchanges with diffusive mixing, which is not
generically appropriate (Tailleux 2013). Even in the simplest case of a ‘Boussinesq’ fluid
with kinematic viscosity ν and a linear single-component equation of state (i.e. where the
density is linearly related to a single scalar with diffusivity D), this energetic approach
to describing mixing has no obvious way to describe or quantify the widely observed
dependence of mixing properties on the fluid’s Prandtl number Pr = ν/D (Smyth, Moum
& Caldwell 2001; Salehipour, Peltier & Mashayek 2015; Riley, Couchman & de Bruyn
Kops 2023) and hence on the molecular properties of the scalar being mixed. Such a result
suggests that the exceptionally small-scale diffusive processes are (perhaps unsurprisingly)
crucially important for mixing even in (strongly) turbulent flows.

There is thus room for studying stratified mixing where the dynamic effects of buoyancy
forces on the fluid flow are decoupled in a controlled way. We focus on a particular
‘one-way coupling’ situation where the large-scale flow is externally imposed and is
unaffected by buoyancy forces. We consider the settling of an initially spherical and
relatively dense blob of fluid in a vertically (axially) stratified Taylor–Couette cell, with
a constant linear density gradient and hence constant buoyancy frequency N given by
N2 = (−g/ρ0) dρ̄/dz, where g is the gravitational acceleration, ρ̄ is the horizontally
averaged density and ρ0 is some reference density. This configuration allows the
independent analysis of stretching dynamics (driven by radial (horizontal) velocity
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variations) and settling dynamics (driven by buoyancy forces associated with vertical
density variations), which, crucially, do not affect the macroscopic flow velocity
distribution. As the blob settles, it is stretched in the horizontal plane and forms an
elongated lamella. Through the competing effects of compression transverse to the
lamella due to this shear-induced stretching and broadening due to diffusion, the lamella
irreversibly mixes with ambient fluid, thus progressively adjusting its own density towards
that of the ambient fluid. The settling stops at a final equilibrium position, where the blob
has the same density as the ambient fluid and so there is zero buoyancy force, that depends
on the ambient vertical density gradient and the deformation rate (by the horizontal shear)
of the blob.

This process can thus be thought of as an idealisation of the final relatively small-scale
irreversible mixing that occurs following some dynamically significant stirring associated
with a larger-scale flow, and thus has the opportunity to capture the key interplay between
stretching and diffusion at the heart of a small-scale description of mixing. Indeed, this
process can be studied quantitatively thanks to the lamellar representation of mixing.
Decomposing a scalar field into an ensemble of lamellae that concomitantly stretch, diffuse
and aggregate has allowed significant progress (Villermaux 2019). At the scale of a unique
lamella, two phenomena compete: kinematic deformation (at some shear rate γ given by
the macroscopic flow), and diffusive broadening (at some rate D/s2

0, where s0 is an initial
characteristic blob length scale and D is the diffusion coefficient of the scalar field). The
ratio of these two rates defines an appropriate Péclet number,

Pe := γ s0
2

D
= RePr, (1.1)

where Re := γ s2
0/ν (ν being the kinematic viscosity of the fluid) is the appropriate

Reynolds number for the blob’s evolution and Pr := ν/D is the molecular Prandtl number.
When Pe � 1, the mixing time tS ∼ γ −1F(Pe) is of order γ −1, and importantly it is
significantly smaller than the diffusion time s2

0/D and depends on the diffusion properties
of the scalar being mixed through a weak function F(Pe) of the Péclet number (Villermaux
2019). In a simple shear, tS ∼ γ −1Pe1/3, and the post-mixing time concentration and width
of the lamella are well understood and documented (Ranz 1979; Meunier & Villermaux
2003; Souzy et al. 2018).

Simplistically, it seems reasonable that the (appropriately non-dimensionalised) final
equilibrium position of such a blob would involve some combination of 1/N (the buoyancy
time scale) and tS (the density homogenisation time scale, independent of N). However,
particularly when Pr � 1 (and so Re � 1 while Pe � 1), viscous drag sets the settling
velocity, and so it is at least plausible that the equilibrium position depends on Re too. To
investigate the dependence on the various flow parameters of the final equilibrium position,
and hence the flow’s mixing properties, the rest of this paper is organised as follows. The
experimental set-up and measurements are reported in § 2. A theoretical model for the
concomitant settling and deforming lamella in a viscous stratified shear flow is introduced
in § 3 and compared with the experiments. Some implications of this work for mixing in
stratified flows and brief conclusions are drawn in § 4.

2. Experiments

We show the experimental set-up in figure 1. We use a Taylor–Couette cell whose
inner and outer radii are RI = 4 cm and RO = 9 cm, respectively. The inner cylinder
is stationary whereas the outer cylinder rotates at a constant angular velocity Ω .

974 R1-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.804


N. Petropoulos, C.P. Caulfield, P. Meunier and E. Villermaux

z

z

x
y

RO – RI

z = 0

z0

ρ0

ρ

Ω

ρ̄

H

η(t)

η(t)

�(t)

�(t)

γ

y

x

(a) (b) (c)

Figure 1. (a) Typical ambient density profile: crosses correspond to experimental measurements; the solid line
corresponds to a linear fit. (a,b) Experimental set-up: a (green) blob of density ρ0 is released at the surface of the
cell, experiencing a local azimuthal velocity radial shear rate γ . The distance z0 is the distance from the surface
to the location where the ambient density is ρ0. The inset of (b) shows a reconstruction corresponding to an
iso-concentration surface, defining the lamella’s time-dependent length � and width η � �. This reconstruction
consists of multiple frames as the lamella rotates through the laser sheet. (c) Top (offset) views of the settling
lamella at five different times (separated by a rotation period; an artificial shift in the y-direction has been added
between each frame), showing �(t) to increase approximately linearly (red dashed lines).

By construction, the flow is also stable with respect to centrifugal instability
(Chandrasekhar 1961) and is therefore laminar. This configuration gives rise to
an azimuthal velocity profile in the radial direction, Vθ (r) = Ar + B/r (with A =
ΩRO/(R2

O − R2
I ) and B = −ΩROR2

I /(R
2
O − R2

I )). As the settling lamella has initial
(and hence maximum) width s0 � 2.5 × 10−3 m � RO − RI , it experiences a flow with
constant (radial) shear rate γ := r∂r[Vθ /r]|r=Rb = −2B/R2

b (where Rb is the radial
position at which the blob is deposited), independent of the vertical coordinate z. We fill
the cell with two-thirds glycerol and one-third linearly stratified salt water (as shown in
figure 1a) using the double-bucket method, creating a stratification characterised with a
buoyancy frequency of N2 � 1.4 s−2.

The stratification suppresses any significant Ekman pumping during an individual
experiment, while the kinematic viscosity of the experimental fluid, ν = 2.6 ×
10−5 m2 s−1, ensures that the Reynolds number Re � 10−1, preventing all potential flow
instabilities (without glycerol the initial blob quickly transforms into a vortex ring that
destabilises through Rayleigh–Taylor-type instabilities and then disintegrates; these are
the kinds of instabilities that we aim to damp using a more viscous fluid). The viscosity
of the water–glycerol mixture is estimated using parametrisations developed by Cheng
(2008) and Volk & Kähler (2018). The molecular diffusivity D of salt in this mixture is
estimated using the Stokes–Einstein formula and found to be D � 3.7 × 10−11 m2 s−1, so
that Pr � 7.0 × 105.

We prepare a blob (using the same mixture) to have density ρ0(= 1.217 g cm−3),
corresponding to the background density ρ̄ at the height defined as z = 0, located
approximately 0.5H above the bottom of the container to prevent interactions with the
bottom boundary. We form the initial blob at the tip of a syringe that is gently brought

974 R1-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.804


Settling versus mixing in stratified shear flows

towards the surface of the cell. As soon as the blob touches the surface, it is injected
into the liquid bulk by the release of surface tension stresses and slowly falls down due
to buoyancy forces, as the surface is a distance z = z0 above the location where ρ̄ = ρ0.
We dye the blob using fluorescein. The molecular diffusivity of the fluorescein in the
salt-water–glycerol mixture is estimated to be of order Dfluo � 1.6 × 10−10 m2 s−1, so
(D/Dfluo)

1/3 � 0.6, implying that the evolution of fluorescein concentration is a good
proxy for tracking the evolution of salt concentration and hence density in the settling
lamella.

We visualise the settling lamella through laser-induced fluorescence of fluorescein
using a fixed vertical blue laser sheet (in the x–z plane, perpendicular to the flow)
that the lamella crosses as it falls. The data are acquired using a low-light-sensitive
camera appropriately calibrated (see Meunier 2020). The set-up has a spatial resolution
of 2.0 × 10−5 m pixels−1, which ensures that the key Batchelor scale ηB � s0Pe−1/3

(see e.g. Souzy et al. 2018) is resolved for the range of parameters studied here, ηB ∈
[5 × 10−5 m, 9 × 10−5 m].

Figure 1(c) presents (offset) top-view visualisations of the blob when it is stretched by
the shear, showing that the length �(t) of the blob increases approximately linearly at late
times, as determined through the kinematics (for a constant shear rate γ ) by

� = s0

√
1 + (γ t)2. (2.1)

Figure 2 shows qualitatively the vertical trajectory of a blob as it settles for various
shear rates γ , associated with different rotation rates Ω . In the absence of shear, the blob
falls down until its position zb actually reaches z = 0, where its (initial, unmixed) density
ρ0 is equal to the background density ρ̄(z = 0) (figure 2a). The main blob is followed
by a thin filament reorganising into small secondary blobs, which will not be considered
in this paper. This might be the consequence of a Rayleigh–Plateau-type instability, the
fluorescein potentially changing the surface tension of the fluid in the settling blob. The
(unsheared) blob also seems to start forming a dense-core vortex ring, as can be seen
for instance in the middle section of figure 2(a). Such a structure is known to enhance
mixing with the surrounding fluid, as discussed in Linden (1973), Camassa et al. (2013)
and Olsthoorn & Dalziel (2017) in the case of strongly stratified interfaces, but this
effect was not seen here, at least within the precision of our measurements, viscosity
potentially preventing the full development of the vortex ring. In the presence of shear
(Ω /= 0), the width η of the blob decreases at early times since the blob is stretched in
the along-lamella direction. The drag is therefore higher and diffusion acts sooner, thus
reducing the (driving) buoyancy force. As a consequence, the blob falls more slowly, mixes
with the surrounding (less dense) fluid and hence stops before reaching z = 0. This effect
is clearly visible in figure 3(a), showing the temporal evolution of the vertical position of
the blob. Quantitatively, the final position of the lamella, denoted by zf , increases from
0.1z0 to 0.7z0 when the shear increases from 0.1 to 1 s−1.

3. Model for a mixing lamella

We develop a simple model coupling the vertical motion of a settling lamella with
its mixing dynamics and then discuss its implications for mixing more generally. We
formulate a time-dependent force balance where FD(t) is the drag force, FB(t) the
buoyancy force, ρb(t) the density of the lamella, Vb(t) its volume and zb(t) its vertical
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t = 0.4 s 8 s 122 s t = 0.1 s 23 s 45 s t = 0.2 s 23 s 47 s

z = 0

z0

z

Ω = 0 r.p.m.
γ = 0 s–1

Ω = 8 r.p.m.

η(t)

γ = 0.36 s–1
Ω = 16 r.p.m.
γ = 0.72 s–1

(a) (b) (c)

Figure 2. (a–c) Settling of a dyed lamella of initial density ρ0 released at the surface for different rotation
speeds Ω of the outer cylinder. The height z0 corresponds to the vertical distance between the surface and the
position z = 0 where the ambient density ρ̄ = ρ0. Note that in the sheared cases, the blob initially split into a
main and a secondary blob. The discussion that follows and the model developed in this work for the settling
dynamics of the blob focus on the main blob (framed in red), which does not lose mass except through a weak
trailing filament, and we will hence use its total mass as the conserved mass in our model (see § 3).
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Ω = 4 r.p.m. (γ = 0.18 s–1)
Ω = 8 r.p.m. (γ = 0.36 s–1)
Ω = 12 r.p.m. (γ = 0.54 s–1)
Ω = 16 r.p.m. (γ = 0.72 s–1)
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Model (no diffusion)
Model (no diffusion,

settling at tS)

Figure 3. (a) Experimental and theoretical (from (3.4)) vertical trajectories of the settling lamellae for various
rotation speeds Ω . The position of the blob is scaled by z0 and time is scaled by the mixing time tS = γ −1Pe1/3

(in dimensional form). The thick black line corresponds to a numerical integration of (3.4). The dotted black
line corresponds to the non-diffusive model (3.7). The dashed black line corresponds to the non-diffusive model
(3.7) settled at t = tS. Note that the data are collected when the maximal concentration point of the lamella
crosses the laser sheet, i.e. once per rotation period of the lamella around the set-up, and not continuously.
(b) Dimensionless final position of the settling lamella for various shear rates γ . The data are also presented
as a function of Re/Fr2, a parameter that controls the mixing criterion developed in § 3.3. The dashed black
line corresponds to the approximation given by (3.10), whereas the thick black line corresponds to a numerical
integration of (3.4). The shaded region corresponds to the range of shear rates γ for which the lamella settles
at zf � 0, i.e. its final density is approximately unchanged.
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position:

ρbVb
d2zb

dt2
= FD + FB, (3.1)

where

FB = − [ρb − ρ̄(zb)] Vb(t)g, ρ̄(z) = ρ0

(
1 − N2

g
z
)

(3.2a,b)

and N is the (constant) buoyancy frequency. The settling velocity dzb/dt ensures that the
Reynolds number of the wake |dzb/dt|η/ν � O(10−3). In this Stokes regime, the drag
force is proportional to the settling velocity and the length of the lamella �(t):

FD = −π

6
ανρ0�(t)

dzb

dt
(3.3)

using the Boussinesq approximation, fixing the density at the reference value ρ0. The
drag coefficient α depends on different parameters of the problem such as the viscosity
of the fluid, the settling speed of the lamella and its geometry. It has been taken to be
approximately 7, a value that gives good agreement between the experimental data and the
theoretical predictions (see figure 3a). This value of α can be compared with its theoretical
value computed assuming that the lamella is an infinite cylinder of radius s0 settling at a
constant speed U (see e.g. Lamb 1932), αth = 24/[(1/2) − γE − log(Us0/4ν)] � 5 where
U = O(10−3) m s−1 is the mean vertical velocity of the settling lamella and γE is Euler’s
constant. A better drag model (especially for low shear rates γ � 1) would perhaps consist
of a finite-volume drag model for spheroids (that importantly evolves as the shape of
the lamella changes) such as that developed by Chwang & Wu (1975). For the sake of
simplicity, we did not investigate this option further.

Mass conservation ensures that ρbVb = ρ0V0 where V0 = πs3
0/6 is the initial volume

of the (assumed spherical) blob. Note that in the sheared cases, the blob initially (more
precisely, before the first passage of the blob through the laser sheet, i.e. within one
half-rotation period) split into a main and a secondary blob. The discussion that follows
and the model developed here focus on the main blob (highlighted in red in figure 2),
which does not lose mass except through a weak trailing filament and for which mass
conservation thus seems to be valid. Note that we can reconstruct the main blob using
multiple images as it rotates through the laser sheet and hence estimate its volume. Using
this technique for the second and third passages of the lamella at Ω = 8 r.p.m. (experiment
presented in figure 2b), we find that, within the error bounds of the method, the volume
of the lamella is conserved and is approximately 3 × 10−9 m3. Since these measurements
are done before the mixing time (estimated to be 169 s in this particular case), this further
supports that conservation of mass is valid for the main blob within the approximations
done in this work. Hence, we focus here on the main blob and use its total mass as the
conserved mass in our model.

We now non-dimensionalise all quantities using the initial size of the blob s0 and the
shear rate γ so that ẑb ≡ zb/s0, ẑ0 ≡ zb/s0, t̂ ≡ γ t, ρ̂b ≡ ρb/ρ0, N̂ ≡ N/γ , V̂b ≡ Vb/V0
and �̂ ≡ �/s0, and we obtain

d2ẑb

dt̂2
= − α

Re
�̂

dẑb

dt̂
−

(
1

Fr2ρ̂b

)
ẑb − β

(
1 − 1

ρ̂b

)
with �̂ =

√
1 + t̂2, (3.4)

where

Re := γ s2
0

ν
, Fr := γ

N
, β := g

s0γ 2 . (3.5a–c)
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Here Fr is a Froude number that compares the buoyancy time scale 1/N to the shear time
γ −1, while the parameter β compares the inviscid free-fall time

√
s0/g to the shear time.

For γ = 0.1 s−1, we have Re � 10−2, Fr2 � 10−1, β � 104 and Pe � 104. For γ = 1 s−1,
we have Re � 10−1, Fr2 � 10, β � 102 and Pe � 105. Thus, this experiment can access
weakly stratified (high Fr) and strongly stratified (low Fr) laminar flow regimes, at large
Pe. Note that another important dimensionless parameter of our system is the Archimedes
number (comparing buoyancy and viscous forces), defined as

Ar := gs3
0 [ρ0 − ρ̄(z0)] /ρ̄(z0)

ν2 , (3.6)

where ρ̄(z0) is the density of the surrounding fluid at the injection point. The Archimedes
number was estimated to be approximately 4. In the rest of the paper, we will work with
dimensionless quantities (unless otherwise stated) and will therefore drop the hats for
clarity.

3.1. Non-diffusive dynamics
Given the low values of Re � 1, the settling dynamics is over-damped, so inertia can be
neglected in (3.4) (i.e. d2zb/dt2 � 0). Considering the initial regime when the deforming
lamella has not yet mixed and its density is still unaltered (i.e. dimensionless ρb = 1),

zb(t) = z0

[√
1 + t2 + t

]−Re/(αFr2)
. (3.7)

We plot this prediction in figure 3(a) (dotted lines). Unlike in the experiment, (3.7)
predicts that zb → 0 as t → ∞. Indeed, in the absence of diffusion the blob is always
denser than the surrounding fluid for zb > 0. We thus need to introduce diffusive effects
to predict the final position correctly.

3.2. Diffusive dynamics
Figure 4(a) shows the temporal evolution of the maximal dye concentration Cmax and the
corresponding blob width. The shear stretches the blob into a thin lamella, enhancing
diffusion and leading to a decrease of the maximal concentration. We know that for
the linear stretching stirring protocol studied here, the diffusion problem (and hence the
maximal concentration) depends on the Ranz time τ (Ranz 1979; Villermaux 2019):

Cmax = C0 erf
[

1
4
√

τ

]
, where τ = 1

Pe

∫
�(t)2 dt = 1

Pe

[
t + t3

3

]
(3.8)

and C0 is the initial concentration of dye in the blob. We plot this prediction with solid
lines in figure 4(a). There is excellent agreement with the experimental measurements even
though the prediction ignores dynamic buoyancy effects.

The diffusive width of the lamella is equal to the Batchelor thickness given by (see
Souzy et al. 2018; Villermaux 2019)

η = 1
�

√
1 + 4τ =

√
1 + 4(t + t3/3)/Pe

1 + t2
. (3.9)

As shown in figure 4(b), η decreases initially and then increases as
√

t when diffusion
becomes efficient. Hence, mixing starts when τ > 1, i.e. when (in dimensionless form)
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Figure 4. (a) Time evolution of the scaled concentration of dye and (b) scaled width of the settling lamella.
Time is scaled using the mixing time tS = γ −1Pe1/3 (in dimensional form). The solid lines correspond to the
theoretical predictions (3.8) and (3.9). The size of the symbol in (b) is larger than in (a) to take into account the
fact that measurements of the lamella’s width are more prone to errors, especially as we approach the Batchelor
width. Note that the data are collected when the maximal concentration point of the lamella crosses the laser
sheet, i.e. once per rotation period of the lamella around the set-up, and not continuously.

t > tS where tS = Pe1/3. Interestingly, the equilibrium position is reached at approximately
the same mixing time t = tS as shown in figure 3(a). This is because the difference between
the lamella’s density and the surrounding fluid’s density suddenly decreases at t = tS,
thus cancelling out the buoyancy force and stopping the descent of the blob. As a first
approximation, we can assume that the final position zf of the settling lamella (formally
equal to zb(t → ∞) where diffusion has been taken into account) is approximated by its
predicted position in the absence of diffusion, (3.7), at t = tS:

zf � zb(tS) = z0

[√
1 + Pe2/3 + Pe1/3

]−Re/(αFr2)
. (3.10)

We compare this theoretical prediction with experimental data in figure 3(b). The
prediction slightly overestimates the equilibrium position. Indeed, the lamella does not
abruptly stop at the mixing time. However, there is reasonable agreement in both
magnitude and trend.

To improve this prediction, we now assume that the (dimensional) density of the lamella
ρb(t) decreases towards the density of the surrounding fluid ρ̄ with the same temporal
dependence as the maximal concentration, i.e. that for t < tS the density of the lamella
remains relatively constant but converges towards the density of the surrounding fluid for
t > tS. In other words, we assume, using dimensional quantities, that

ρb(t) − ρ̄(zb) = [ρb(0) − ρ̄(zb)] erf
[

1
4
√

τ

]
. (3.11)

Rewriting ρ̄ from (3.2a,b) in dimensionless form yields

ρb(t) = 1 − 1
βFr2 zb + 1

βFr2 zb erf
[

1
4
√

τ

]
. (3.12)

Using this expression for the lamella’s time-dependent density, the trajectory of the lamella
can no longer be derived theoretically from (3.4). We solve the system numerically using a
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backward differentiation method with adaptive time-stepping and plot solutions for various
values of the shear rate γ in figure 3(a) (solid lines), demonstrating excellent agreement
with the overall time evolution of the vertical trajectory of the blob.

3.3. Implications for mixing
The final density of the lamella, and hence the relative amount of mixing it has
experienced, can be inferred from the lamella’s equilibrium position. The closer the
equilibrium position is to its initial position z0, the more the lamella has mixed with the
surrounding fluid. In that sense, zf /z0 in its dimensionless form may be interpreted as a
‘mixing efficiency’, particularly as it is exactly equal to the ratio between the increase of
the background potential energy and the available potential energy of the initial blob, even
though the only dynamic effect of the buoyancy has been on the (inertialess) settling of
the lamella.

For the linear stretching considered here using (3.10), efficient mixing (zf � z0) requires

Re ln(Pe)

Fr2 � 3α = O(10). (3.13)

This mixing criterion incorporates all the effects involved in the problem. A strong
stratification (large N) must be compensated for by a large shear γ to meet a given
efficiency (i.e. keeping Fr fixed). Viscous damping (large ν) will actually slow down
settling and favour efficiency. Significantly, weak diffusion (small D and hence larger
Pe) will delay mixing, thus reducing efficiency (consistent with simulations as discussed
in the Introduction), although through a weak, but nevertheless quantifiable, logarithmic
correction, as is classically the case for all stretching-enhanced diffusion processes
(Villermaux 2019).

3.4. Generalisation
The above results are valid for a linear shear (i.e. �(t) ∼ t at large times), but are readily
generalised to any stretching flow. For a given �(t), from (3.4), for times t ≤ tS we can
obtain the general expression (in the absence of diffusion and in the Re � 1 regime)

zb(t) = z0 exp
[
− Re

αFr2

∫ t

0

dt′

�(t′)

]
. (3.14)

For example, if the lamella is exponentially stretched so that �(t) = et, the position zb(tS)
is

zf � zb(tS) = z0 exp
[
− Re

αFr2

(
1 − 1√

Pe

)]
(3.15)

since the mixing time tS = ln(Pe)/2 (Batchelor 1959; Villermaux 2019) in that case.
Although consistent with the linear stretching case (zf , and hence the efficiency,
monotonically decreases as Pr increases), the final position converges to a finite value
z0 exp[−Re/(αFr2)] in the limit Pe → ∞. Perhaps surprisingly, the blob does not reach
z = 0 as D → 0 since the drag increases so rapidly. Very interestingly, (3.15) demonstrates
that when the elongation is sufficiently rapid (exponential), the final equilibrium position
zf is independent of the Péclet number Pe as Pe → ∞, since the analogue of the criterion
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(3.13), remaining valid as D → 0, is

Re

Fr2 � α = O(10). (3.16)

This result, arising from a deterministic, smooth, non-singular stirring process, has a
significant implication for scalar dissipation cascades. A classical ‘law’ of passive scalar
turbulence is that D|∇C|2, where C is the concentration of the scalar, remains finite as
D → 0. Although some counter-examples to this law have been presented (see for example
Balmforth & Young 2003), a consistent argument for when this law applies in passive
scalar mixing can be formulated (Villermaux 2012, 2019). Essentially, the (finite) mixing
time tS is independent of D only when �(t) diverges in a finite time t = tS. In the stratified
situation considered here, this condition on �(t) is relaxed. As there is an inherent coupling
between the lamella settling speed and its density, there is a slowing cascade towards
immobility. During this cascade (which does not terminate in finite time) diffusion can
disappear, even though diffusion is the actual mechanism driving the density equalisation.
There is a highly suggestive analogy with the way that viscosity disappears in the infinitely
accelerating cascade towards viscous dissipation in the kinetic energy cascade (Donzis,
Sreenivasan & Yeung 2005), leading to the ‘zeroth law of turbulence’.

4. Discussion

We have explored the fundamental small-scale mechanisms of diffusive mixing in
stratified shear flows by analysing the settling of a dense blob in a simple experimental
flow geometry that is constructed to decouple the blob stretching dynamics (driven by
horizontal velocity gradients) and the settling (driven by vertical buoyancy forces). We
have shown that such mixing results from the simultaneous and competing effects of
stretching-enhanced diffusion, which tends to mix fluid parcels with different densities,
and restoring buoyancy forces, which tend to return vertically perturbed parcels to their
initial position and hence limit mixing. Note that the regime studied here is not Taylor–Aris
dispersion (Taylor 1953; Aris 1956), since the blob width never reaches the gap width. This
is a pre-Taylor–Aris dispersion regime characterised by a stretching-enhanced diffusion
process.

We have shown that the blob settling dynamics is amenable to a standard mixing
analysis in a shear flow that naturally leads to a criterion for mixing efficiency, (3.13) and
(3.16). This criterion confirms that mixing by overturning density gradients is prevented in
sufficiently strongly stratified flows and that mixing in stratified shear flows is principally
controlled by velocity-shear-induced stretching. Furthermore, it also explicitly captures the
dependence of the mixing efficiency on the molecular diffusivity of the scalar being mixed
as well as the previously empirically observed property that mixing efficiency decreases
with the Prandtl number Pr. It confirms (yet again) that ‘history matters’ in mixing
problems, as the time-integrated effects of both settling and stretching must be tracked to
quantify accurately the associated diffusive irreversible mixing, and that the exceptionally
small-scale diffusive processes are crucially important for mixing (Villermaux 2019;
Caulfield 2021).

The configuration studied here involves a laminar, time-independent flow, for which the
viscosity was large enough to neglect the buoyancy-driven coupling between the density
and velocity fields, the vertical settling velocity being sufficiently small. A natural question
is therefore whether the mixing criterion derived here remains relevant for unsteady flows
at larger Reynolds numbers, as commonly arise in geophysics (Gregg et al. 2018; Caulfield
2021). Concentrating on the dynamics of a lamella enables, at least in some sense, the
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abstraction of the Reynolds number by incorporating the complexity of the flow in the
laws describing its stretching. However, as inertial effects become important and the flow
becomes turbulent, the one-way coupling considered here will inevitably become two-way,
with the evolution of the density of lamellae dynamically influencing the velocity field,
a key difference between stratified and unstratified flows. However, following Batchelor
(1959), we speculate that our analysis remains valid at sufficiently small scales, and
specifically in the interval of scales between the Kolmogorov scale ηK = (ν3/ε)1/4 (ε
being the dissipation rate of turbulent kinetic energy), where (loosely) velocity gradients
are smoothed by viscosity, and the Batchelor scale ηB = ηK/Pr1/2, where scalar gradients
are diffused, suggesting that exceptionally small-scale diffusive processes are crucially
important for mixing even in strongly turbulent flows. Such an interval occurs in the oceans
where Pr = O(10), for example. Finally, if an isolated lamella is the ‘quantum’ of mixing,
randomly stirred mixtures typically involve the aggregation of multiple nearby lamellae
(Villermaux & Duplat 2003), thus forming larger, apparently uniform-in-concentration
regions in the flow (Villermaux & Duplat 2006). The dynamics of such regions in stratified
shear flows is a fascinating topic left for future work.
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