THE REPRESENTATIONS OF GL(3,q), GL(4,q), PGL(3,q),
AND PGL(4, q)

ROBERT STEINBERG

1. Introduction. This paper is a result of an investigation into general
methods of determining the irreducible characters of GL(%, ¢), the group of all
non-singular linear substitutions with marksin GF(g), and of the related groups,
SL(n, q), PGL(n, ¢), PSL(n, ¢), the corresponding group of determinant unity,
projective group, projective group of determinant unity, respectively. This
investigation is not complete, but the general problem was answered partially
in [9]. In [3], [7], [6], [1], Frobenius, Schur, Jordan, and Brinkmann gave the
characters of PSL(2, p); SL(2, ¢), GL(2, q); SL(2, ¢), GL(2, ¢); PSL(3, q), re-
spectively. In this paper in §2 and §3, the characters of GL(2, ¢) and GL(3, q)
are determined, and, from them, those of PGL(2, ¢) and PGL(3, ¢) deduced.
In §4, an outline of the determination of the characters of GL(4, q) is given
together with the degrees and frequencies of the characters of GL(4, ¢) and
PGL(4, ¢) and a table of the rational characters of GL(4, q).

The simple properties of the underlying geometry, PG(n —1, ¢), of which
PGL (%, q) is the collineation group, are used throughout the work. The most
powerful and frequent tool used in the determinatiomof the characters is the
Frobenius method! of induced representations [5] which enables one to con-
struct a representation of a group if a representation of a subgroup is known.

The explicit formula for the character in this case is x(G) = -;f ZY(G"), where
G

m is the index of the subgroup, g¢ is the number of elements of the group similar
to G, ¢ is the character of the subgroup, and the summation is made over all
elements G’ which are similar to G and lie in the subgroup. Of fundamental
use in the application of this method are the ¢ — 1 linear characters of GL(#, q)
which correspond to the powers of the determinants of the matrices which
define the elements of GL(#n, q). Also very useful are pseudo-characters—
linear combinations of irreducible characters with negative coefficients per-
missible—and the fact that a pseudo-character, x(G), is an irreducible char-
acter if and only if Elx(G)l2= g and x(E)> 0, where E is the unit element of
the group.

The descent from the characters of GL(n, ) to those of PGL(n, ¢) is imme-
diate because of the following two theorems due to Frobenius [4], [5]:

If $ is a normal subgroup of a group ®, then every character of &/ is
also a character of ©.
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1 See [8] for a complete account of the properties of group characters used here.
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In order that a character of & may belong to the group ®/9, it is necessary
and sufficient that it have the same value for all elements of $. Then, it has
also equal values for every two elements of & which are equivalent mod $.

In our case, ® is the group GL(#, q), 9 is the cyclic group of the ¢ — 1 scalar
matrices, and ®/9 is the group PGL(#, ¢). For this reason, and also because
the group GL(#, g) is easier to handle, its characters are first determined and
then those of PGL(#, ¢) obtained from them.

In what follows, x,” for example, will denote a character of degree g, the
superscript being used to distinguish between two characters of the same

degree. GL(1, 2; ¢) denotes the subgroup (fl ?4 ) of GL(3, q); p, o, 7, w are
2

primitive elements of GF(q), GF(¢?), GF(¢?), GF(¢*) respectively, such that p
= gttl= piteti= @ +d+et gpd ¢ = 79,

2. The characters of GL(2, q¢) and PGL(2, ¢). The group GL(2, ¢) is of
order g(g — 1)*(¢ + 1) and each of its elements is similar to a matrix of one
of the following four types [2]:

a a @ e
Al: (p n)’ A2: (; a), Aa: (P b) 3y Bl: (0 oq)
p p P Jasxb 0"/ e # mult. (g+1)

The number of classes of each type and the number of elements in each class
is given by Table I. The total number of classes is (¢ — 1)(¢ + 1) = k.

TABLE 1
Number of elements
Element Number of classes in each class
A, g—1 1
As g—1 (@—D@+1
A, %(q -1g-2) qlg + 1)
B: 79(¢ — 1) og—1)

Now, if we consider each matrix as a linear transformation of PG(1, ¢q), we
get a representation of degree ¢ 4 1 representing the permutation of the points
of PG(1, ¢). The character of any element of GL(2, ¢) is just the number of
points left fixed by it. This permutation group is doubly transitive and hence
splits into the unit representation and an irreducible representation [9] of degree
g- Multiplication of each of these characters by each of the ¢ — 1 linear char-
acters given by the powers of the determinants gives us ¢ — 1 irreducible
characters of degree 1 and ¢ — 1 of degree g. (See Table I.)

We next consider the subgroup GL(1, 1; q) = (“11 %l) of index ¢ + 1.
Clearly, any character of A, or GL(1, ¢) multiplied by any character of B, or
GL(1, q) is a character of GL(1, 1; q). If we use the linear characters of
GL(1, 1; g) obtainable in this way as a basis for Frobenius’s method of induced
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characters, we get 3(¢ — 1)(¢ — 2) irreducible characters of degree ¢ + 1 of
GL(2, g). (See Table 1.)

a
Finally, the linear characters of the cyclic subgroup (‘7 ” q) of index g(¢—1)
induce in GL(2, ¢) the following representations ¥,(,—1™ of degree ¢*— g, all

of which are reducible:
A (g2— @) 9D 4,: 0, A;: 0, Bj: €™+ €09,

where ¢'=1and n =1,2,...,¢ — 1. But, if we form x,?xg41»™ —
Xg+1" — Ya—n'™, we get an irreducible character provided » s mult.
(g + 1). We thus have 3g(¢g — 1) irreducible characters of degree ¢ — 1 and
this completes the list since we now have in all (g — 1)(¢ 4+ 1) = k characters.
They are shown in Table II.

TABLE II
Characters of GL(2, )
x™ Xq(") Xq+1(m' n) Xq—l(")
Element n=12...,¢9—-1n=12...,¢—1 mn=1,2...,q—-1;|n=1,2...,¢—2;
m#Zn; (m, n)=(n,m)| n7=mult. (¢+ 1)

“l=1 ¢l=1 el=1 ?-1=1
A, ene qezna (¢ + l)e(m+ﬂ)a (¢ — l)ena(qﬂ)
A ene 0 emima — 8@t
A, eﬂ(a.+b) e1'|(u+b) e'ma-t»nb + ena+mb 0
B, e — e 0 — (€' 4 €o9)

The theorems of Frobenius [4], [5] mentioned in the introduction immediately

give us the characters of PGL(2, ¢).

For ¢ odd, there are in addition the two characters
AlZ 1, Az: 1, Aa! (— 1)a+b’ B1: (— 1)“,

For ¢ even they are as in Table III.

and Ay g, Az: 0, Aj: (— 1)°td By (= 1)°H,
TABLE III
Characters of PGL(2, q)
X1 Xq Xq+l(n) Xq-l(")
Element
n=112;~~'1[%(q—1)] ”=1,2.---,B(9+1)]
1= 1 Il = 1

A, 1 q ¢+1 g—1

Ay 1 0 1 -1

A, 1 1 e1|(b_a) + e..n(b—a) 0

B, 1 -1 0 — (" + €"99)

https://doi.org/10.4153/CJM-1951-027-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1951-027-x

228 ROBERT STEINBERG

3. The characters of GL(3, ¢) and PGL(3, ¢). The group GL(3, ¢) is of

order ¢*(¢ — 1)%(g 4- 1)(¢>4+ ¢ + 1) and each of its elements similar to one of
the following types [2]:

p* e® p* bt
Azi pa , A22 1 p‘z y Az: 1 pa , Aq,: pa ,
0% o? 1 p° Pb
p® p® p® ¢
y: | 5 1 pa y A 6 pb y B 1 db , C1 T ’
pb o° o.bq ,’,aq2

where a # mult. (¢*+ ¢ + 1) in C. The number of elements in each class
and the number of classes of each type are given in Table IV. The total
number of classes is ¢(¢g — 1)(g + 1) = k.

TABLE 1V

Element Number of Classes Elements in each Class
Ay g—1 1
A, g—1 (@ — g+ D(g+qg+1)
A; g-1 g(g — 1)%(g + 1)(¢#+ g + 1)
Ay @-D@g—-2) ¢(@+qg+1)
A (g —1(g -2 @@ — V(g +)(¢+qg+1)
As g — 1)@ —2)(¢g—-3) @@+ 1)(@+qg+1)
B, (g -1 g — )@+ g+ 1)
C, g — D@+ g — g+ 1)

Here, as before, the permutation of the points of the underlying geometry
gives us a double-transitive permutation group, in this case of degree ¢?4 ¢ + 1.
We thus get the unit representation and an irreducible representation of degree
¢*+ g. The geometric entities each of which consists of a point and a line
through it are also permuted by the elements of GL(3, ¢), and this furnishes
us with a representation of degree (¢ + 1)(¢*+ ¢ + 1). The orthogonality
properties of group characters tell us that the character of this representation
contains the unit character x: once and x4, twice and an irreducible char-
acter [9] of degree ¢®. Multiplying each of the characters of degrees 1, ¢*+-¢, ¢*
by each of the ¢ — 1 linear characters given by the powers of the determinants,
we obtain ¢ — 1 irreducible characters of each of these degrees, as in Table V.
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TABLE V
Element x:(™ Xgt+g™ X ™
A, ene (q2 + q) ne q3€3M
A2 €3M q ezna 0
Ag €3M 0 0
A, e(20+d) (@+1) r(2a+h) qen(2a+b)
As en(2a+h) en(2a+d) 0
Aq n(atbte) 2n(atbo) en(atde)
B, en(ath) 0 — h(atd)
C, ene —ene €noe

(wheren =1,2,... ¢g— 1and 1= 1).

We next consider the subgroup of index ¢*+ ¢ + 1:
A:00
GL(1, 2;¢)=| * A4:).
*

It is clear that any character of 4, (or GL(1, ¢)) multiplied by any character
of A,(or GL(2, ¢)) is a character of GL(1, 2; ¢). By multiplying linear char-
acters of GL(1, ¢) by the characters of degree 1, ¢, ¢ +1, ¢ —1 of GL(2, q)
determined in §2, we get characters of these degrees of GL(1, 2; q). These
characters induce in GL(3, ¢) a set of characters from which we can extract
(g — 1)(g — 2) irreducible characters of degree ¢*+ ¢ + 1, (¢ — 1)(¢ — 2) of
degree g(g*+ ¢ + 1), $(g¢ — 1)(¢ — 2)(g — 3) of degree (¢ + 1)(¢®+ ¢ + 1),
%g(q — 1)? of degree (¢ — 1)(¢*+ ¢+ 1). See Table VI and Table VII.

TABLE VI
Element Xq’-}-q-pl(m' ) Xq(q’+q+l)(m' ™
Ay @+ g+ 1) ememe g(g*+ g+1) emreme
A, (q + l)e(m+2ﬂ)a qe(mﬁn)a
A: e(m+2n)a, 0
A, (Q + l)é(mm)a+nb+ e2na+mb (q + l)e(mm)amb+ qemmb
A, e(m+ﬂ)a+ﬂb + e2mz+mb E(m+n)a
As Z(a, b c)emm(bﬂ) Z(as b, c)emo-m(bﬂ)
Bl ema+ﬂ — em4+nb
C 0 0

(wherem,n =1,2,...q—1; m # nand e 1= 1).
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TABLE VII
lLm,
Element X@ @ ey ™ " X@@-1 @ +arn™ ™
l'm'n'=1’2""q-1;l¢m¢n¢l; m=1'21--,q_l;ﬂ=1,2....42—2;
n7 mult. (¢ + 1)
e-1=1 ell’—l =1
Ay (@ + 1)@+ g + 1)elimime (g = D@+ ¢ + 1)emmata+n)
As (2g + 1)elltmma — e(min)alg+l)
As glrminia _ ¢lmtnya(g+1)
A (g + )2, m, nyermatnd (g — 1) enatmb)(g+D)
As 2, m. py€ttmatnd _ etnatmb) (a+1)
Aq 2(1. m n)ela+fmb+nc
B, 0 — €mala+D) (gnby nbay
C, 0 0
By Z (1, m.n) €™ we mean the symmetric function in J, m, and n which has e(t+ma+nb

as its typical term.
Finally, we turn to the cyclic subgroup of order (¢ — 1)(¢> + ¢ + 1):
T a
2
79
The linear characters of this subgroup induce the following in the group GL(3,¢q):

Al: q3(q - 1)2(9 + 1) én“(q,+q+l)y A2: Oy A3: Ov Alz Ov

As: 0, Ag: O, B1: O, C1: "4 énaq_*_ é’qu.
If from this character we subtract [xg(® — xg4¢@ 4+ X107 X(a=1) (@040 ¥,
we get:
Ay (g — D)¥g + Ve @+etd g, — (g — 1)erala®HatD 4, gnala2taty
4. 0, As: 0, Ag: 0, B;:0, Ci: €04 eno9f ¢nodt,

This is an irreducible character if #><mult. (¢*+¢+1). Since (n) =(ng) = (ng?),
we thus get } ¢(¢ — 1)(¢ + 1) irreducible characters of degree (¢ — 1)2(¢ + 1).

This completes the list of characters since we have now obtained g(¢ — 1)
(¢ + 1) = k irreducible characters.

In obtaining the characters of PGL(3, ¢), again two cases must be distin-
guished: ¢ = 3t 4+ 1 or ¢3¢t + 1. The revision of classes and characters in
each case is straightforward and we shall content ourselves with a list of the
number of characters of each degree. (See Table VIII.)

TABLE VIII
Characters of PGL(3, ¢)

(g+1) X (g—1) X (g—-1)* X
Degree 1 ¢*+q |¢® |g®+q+1 | a(g®+q+1) (+q+1) | (g¢*+g+1) (g+1)

Frequency
¢=3t+1|3| 3 |3| ¢g—4 g—4 4(¢*—5¢+10) | 3q(¢—1) | #(g—1)(g+2)
¢# 341 1| 1 |1 | ¢-2 g-2 i(@—-2)(g—-3) | 19(g—1) 1g(g+1)
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4. The characters of GL(4, ¢) and PGL(4, ¢). The group GL(4, ¢) is of
order ¢8(g — 1)*(¢ + 1)*(g*+ 1)(¢®+ ¢ + 1) and each of its elements is similar
to one of the following twenty-two types [2]:

a a

AI: Pu ’ AQ: pu
p? p° 1 p°

p® e® e®
1 p° 1 p” p°®
Y| 4: 1 p‘l , A 5. 1 p'l , A 6- pa ,
p° | p®
p® [ o®
1 p® 1 p° p°®
A p° , As: 1 p® , Ag: ot
o p o
b)
d)

p® et
1 p° 1 p®
Ao Pb ’ An: Pb
ot 1 5
p® p® e*
1 p° pb P
Au: pb ’ Au: pc ' Bxl Ub ,
o p o

p° 0°® P
1 p° pb g%
B,: a® , Bas: a° , Ci: ¢®
o o 0%
a

2
C:: 1 ® , Cst o® , Dy: rbe , Ex: w??
1 a%? obe 704 Ly

Now, we shall make use of the underlying geometry to obtain five irreducible
characters. To do this, we consider the following five geometric entities: the
PG(3, ¢); a point; a line; a point and a line through it; a point, a line through
it, and a plane through the line. It will be noted that these five entities cor-
respond to the five partitions of 4: (4), (13), (2?%), (122), (14), respectively. In
fact, GL(4, ¢), GL(1, 3; q), GL(2, 2; ¢), GL(1, 1, 2; ¢) and GL(1, 1, 1, 1; ¢) are
the subgroups of GL(4, ¢) which leave fixed one of each of these entities, re-
spectively. Each of these sets of entities will be permuted by the elements of
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- 0 1 0 0 0 - 0 1] *a
1 0 0 0 - 0 0 1 I 'q
1 0 [— 0 z A - 0 I £
0 0 0 0 I [ - 0 1 e}
b 0 db— 0 T+ 1+d - 0 1 o)
1- 0 - 4 0 A 1 z 1 ’g
0 0 - 1 1 A 0 I 1 tq
b~ 0 1— 1+5 1+5—- 4 b 1+b 1 '
I 24 ¢ 4 4 9 g ¥ 1| "V
0 Z1 I L 1 ¥ 4 € 1| oV
b g1+bz1 1+Dbg L+bg 1+5 ¥+5g 4D g+b 1| %y
0 9 0 ¥ I g I 4 1]
0 9+b9 b ¥+2g 1 g+b 1+b ¢+ b 1| 9%
b 9+bg1+:P9 bz+-b ¥+Db9+:bg 1+3:b g+bg+ib 1452 z+bg 1 'y
0 ¥ 0 g 0 2 1 4 I 'y
0 $+58 b e+by b s+bz 1+b ¢+b 1 ty
eb ¥+ 58+ 08+ oD¥ b-3b+-¢b e+ Dy + Dy+ed b+4-4b 2+bg+02 1+5b+43D 4D+4¢b 1 v
0 I 0 1 0 1 0 I 1 1%
0 1-+5g 0 1+5z 0 1+5 b 1+5 1 4
0 145g+:52 0 1+5g+4b D 145430 b 1+5 I ty
0 1+bg4-:bG+<Dg eD 1+5g+ b8+ b D 145402 b4-b 145+ 1 ty
N (1454 D) (14 28)e(14B)| (14B+P)sd| (14 Db+ D) (1+0) (1+5)| (1+5)ed|(1+D-+:D) (1+:D)| (1+D5+:d)D | (1+:P) (1+D)| 1 y
b aug[J-dulT-3ulog (T+4-D+3D)eb sul—juiod (1+2D)d aul (14D+:)b julod  [pup)| Juswy

(@ 9)19d pue (B $)1D jo siPeIRY)

XI 9714dV.L
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GL(4, ¢) and in this way permutation representations of degree 1, (¢ + 1)
(@+ 1), (@+ D(@+ ¢+ 1), (¢ + D(g®+ 1)(¢®+ ¢+ 1) and (¢ + 1*(g@+ 1)
(¢*+ g + 1) will be obtained. All except the first of these five characters are
reducible, but they can be combined to give five irreducible characters as
follows [9]:

1 =1;(+ D(@+ 1)—- 1= qg(®+ ¢+ 1);
@+ D(@+ g+ 1)—(g + 1)(¢>+ 1) = ¢(¢>+ 1);
(@+ D@+ D(@+ g+ D= (@+ D(@+ g+ 1D—(g+ D@+ D+ 1=
@+ g+ 1);
(@+ DX+ (@ +qg+ 1) —3(g+ D@+ D@+ g+ 1)
+ @+ D(@+qg+1)+2(¢g+D(¢+1) —1=¢g"

Multiplication of each of these characters by the ¢ — 1 linear characters given
by the powers of the determinants gives ¢ — 1 irreducible characters of each
of these degrees. Table IX lists the basic characters and shows the ‘‘fixed
entity’’ situation.

We next consider characters induced by those of subgroup GL(1, 3; ¢) of
index (¢ + 1)(¢?+ 1). In a manner analogous to those obtained of GL(3,i?g)
from GL(1,2;¢q), we get irreducible characters of the degrees and frequencies?
shown in Table X:

TABLE X
Degree Frequency
(g + D+ 1) (g —1)(g —2)

q(g + D g+ 1) (¢g—D@-2

@&lg + D¢+ 1) g -1 -2
(¢ + D(@+ 1+ g+ 1) 3g — 1)(g — 2)(g - 3)
q(g + D@+ D(P?+ g+ 1) g — 1@ —2)(g—3)
(g + D@+ D+ g+ 1) 77(¢ — 1)(¢ — 2)(¢ — 3)(g — 4)
(@ — (g + D+ Dig+qg+ 1) 19(¢ — g - 2)
(g — 1g + D*g®+ 1) 9@ — D¥Hg+ 1)

In the same way, the subgroup GL(2, 2; q) vields the irreducible characters
shown in Table XI:

TABLE XI
Degree Frequency
@+ D(g+g+ 1) g—1D(@—-2)
@+ D(g¢+ g+ 1) ig—1(@ -2
9@+ (g?+ g+ 1) (@—1(@g -2
(¢ — D@+ D(g@+qg+1) 39(g — 1)
(g — D@+ D+ g+ 1) 19(g — 1)?
(¢ — D@+ D(@#+qg+1) iqlg — (g + D¢ — 2).

2The actual characters of GL(4, g) with a more detailed account of the methods are available
in [10].
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As a bi-product of the set of characters of degree (¢ — 1)*(¢*+ 1)(¢*+ ¢ + 1)
we obtain 4¢(¢ — 1) characters of this degree each of which is the sum of two
irreducible characters which are not among those that we have already ob-
tained. Let us denote them by x™, n =1, 2,..., iq(g — 1).

Finally, the linear characters of the cyclic subgroup of order ¢* — 1,

%) a

wq
w? ,
w?,
induce in GL(4, ¢) a setof characters of degree ¢°(¢—1)3(g+1)(¢*+ ¢+ 1). Each
of these is reducible, but by a suitable use of the characters already obtained,
i.e., by multiplication, addition and subtraction, a set of %¢%(¢ — 1)(¢ + 1)
irreducible characters of degree (¢ — 1)3(¢ + 1)(¢*+ ¢ + 1) can be extracted
from them. Again there is a bi-product: 3¢(¢ — 1) pseudocharacters of degree
{(g— 1)%(g + 1)(¢>+ g + 1) each of which is the difference of two irreducible
characters. Denote them by (. Then, if the proper correlation is made be-

TABLE XII
Characters of PGL(4, q)
Frequencies
Degrees
q=4tordt +2 g=4+1 g=4+43

1 1 4 2
(10) (111) 1 4 2
(10)*(101) 1 4 2
(10)3(111) 1 4 2
(10)¢ 1 4 2
(11)(101) 1-2 1-5 1-3
(10) (11)2(101) 1-2 1-5 1-3
(10)3(11) (101) 1-2 1-5 1-3
(11) (101) (111) 3(1-2)(1-3) 3(1-6-13) 3(1-3)?
(10)(11)(101)(111) 3(1-2)(1-3) $(1-6—13) 3(1-3)2
(11)2(101)(111) 7:(1-2)(1-3)(1—4) | #(1-5)(1—-49) 77(1-3)(1-6-11)
(1—1)(11)(101)(111) 1(10)(1-1)(1-2) 1(1-1) $(1-1)3
(1-1)x(11)%(101) 3(10)(1-1)(11) 310)(1-1)(11) 1(10)(1 —-1)(11)
(101)(111) 1(1-2) 1-3 1-2
(10)2(101)(111) 3(1-2) 1-3 1-"
(10) (101)(111) 1-2 2—-6 2—-4
(1-1)(101)(111) 2(10)(1—1) 3(1-1) 3(1-1)
(10)(1 ~1)(101)(111) 31(10)(1-1) 3(1-1)* i1-1)
(1-1)2(101)(111) 1(10)(11)(1-2) 3(1-1)(10-3) iaya-2-1)
(1-1)2(111) 4(10) 1-1 10
(10)*(1 —1)*(111) 3(10) 1-1 10
(1-1)*11)(111) 1(10)%(11) 11-1Qane 1a-nans
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tween the x(™'s and the ¢(™’s, it turns out that 3(x{™ +¢™) and 1(x™ —y¢™)
are irreducible characters. In this way we obtain } g(¢ — 1) irreducible char-
acters of each of the degrees ¢*(¢ — 1)¥(¢>+ ¢ + 1) and (¢ — 1)*(¢*+ ¢ + 1).
This completes the character list since we have now obtained ¢*— ¢ = % of
them.

In cutting down the characters of GL(4, ¢) to get those of PGL(4, g), three
cases are distinct: ¢ even, ¢ =4t + 1, ¢ = 4 4+ 3. Table XII gives the
degrees and frequencies in each of these cases. For convenience in notation,
we shall mean by § (10-11), for example, } (¢*— ¢ + 1), etc.
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