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Abstract

In this paper we study the abstract convex program

(P) ^ = inf{^):«We-S,x6B)

where S is an arbitrary convex cone in a finite dimensional space, Q is a convex set and p and g are
respectively convex and S-convex (on fi). We use the concept of a minimal cone for (P) to correct
and strengthen a previous characterization of optimality for (P), see Theorem 3.2. The results
presented here are used in a sequel to provide a Lagrange multiplier theorem for (P) which holds
without any constraint qualification.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 C 25.
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1. Introduction

Stimulated by a recent paper of Massam (1979), we study abstract convex
programs in which the constraint function has finite dimensional range. In
section two we define our optimization problem (P) and present the necessary
preliminaries. In section three we introduce the concept of a minimal cone for
(P) and use this minimal cone to correct and strengthen Massam's results.
Lemmas 3.1 and 3.2 given here, will be used in Borwein and Wolkowicz (1980)
to derive a Lagrange multiplier theorem for (P), which holds without any
constraint qualification.
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370 J. M. Borwein and H. Wolkowicz [2 ]

2. Preliminaries

In this paper we consider the convex programming problem

(2.1) (P) ii = inf {/>(*): g(x) E-S,x& £2},

where p: X ^>R u { + °o}, g: X^> Y \j { + oo}; X and Y are real locally
convex (separated topological vector) spaces; Y is finite dimensional with an
abstract maximal element + oo (Peressini (1967)); B e l and S c Y are convex
and moreover S is a cone (not necessarily closed), that is AJ lies in S whenever s
is in S and X is non-negative; p is a convex (extended) functional and g is
S-convex (on Q), that is

(2.2) £(*,) + (1 - /)g(x2) - * ( * , + (1 - 0*2) G 5,

for any xv x2 (in fl) and any / in [0, 1].
The set of x for which g(x) is finite is the domain of g, dom g. From (2.2) it

follows that dom g is convex. As is well known a convex cone S induces an
ordering >s on Y given by

(2.3) x , >s x2<^>xy — X2EL S

which is transitive and reflexive. It is antisymmetric exactly when S is pointed,
that is 5 n -S = {0}. It will be convenient to introduce the following notation

(2.4) F=g-'(-5), A-g~\-S)na.

Thus A is the feasible set for (P) and we make the additional routine assumption
that

(2.5) dom p D A ¥= 0 .

Let X* and Y* denote the continuous dual spaces of X and Y respectively. We
suppose throughout that X* is endowed with the weak star topology o(X*, X)
(see Robertson and Robertson (1964) for details).

Given any set K in X the dual cone of K is the set in X*

(2.6) K+ = {x'(EX*:x'x>0,ifxeK}.

Correspondingly if K' is in X*

(2.7) K'+ = {x <EX:x'x >0,ifx'<E K'}.

Then K +(K'+) is always a closed convex cone and

(2.8) K + + =(K+)+((K + )+) = cocoK,

where coco K denotes the closure of the convex cone generated by K. In
particular, for a convex cone S, S + + = S. The functionals in S + will be said to
be positive (for S). Given any two convex cones St and S2 in X

(2.9) (5 , n S2)
+ = 5,+ + S2

+ .
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131 Facial reduction 371

For proofs of these and other related results the reader is refered to Borwein
(1978) and Holmes (1975 ). It will also be convenient to denote the annihilator
of a set K in X

(2.10) K^ = K+ n (-K + ) .

The directional derivative of g at a is defined by

(2.11) Vg(«; d) = lim g ( a + td) 8{a) .
no t

Then V g(a; d) will exist for each direction d if g is convex on X, continuous at a
and S is closed and pointed, Zowe (1974).

A continuous linear operator T: X —» Y is a subgradient for g at a if

(2.12) 7tf <, g(a + d) - g(a) for a l l - in X.

The set of all such subgradients is denoted 3g(a). In case Y = R, S = R+ these
definitions reduce to the standard ones and so apply to p. It follows from a
result of Zowe's (1974) and (1975) that when A' is a weakly compactly generated
Banach space (for example X is reflexive or separable), and g is convex on X
and continuous at a, with 5 closed pointed and convex, then dg(a) is non-empty
and for any s+ in S +

(2.13) s + Vg(a;d) = max s+T(d),
Tedg(a)

for each d in X. When Y = R and S = R+, then (2.13) holds true in any locally
convex space X. Note that when Vg(a; td) exists, then for / > 0

(2.14) g(o + /</) - g(o) - Vg(a; td) G S.

The reader is refered to Zowe (1974) and Borwein (1980) for more details.
Any other terms, are whenever possible, consistent with usage in Holmes

(1975). We will use the symbol 0 for both the zero element and subspace of a
vector space.

3. Facial reduction

In her recent paper, Massam (1979) has generalized the BBZ conditions given
for Y = Rm, S = R+, see Abrams and Kerzner (1978), Ben-Israel and others
(1976) and Ben-Tal and Ben-Israel (1979). She considered (P) as in (2.1) with 5
closed pointed with interior, Q = X a Banach space and/?, g Frechet differentia-
ble. This extension used the exposed faces of S and was in fact flawed as we
indicate below. More significantly no direct multiplier relationship was adduced.
By studying the faces rather than exposed faces we are able to rectify both these
situations. In this section we first introduce the necessary facial notions and
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prove a variety of preliminary results, see for example Barker (1973) and Barker
and Carlson (1975). Most of the definitions and several of the results are
modifications of those given by Massam, see Remarks 3.1-3.4.

DEFINITION 3.1 (a) A' is a face of a convex cone S if K is a convex subset of S,

and whenever

5, and s2 lie in S,

then

(3.1) i(i1 + j 2 )£^=>s, , J 2 6A: .

(b) A face K is exposed if it is the intersection of 5 with the null space of a
positive linear functional. That is: there exists x' in S + with

(3.2) K= [x G S.x'x = 0}.

Such an x' is said to expose K and of necessity is a supporting functional for S.
Note that in our usage S is itself exposed by the zero functional. Note also that
faces of a convex cone S are convex cones and are closed when S is closed.
These definitions of face and exposed face are equivalent to those in Massam
(1979).

As is well known there are cones in which some faces are not exposed. We will
have occasion to use the following example in the sequel.

EXAMPLE 3.1. Let S, denote the "ice-cream cone" in R3

(3.3) S, = {(x,y, z): 2xy > z1, x + y > 0},

and let S2 denote

(3.4) 52 = coco{5, u (1,0, 1)}.

Then the nontrivial faces of 5, are exactly the boundary rays and all the faces
are exposed. In S2, however, the ray through (1, 0, 0) is extreme but not exposed
and the smallest exposed face containing that ray is the cone generated by
(1, 0, 0) and (1, 0, 1).

We will call a convex cone facially exposed if every face is exposed. Thus
every polyhedral cone is facially exposed as is S}.

PROPOSITION 3.1. / / K is a face of S then

(3.5) (K - K) n S = K.

PROOF. Suppose s = &, — k2 with s in S and k{, k2 in K. Then s + k2 = kx is
in K and by (3.1) J lies in K.
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It is easy to see that the intersection of faces is a face. It is somewhat harder to
see that the intersection of exposed faces is an exposed face.

PROPOSITION 3.2. Let C be an arbitrary subset of S. Then
(a) there is an unique minimal face C! containing C;
(b) there is an unique minimal exposed face C"^ containing C.

PROOF, (a) C1 is just the intersection of all faces of S containing C.
(b) The intersection of all exposed faces containing C is a face containing C.

We must show it is exposed.
Now since 5 is finite dimensional the intersection of two non-nested faces has

lower dimension than either face, Rockafellar (1970), Corollary 18.1.3. Hence
the intersection of all exposed faces containing C can in fact be replaced by the
intersection of a finite subfamily Kt, i = 1,2, . . . m. Let x- expose Kt. Then
27Li x'j exposes C\T-i ^; a n d this latter face is exposed and is the desired
minimal face.

We now wish to identify faces of S directly related to (P).

DEFINITION 3.2. The minimal cone of(P) denoted Sf, is defined by

(3.6) S
f=(-g(A)Y

where A is the feasible set of (P). Similarly the minimal exposed cone for (P) is
denoted Sef and defined by

(3.7) S«=(-g(A)f.

Note that -g(A) lies in S. Proposition 3.2 guarantees that Sef and Sf are well
defined. Sef is essentially the cone 5 = (or B") used by Massam (1979).

PROPOSITION 3.3.

(3.8) (a) Sef=(g(A) + S)+± nS.

(3.9) (b) Sef = - U Hg(A) + S) n S.

PROOF. First, since S is a cone and g(A) c -S, we have

(3.10) 5 + n (g(/f))x = S + n (g(A))+ =(S

Now, since K is an exposed face of 5 exposed by <j> and containing -g(A) if and
only if
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we get that

Sef = D {exposed faces of S containing -g(A)}

= {y e S: <t> e S+ n (g(>i))± ^</>v = 0}

= 5 n {} ' : ^ (S + gW)U1(!K = 0}, by (3.10)

= S n(S + g(A))+±

which establishes (a). Now, by (2.10)

s n(s + g(A))+± = s n ( s + ?W)+ + n - ( x + «W)+ + .
Since S lies in (5 + g(A))+ + this later set may be omitted. Finally since
g(A) + 5 is convex, (3.9) follows from (2.8).

Thus Sef has a pleasant overt description which needs no mention of faces.

PROPOSITION 3.4. Sef and Sf coincide for all (linear) constraint functions g
exactly when S is facially exposed.

PROOF. It is immediate that Se / and Sf coincide if S is facially exposed.
Conversely suppose K is a face of S which is not exposed. Let P be the
orthogonal projection of Y on K — K. In (2.1) set g — P, 8 = Y = X. Then

g(A) = P(P-\S n(K - K))) = -S n (K - K) = -K,

by Proposition (3.1). Thus Sf = K while 5 e / must perforce contain K and, being

exposed, is not equal to K.

EXAMPLE 3.2. We let Y be the set o f m X m real symmetric matrices and set S
to be the cone of positive semi-definite (psd) matrices in Y. The matrices are
represented by their distinct triangular parts and thus Y = R("r+m)/2 Yhe norm
on Y is given by the Euclidean inner-product

(A, B} = txAB,

the trace of the matrix product AB. The ice-cream cone S, in Example 3.1
represents the cone of 2 X 2 psd matrices in R3 and as we have seen is facially
exposed. In fact, in general the cone 5 of m X m psd matrices is self-dual,
Berman and Ben-Israel (1969), and as we now prove, is facially exposed.

PROOF. It was shown in Barker and Carlson (1975) that K is a face of S if and
only if

K= {A G S: 91(4) D <&(P)},

where 91(4) denotes the null space of A and 'Sl(P) is the range of a projection
P in S, that is P2 = P. To show that K is an exposed face it is now sufficient to
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show that

K= {p}± n s,

since for any projection P, tr PA > 0 for all psd A. Now, if A & K, then A G S
and €l(/») c 91 (/I) implies that t r ^ P = trO = 0 which implies that A G
{P}-1-. Thus .4 e {P}-1 n 5. Conversely, suppose that A G {P}-1 n 5. Then

m

0 = tr/4/> = tr(,4P)P = irP(AP) = 2 (/><?,) y* (ft?,),
i = i

where e, are the unit vectors in Rm and •' denotes transpose. Since A is psd, the
above implies that (Pei)'A(Pei) = 0, for each /, which implies that 3l(P) c
%(A). Thus A G K.

The following lemma exhibits the relationship between S-^-convexity of g and
convexity of the set g(A) + S*.

LEMMA 3.1. (a) the constraint g is S*- convex on the feasible set A.
(b) In particular, g(A) + S* is convex.

PROOF, (a) Let *,, x2 lie in A and t lie in [0, 1]. Then

*(/*, + (1 - t)x2) G g(A), tg(Xl) + (1 - t)g(x2) G -Sf

since -S*is convex and contains g(A). Thus

(3.13) tg{x{) + (1 - t)g(x2) - g(tXl + (1 - t)x2) G ^ - SA

Also as g is 5-convex, we get

(3.14) tg{xx) + (1 - /)g(jc2) - g{txx + (1 - 0*2) e S.

By Proposition 3.1, (3.13) and (3.14) combine to show

/*(*,) + (1 - t)g(x2) - g(tXi + (1 - t)x2) G Sf

as desired, (b) now follows since A is convex.

Recall that every convex set C in finite dimensions has non-empty relative
interior, denoted ri C, which is the interior of C viewed as a subset of its affine
span, Rockafellar (1970). The next lemma is fundamental to our subsequent
results.

LEMMA 3.2. If the feasible set A is non-empty, then

(3.15) g(A)n -nSf*0.
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PROOF. Suppose not, then

(3.16) (g(A) + S^n -riS/=0

since ri S* + Sf C ri SA Now considered as subsets of Sf - S*, g(A) + Sf and
— ri Sf are disjoint, non-empty convex sets and - r i Sf is open. By the Separa-
tion Theorem there is a linear functional / which may be supposed defined on
ywith

(3.17) y'(g(A) + Sf) < 0, / ( - r i Sf) > 0.

Since S* is a cone, the above implies that y'(g(A)) < 0 a n d / ( S ^ ) < 0. There-
fore, since g(A) lies in - Sf, it follows that y'g(A) = 0. Then K = (y e Y:
y'y — 0} n S* is a proper face of 5^ containing g(A) which is impossible. Thus
(3.15) must hold.

REMARK 3.1. (i) Massam (1979), Lemma 4.3, wrongly claims (3.15) with Sf

replaced by Sef. The error in the proof lies in the assumption that: if H is a
supporting hyperplane to Sef, but not containing all of Se^, then it can be
assumed that H is a supporting hyperplane to all of S. (In Example 3.1, the two
dimensional cone S3 = coco{(l, 0, 0) u (1, 0, 1)} has a supporting hyperplane
which contains the ray through (1,0, 0), but the only hyperplane which supports
the cone S2 and contains the ray through (1, 0, 0) is the hyperplane which
contains the cone S3.) If, in fact, g(A) n — ri Se/ is non-empty, then the
definition of Sf implies that Sef and S* must coincide. By Proposition 3.4, this
can only happen in generality if S is facially exposed.

(ii) (3.15) shows that when 5 has interior, then S* = S exactly when (P) has a
Slater point.

We now present a corrected and simplified refinement of Theorem 4.2 in
Massam (1979). Two subsidiary definitions are needed.

DEFINITION 3.2. (a) Suppose that Vg(a; •) exists. The generalized cone of
constancy for (P) at a is defined by

g(a) + Vg(a; td) G -ri Sf, if 0 < / < a(d)}

(b) Ce}{a) is defined analogously, with Sef replacing Sf throughout (3.18).

REMARK 3.2. If g is supposed differentiable at a and Se* — Se^ is reduced to
Se/ (which yields a formally smaller, though equal by (2.14) and (3.5), cone)
Ce\a) coincides with Massam's definition, for S2 = X.

The following theorem and corollary present representations of the above
generalized cones of constancy in terms of feasible directions.
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THEOREM 3.1. Let a lie in A.

(a)
(3.19) cone(S2 - a) n Cf(a) = cone(fi - a) n c o n e ( g ~ ' ( - r i Sf) - a);

(b)
(3.20) cone(fl - a) n Cef(a) = cone(fi - a) n cone(g~'(-r i Sef) - a);

PROOF, (a) Let us call the cone on the right of (3.19) Kf. Then suppose d lies in
Kf. For small positive / , a + l < / G 8 and g(a + td) e — ri Sf. Thus both a and
a + td are in /I. Since g is S^-convex on A and since 5^ — S^ is closed, we get

(3.21) g(a + td) - g(a) - Vg(a; td) e Sf c Sf - Sf.

Thus as g(a + /</) lies in - r i Sf so does g{a) + Vg(a; ?̂ /), and d lies in C^(a)
and also in cone(12 — a).

Conversely suppose d lies in C\a). Pick a neighbourhood N oiO with

(3.22) Vg(a; ;J) + g(a) + N n (Sf - Sf) C -ri Sf

for 0 < / < ?,. Since for / sufficiently small and positive

(3.23) g(a + td) - g(a) - Vg(a; td) G tN c N

and also lies in Sf - Sf by hypothesis, adding (3.23) and (3.22) yields g(a + td)

e -ri Sf. This establishes (a). Part (b) is identical.

COROLLARY 3.1. (a) cone(fl - a) n C\a) is always non-empty but
cone(S2 - a) n Cef(a) is only non-empty if Se/ = Sf.

(b) cone(fi - a) n Cf(a) = cone(A - a).

PROOF, (a) Let g(x) lie in g{A) n -ri S} as promised by (3.15). Then d = x -
a lies in cone(fl — a) n C^(a) by (3.19) and Lemma 3.1. The result now follows
from (3.20) and Remark 3.1.

(b) Since Q and g~\- Sf) are convex,

cone(S2 — a) n cone(g~'( — S*) — a) = cone(/l — a).

It follows from (3.19) that

(3.24) cone(S2 - a) n C7(a) C cone(.4 - a).

Conversely, if d lies in cone(̂ 4 — a) one has

g(a + td) e -Sf; a + td e fi

for 0 < ? < / , . If d = x - a is as above it follows, as g is 5^-convex on A, that
for 0 < X < 1

g(a + t(\d + (1 - X)</)) e Ag(a + <rf) + (1 - X)g(a + td) - Sf

C - r i S / - S 7 - S ; c - r i S 7 ,
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and a + t(Xd + (1 - X)d) lies in 0. Thus

Xd + (1 - X)d G cone(fl - a) n Cf(a).

Letting X go to zero we see that

(3.25) cone(^ - a) c cone(fi - a) n Cy(a) .

Then (3.24) and (3.25) yield (b).

REMARK 3.3. Massam (1979), Theorem 4.2 uses the set

cone(S2 - a) n Cef(a)

(with 0 set equal to X. See Remark 3.2). By virtue of part (a) of the above
corollary, her result is true if and only if S^ = Se*. In light of this we will now
restrict our attention to S^ and C^(a).

THEOREM 3.2. Suppose that a is feasible for (P) and p is continuous at a. Then

the following are equivalent

(3.26) (i) a is optimal for (P),

and

(3.27) (ii) [d G X: Vp(a; d) < 0} n Cf(a) n cone(ft - a) = 0 .

PROOF. It is standard that optimality for (P) is characterized by

(3.28) {d G X: Vp(a; d) < 0} n cone(^ - a) = 0.

Sincep is continuous at a, Vp(a; •) is continuous and so (3.28) is equivalent to

(3.29) {d G X: Vp(a; d) < 0} n cone (A - a) = 0.

By (b) of Corollary 3.1 and the continuity of Vp{a; •), this is equivalent to (3.27)
as claimed.

REMARK 3.4. (i) Theorem 3.2 essentially presents a corrected and extended
version of Theorem 4.2 of Massam (1979). Theorem 4.1 of Massam (1979) can in
fact also be deduced from it. If S has non-empty interior the exact statement of
Massam's result is easily recovered (with Sf replacing Sef of course).

(ii) If we apply the Dubovitskii-Milyutin Theorem, for example Holmes
(1975), to the cones (which are convex)

K= {d G X: Vp(a;d) < 0}

and

(3.30) G = Cf{a) n cone(ft - a),
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then Theorem 3.2 yields the dual characterization

(3.31) a (feasible) is optimal for (P) if and only if

0 6 dp(a) - G + .

This is one part of Theorem 4.3 in Massam (1979) (with S^ replaced by Sf). The
other part follows from the standard Lagrange multiplier theorem, since Slater's
condition holds. We would like to get an analogue to the BBZ conditions even
when Slater's condition fails. In Borwein and Wolkowicz (1980) we show that

(3.32) M = inf{/>(*) + *g(x): x e Q n g~\Sf - S)},

for some X in (S^) +. In addition, if ju = p(a), for some a in A, then

(3.33) \g(a) = 0

and (3.32) and (3.33) characterize optimality of a in A. This result directly yields
the BBZ conditions if S is R + .
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