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Abstract

We derive necessary and sufficient conditions for the existence of bounded or summable
solutions to systems of linear equations associated with Markov chains. This substantially
extends a famous result of G. E. H. Reuter, which provides a convenient means of checking
various uniqueness criteria for birth–death processes. Our result allows chains with much
more general transition structures to be accommodated. One application is to give a new
proof of an important result of M. F. Chen concerning upwardly skip-free processes. We
then use our generalization of Reuter’s lemma to prove new results for downwardly skip-
free chains, such as the Markov branching process and several of its many generalizations.
This permits us to establish uniqueness criteria for several models, including the general
birth, death, and catastrophe process, extended branching processes, and asymptotic
birth–death processes, the latter being neither upwardly skip-free nor downwardly skip-
free.
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1. Introduction

We shall be concerned with continuous-time Markov chains that take values in a countable
state space S. For convenience, we shall enumerate the states such that S = {0, 1, . . . }.
We start with a stable, conservative q-matrix of transition rates over S, that is, a collection
Q = (qij , i, j ∈ S) of real numbers that satisfies 0 ≤ qij < ∞ (j �= i), qi := −qii < ∞,
and

∑
j �=i qij ≤ qi (i ∈ S). The matrix Q is said to be conservative if

∑
j �=i qij = qi for all
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Uniqueness criteria 1057

i ∈ S. A set of real-valued functions P (·) = (pij (·), i, j ∈ S) defined on [0, ∞) is called a
standard transition function (or simply process) if

pij (t) ≥ 0, i, j ∈ S, t > 0,∑
j∈S

pij (t) ≤ 1, i ∈ S, t > 0,

pij (s + t) =
∑
k∈S

pik(s)pkj (t), i, j ∈ S, s, t > 0,

(1)

and limt↓0 pij (t) = δij , i, j ∈ S. The process P is then honest if equality holds in (1) for some
(and, thus, all) t > 0, and is called a Q-transition function (or Q-process) if p′

ij (0+) = qij

for each i, j ∈ S.
When Q is conservative, every Q-process P satisfies the backward differential equations,

p′
ij (t) =

∑
k∈S

qikpkj (t), t > 0,

for all i, j ∈ S, but might not satisfy the forward differential equations,

p′
ij (t) =

∑
k∈S

pik(t)qkj , t > 0,

for all i, j ∈ S. Feller’s recursion [12] provides for the existence of a minimal solution F (·) =
(fij (·), i, j ∈ S) to the backward equations that also satisfies the forward equations (and this is
true whether or not Q is conservative). Indeed, fij (t) ≤ pij (t) for any Q-transition function P .
It is the unique solution to the backward equations (among the nonnegative solutions) if and
only if Q is regular, that is,

(λI − Q)u(λ) = 0, u(λ) ∈ l+∞, (2)

has only the trivial solution for some (and, thus, all) λ > 0 (here l+∞ denotes the set of
nonnegative bounded sequences). When Q is conservative, this condition corresponds to F

being honest, and it is necessary and sufficient for F to be the unique Q-transition function [21].
WhenQ is not conservative, additional conditions are needed forF to be the uniqueQ-transition
function [15], [22], but condition (2) must certainly be checked first.

In applications involving continuous-time Markov chains, it is frequently necessary to
determine whether or not Q is regular. For example, one might wish to study explosive
behaviour of the process in question (the minimal process), or rule out such behaviour before
proceeding further with any analysis. Alternatively, one might have an invariant probability
measure π for Q, and wish to determine whether π is invariant for the minimal transition
function; here it is the regularity of related transition rates, rather than of Q itself, which must
be established (see, for example, [18] and [20]).

When F is honest, it is also the unique solution to the forward equations, but when F is
dishonest, uniqueness holds if and only if

η(λ)(λI − Q) = 0, η(λ) ∈ l+1 , (3)

has only the trivial solution for some (and, thus, all) λ > 0 (where l+1 denotes the set of
nonnegative summable sequences); again, see [21]. This latter condition arises in other contexts,
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for example in determining quasi-stationary distributions: if Q is regular and (3) has only the
trivial solution, then all probability measures µ-invariant for Q are also µ-invariant for F

[13], [14].
More delicate extensions of criteria (2) and (3) are possible to, for example, pure-jump

Markov processes [10] and Markov chains with particular structures, such as upwardly skip-
free chains [8], [9] and the multidimensional Q-processes considered in [23]; for a recent
exposition, see Chapter 3 of [8].

A convenient means of dealing with (2) and (3) in the case of birth–death processes was
provided in Reuter [21]. He proved the following simple result, which led to the various
uniqueness criteria for birth–death processes.

Lemma 1. (Reuter [21].) Let {σn, n ≥ 0} be a sequence of real numbers satisfying 0 ≤ σ0 <

σ1 and σn+1 −σn = fnσn +hn +gn(σn −σn−1), n ≥ 1, where {fn, n ≥ 1}, {hn, n ≥ 1}, and
{gn, n ≥ 1} are known nonnegative sequences. Then the sequence {σn, n ≥ 1} is bounded if
and only if

∑∞
n=1(Fn + Hn) < ∞, where

Fn = fn + gnfn−1 + · · · + gngn−1 · · · g2f1 + gngn−1 · · · g2g1 (4)

and
Hn = hn + gnhn−1 + · · · + gngn−1 · · · g2h1. (5)

For further details, see Section 3.2 of [1].
Reuter’s lemma cannot be applied directly once the birth–death structure is lost, for example,

in the case of upwardly skip-free chains, where there are additional downward transitions
of any size; regularity conditions for upwardly skip-free chains were obtained in [23], [8],
and [9]. Our aim here is to substantially extend Reuter’s lemma in order to handle much more
general transition structures. For example, our generalization provides a convenient means of
establishing quasi-regularity (that there is exactly one honest Q-process satisfying both the
backward and the forward equations). We do this for downwardly skip-free processes, such
as the Markov branching process and several of its many generalizations, as well as many
processes that are neither upwardly skip-free nor downwardly skip-free.

The structure of the paper is as follows. The main result, our generalization of Reuter’s
lemma, is proved in Section 2. We illustrate this in Section 3 by providing an alternative proof
of a special case of Theorem 1.1 of [9], which gives regularity conditions for upwardly skip-free
processes. This is specialized to a population model: the general birth, death, and catastrophe
process. In Section 4, downwardly skip-free processes are studied in some detail. This section
includes a detailed analysis of extended branching processes. In Section 5, we introduce the
notion of quasi-regularity and derive a means of identifying it. Finally, in Section 6, we study
asymptotic birth–death processes, a class of Markov chains that are neither upwardly skip-free
nor downwardly skip-free.

2. A generalization of Reuter’s lemma

Our main result is the following.

Theorem 1. Let {σn, n ≥ 0} be a sequence of real numbers satisfying 0 ≤ σ0 < σ1 and

σn+1 − σn = fnσn + hn +
n∑

m=1

gnm(σm − σm−1), n ≥ 1, (6)
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where {fn, n ≥ 1}, {hn, n ≥ 1}, and {gnm, n ≥ 1, 1 ≤ m ≤ n} are all nonnegative. Then
{σn} is bounded if and only if

∞∑
n=1

Rn < ∞, (7)

where {Rn, n ≥ 1} is defined recursively by R1 = r1 and

Rn = rn +
n∑

m=2

gnmRm−1, n ≥ 2, (8)

with
rn = fn + hn + gn1, n ≥ 1. (9)

Proof. First, observe that σn is increasing and strictly positive for n ≥ 1. Next, define
individual sequences {Fn, n ≥ 1}, {Hn, n ≥ 1}, and {Gn, n ≥ 1} by

F1 = f1, Fn = fn +
n∑

m=2

gnmFm−1, n ≥ 2,

H1 = h1, Hn = hn +
n∑

m=2

gnmHm−1, n ≥ 2,

G1 = g11, Gn = gn1 +
n∑

m=2

gnmGm−1, n ≥ 2,

meaning that Rn = Fn + Gn + Hn. We will prove, by induction, that

(Fn + Gn)(σ1 − σ0) + Hn ≤ σn+1 − σn ≤ (Fn + Gn)σn + Hn (10)

for all n ≥ 1. Our aim then will be to deduce condition (7) by summing over n.
It is easily seen that (10) holds for n = 1 since, because σ0 ≥ 0,

σ2 − σ1 = f1σ1 + h1 + g11(σ1 − σ0) ≤ f1σ1 + h1 + g11σ1 = (F1 + G1)σ1 + H1

and
σ2 − σ1 ≥ f1(σ1 − σ0) + h1 + g11(σ1 − σ0) = (F1 + G1)(σ1 − σ0) + H1.

So, assume that

(Fk + Gk)(σ1 − σ0) + Hk ≤ σk+1 − σk ≤ (Fk + Gk)σk + Hk (11)

holds for all k ≤ n − 1. Then,

σn+1 − σn = fnσn + hn +
n∑

m=2

gnm(σm − σm−1) + gn1(σ1 − σ0)

≤ fnσn + hn +
n∑

m=2

gnm((Fm−1 + Gm−1)σm−1 + Hm−1) + gn1(σ1 − σ0)

≤
(

fn +
n∑

m=2

gnmFm−1

)
σn + hn +

n∑
m=2

gnmHm−1 +
(

gn1 +
n∑

m=2

gnmGm−1

)
σn

= (Fn + Gn)σn + Hn
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and, similarly,

σn+1 − σn ≥ fnσn + hn +
n∑

m=2

gnm((Fm−1 + Gm−1)(σ1 − σ0) + Hm−1) + gn1(σ1 − σ0)

≥ hn +
n∑

m=2

gnmHm−1 +
(

fn +
n∑

m=2

gnmFm−1

)
(σ1 − σ0)

+
(

gn1 +
n∑

m=2

gnmGm−1

)
(σ1 − σ0)

= Hn + (Fn + Gn)(σ1 − σ0).

Therefore, (11) holds for all k ≤ n and the induction is complete.
Next, we will show that {σn} is bounded if and only if

∞∑
n=1

(Fn + Gn + Hn) < ∞. (12)

If {σn} is bounded then (12) follows immediately, from the first inequality of (10) together with
the fact that 0 ≤ σ0 < σ1. Conversely, using the second inequality of (10), and remembering
that {σn} is increasing, we have

σn+1

σn

− 1 ≤ Fn + Gn + Hn

σn

≤ Fn + Gn + Hn

σ1
.

Hence, if (12) holds then
∞∑

n=1

(
σn+1

σn

− 1

)
< ∞.

However, this is equivalent to {σn} being bounded, for if we set xn = σn+1/σn − 1 (which is
nonnegative), then

σn+1

σ1
=

n∏
m=1

σm+1

σm

=
n∏

m=1

(1 + xm),

and, so, {σn} converges if and only if
∑∞

m=1 xm < ∞. This completes the proof.

In order to check condition (7), we must first evaluate {Fn}, {Hn}, and {Gn}. The following
simple result establishes a necessary condition for {σn} to be bounded, in terms of the original
sequences {fn}, {hn}, and {gnm}.
Corollary 1. If {σn} in Theorem 1 is bounded then

∞∑
n=1

rn < ∞, (13)

where rn = fn + hn + gn1, and

∞∑
n=m

gnm < ∞ for all m ≥ 1. (14)
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Proof. Since Rn ≥ rn, (7) implies (13), which in turn implies that (14) holds for m = 1.
Suppose that (14) fails for m = m0 ≥ 2. Then the sequence of partial sums {∑k

n=m0
gnm0} is

unbounded. Now, by (8) we have

k∑
n=2

Rn ≥
k∑

n=2

n∑
m=2

gnmRm−1 =
k∑

m=2

Rm−1

k∑
n=m

gnm ≥ Rm0−1

k∑
n=m0

gnm0

for k > m0, and, thus, {∑k
n=2 Rn} is also unbounded. This contradicts (7).

Remark 1. If we set gn1 = gn2 = · · · = gn,n−1 = 0 for all n ≥ 1, then Gn ≡ 0 and {Fn} and
{Hn} are now given by (4) and (5), respectively. Hence, Theorem 1 reduces to Reuter’s result,
Lemma 1.

Remark 2. In many practical situations, while it might not be possible to evaluate {Rn}
explicitly, it might still be possible to check (7) indirectly. For example, if r ′

n ∼ arn (as
n → ∞), where a > 0 and {rn} is given by (9), then (7) will hold if and only if

∑∞
n=1 R′

n < ∞,
where

R′
1 = r ′

1 and R′
n = r ′

n +
n∑

m=2

gnmR′
m−1.

3. Upwardly skip-free chains

Upwardly skip-free chains have been studied by several authors, most particularly, in
the present context, Chen [8], [9] and Yan and Chen [23], but also Brockwell et al. [4],
Brockwell [2], [3], Pakes [17], Pollett [19], J. K. Zhang [24], and Y. H. Zhang [25].

Definition 1. A conservative q-matrix Q = (qij , i, j ∈ N+) defined on the nonnegative
integers N+ is called upwardly skip-free if qi,i+1 > 0 for all i ≥ 1, and qij = 0 for i and j

such that j > i + 1.

We will illustrate the utility of Theorem 1 by proving a special case of Theorem 1.1 of
Chen [9] (Chen’s result allows qk,k+1 = 0 for finitely many k).

Theorem 2. (Chen [9].) Let Q = (qij , i, j ∈ N+) be an upwardly skip-free q-matrix. Then
Q is regular if and only if

∞∑
n=1

Rn = ∞, (15)

where R0 = 1 and, for n ≥ 1,

Rn = 1

qn,n+1

(
1 +

n∑
m=1

m−1∑
k=0

qnkRm−1

)
. (16)

Proof. We will prove that (15) holds if and only if

(λI − Q)u(λ) = 0, u(λ) ∈ l+∞, (17)

has only the trivial solution for some (and, thus, all) λ > 0. When λ = 1, (17) becomes
ui = ∑i+1

k=0 qikuk , i ≥ 0, and, after a little algebra, we find that

qi,i+1(ui+1 − ui) = ui +
i∑

m=1

m−1∑
k=0

qik(um − um−1).
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Thus, if we set gnm = ∑m−1
k=0 qnk/qn,n+1 then u1 = (1 + 1/q01)u0 and, for n ≥ 1,

un+1 − un = 1

qn,n+1
un +

n∑
m=1

gnm(um − um−1).

It is easy to see that if u0 = 0 then un ≡ 0. If u0 > 0, we may identify {un} with {σn} in
Theorem 1, setting fn = 1/qn,n+1 and hn ≡ 0. On evaluating Rn using (8) and (9), we obtain

R1 = r1 = 1

q12
(1 + q10), rn = 1

qn,n+1
(1 + qn0), n ≥ 2,

and

Rn = 1

qn,n+1
(1 + qn0) +

n∑
m=2

1

qn,n+1

m−1∑
k=0

qnkRm−1, n ≥ 2,

which are easily seen to correspond to (16). We conclude that {un} is bounded (that is, (17) has
a nontrivial solution) if and only if

∑∞
n=1 Rn < ∞, and the proof is complete.

Remark 3. If Q is not regular, that is,
∑∞

n=1 Rn < ∞, then Q is single-exit, because (17)
has an essentially unique positive solution when u0 > 0. Hence, since Q is conservative,
there exists a unique honest Q-process satisfying the backward equations (see, for example,
Theorem 4.2.6(2) of [1]).

The following two corollaries provide conditions that are easier to check than (15) by way
of (16).

Corollary 2. For the upwardly skip-free q-matrix Q, let λn = qn,n+1, n ≥ 0, and µn =∑n−1
k=0 qnk , n ≥ 1, and define

R =
∞∑

n=1

(
1

λn

+ µn

λnλn−1
+ µnµn−1

λnλn−1λn−2
+ · · · + µn · · · µ2

λn · · · λ2λ1

)
.

Then each of the following conditions is sufficient for Q to be regular.

(i) R = ∞.

(ii)
∑∞

n=1 1/λn = ∞.

(iii) There exists an N such that µn ≥ λn for all n ≥ N .

Proof. We will prove that (15) holds under each of the stated conditions. From (16), we
have Rn ≥ (1 + µnRn−1)/λn, which implies that

Rn ≥ 1

λn

+ µn

λnλn−1
+ µnµn−1

λnλn−1λn−2
+ · · · + µn · · · µ2

λn · · · λ2λ1
.

Condition (i) then follows from Theorem 3.2.2 of [1], if λn and µn are identified as the rates
of a birth–death process. Similarly, condition (ii) holds because Rn ≥ 1/λn and condition (iii)
because, for all n ≥ N , Rn ≥ 1/λn + Rn−1 ≥ Rn−1 and, hence, Rn ≥ RN−1.

Corollary 3. (i) If there exists a nonnegative sequence {vi, i ≥ 1} such that
∑∞

i=1 vi ≥ 1 and

1

qn,n+1

m∑
k=0

qnk ≥ vn−m, n > m ≥ 0, (18)

then Q is regular.
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(ii) If there exists a nonnegative sequence {vi, i ≥ 1} such that

1

qn,n+1

m∑
k=0

qnk = vn−m, n > m ≥ 0, (19)

then Q is regular if and only if
∑∞

n=1 1/qn,n+1 = ∞ or
∑∞

n=1 vn ≥ 1.

Proof. To prove claim (i), set gn = 1/qn,n+1, meaning that (16) can be written

Rn = gn +
n−1∑
m=0

Rm

(
gn

m∑
k=0

qnk

)
, n ≥ 1

(remembering that R0 = 1), and write C = ∑∞
n=0 Rn. Now, (18) implies that

Rn ≥ gn +
n−1∑
m=0

Rmvn−m, n ≥ 1,

and, so, in particular, Rn ≥ gn and Rn ≥ vn. Thus, if C < ∞ then G := ∑∞
n=1 gn and

V := ∑∞
n=1 vn are both finite and C ≥ 1 + G + CV , implying that V < 1. Hence, by

Theorem 2, having V ≥ 1 implies that Q is regular.
Similarly, if (19) is satisfied, we now have

Rn = gn +
n−1∑
m=0

Rmvn−m, n ≥ 1. (20)

Thus, if Q is not regular, that is, C < ∞, then, as before, G < ∞ and V < 1. Conversely, if
G < ∞ and V < 1 then, on summing (20) over n, we find that

k∑
n=1

Rn =
k∑

n=1

gn +
k−1∑
m=0

Rm

k−m∑
n=1

vn ≤ G + V

k−1∑
m=0

Rm, k ≥ 1,

which implies that Rk + (1 − V )
∑k−1

n=0 Rn ≤ 1 + G and, hence, that C < ∞.

We now give some examples to demonstrate the usefulness of these results.

Example 1. First we will consider a variant of the birth, death, and catastrophe process with
‘binomial catastrophes’ described in [4]. The q-matrix has elements

qij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

wi(1 − p)i if j = i + 1, i ≥ 0,

−wi if j = i, i ≥ 0,

wi

(
i

i − j

)
pi−j (1 − p)j if 0 ≤ j < i, i ≥ 1,

0 otherwise,

where w0 ≥ 0, wi > 0 for all i ≥ 1, and 0 < p < 1. Thus, events occur at a rate wi ,
which depends on the current state i, and the catastrophe size (1, 2, . . . , i, or −1 for a birth) is
determined by the binomial distribution bin(i, p). If w0 > 0 then the process is irreducible,
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while if w0 = 0, there is a single absorbing state 0, which is accessible from the irreducible
class {1, 2, . . . }. We will show that Q is always regular.

In the notation of Corollary 2, λn = wn(1 − p)n and

µn =
n−1∑
k=0

qnk = wn

n−1∑
k=0

(
n

n − k

)
pn−k(1 − p)k = wn(1 − (1 − p)n).

Thus, for a fixed p in (0, 1), we have 1 − (1 − p)n ≥ (1 − p)n for n sufficiently large. Hence,
by condition (iii) of Corollary 2, Q is regular.

Example 2. Our next example illustrates that, even when conditions (ii) and (iii) of Corollary 2
both fail to hold, the upwardly skip-free q-matrix may still be regular. Let Q be conservative
with off-diagonal elements

qij =
⎧⎨
⎩

b

2
(i + 1)2 if j = i + 1,

d(i − j) if 0 ≤ j ≤ i − 1,

where 0 < b ≤ d . We now have
∑∞

n=1 1/qn,n+1 < ∞. The birth and death rates of the
corresponding birth–death q-matrix are respectively given by

λn = b

2
(n + 1)2 and µn = d

2
n(n + 1).

It is easy to see that when d > b we may still apply condition (iii) of Corollary 2 to deduce that
Q is regular, because d/b ≥ 1 + 1/n for all n sufficiently large. When d = b, condition (ii)
will always fail; however, when d = b, condition (i) of Corollary 2 implies that Q is regular,
because

R =
∞∑

n=1

(
2

b(n + 1)2 + 2d

b2(n + 1)n
+ · · · + 2dn−1

bn(n + 1)2

)
>

1

b

∞∑
n=2

1

n
= ∞.

Finally, let us illustrate Corollary 3.

Example 3. We will consider a special case of the general birth, death, and catastrophe process
set out in [3]. Its q-matrix has elements

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wib if j = i + 1, i ≥ 0,

−wi if j = i, i ≥ 0,

wiai−j if j = 1, 2, . . . , i − 1, i ≥ 2,

wi

∞∑
k=i

ak if j = 0, i ≥ 1,

0 otherwise,

(21)

where w0 ≥ 0, wi > 0 for all i ≥ 1, b > 0, ai > 0 for least one i ≥ 1, and b + ∑∞
i=1 ai = 1.

(If a1 > 0 and ai = 0 for all i ≥ 2, we recover the simple birth–death process with birth rates
wib and death rates wi(1 − b).) If w0 > 0 then the process is irreducible, while if w0 = 0,
there is a single absorbing state 0, which is accessible from the irreducible class {1, 2, . . . }.
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Let d be the probability-generating function defined by d(s) = b + ∑∞
i=1 ais

i+1, |s| < 1,
and let B(s) = d(s) − s. For the present model, Lemma 3.1 of [3] establishes that state 0 is
reached with probability 1 if and only if the drift D, given by

D = −B ′(1−) = b −
∞∑
i=1

iai = 1 −
∞∑
i=1

(i + 1)ai,

is less than or equal to 0. Thus, the process cannot be explosive when D ≤ 0. However, it can
be explosive when D > 0: the simple birth–death process referred to immediately above is
explosive if and only if b > 1

2 (that is, D > 0) and
∑∞

i=1 1/wi < ∞. It is clear from Corollary 2
that both (i)

∑∞
i=1 1/wi = ∞ and (ii) b ≤ 1

2 are sufficient conditions for regularity. However,
we can do much better.

Theorem 3. The upwardly skip-free q-matrix Q given by (21) is regular if and only if

∞∑
i=1

1/wi = ∞ or
∞∑
i=1

iai ≥ b.

Proof. Set vi = (1/b)
∑∞

k=i ak , i ≥ 1. Then

1

qn,n+1

m∑
k=0

qnk = vn−m, n > m ≥ 0,

and
∑∞

i=1 vi = (1/b)
∑∞

i=1 iai . Therefore, by claim (ii) of Corollary 3, Q is regular if and
only if

∑∞
i=1 1/wi = ∞ or

∑∞
i=1 iai ≥ b.

Remark 4. In the case that w0 = 0, there is a single absorbing state 0. However, the
result holds with a straightforward modification when there are K absorbing states (w0 =
w1 = · · · = wK−1 = 0): the condition

∑∞
i=1 1/wi = ∞ is replaced by

∑∞
i=K 1/wi = ∞.

4. Downwardly skip-free chains

In this section, we will use Theorem 1 to obtain uniqueness criteria for downwardly skip-
free chains. We will give particular attention to an important subclass of chains, the so-called
extended branching processes.

Definition 2. A conservative q-matrix Q = (qij , i, j ∈ N+) is called downwardly skip-free if
qi,i−1 > 0 for all i ≥ 1 and qij = 0 for j < i − 1 and i ≥ 2.

Theorem 4. For a downwardly skip-free q-matrix Q = (qij , i, j ∈ N+), the equation

η(λ)(λI − Q) = 0, η(λ) ∈ l+1 , (22)

has a nontrivial solution for some (and, thus, all) λ > 0 if and only if
∑∞

n=1 Rn < ∞, where
R0 = R−1 = 1 and, for all n ≥ 1,

Rn = 1

qn+1,n

(
1 +

n∑
m=0

∞∑
k=n+1

qmkRm−1

)
.

https://doi.org/10.1239/aap/1134587753 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587753


1066 A. CHEN ET AL.

Proof. It is well known that the dimension of the solution space of (22) is the same for all
λ > 0 and, thus, can be denoted N+(Q). It is also clear that, since Q is downwardly skip-free,
there are only two possibilities: either N+(Q) = 0 or N+(Q) = 1. So, fix λ = 1 and let
η(1) = (η0, η1, η2, . . . ) be the (essentially unique) solution to η(1)(I − Q) = 0. Without loss
of generality, set η0 ≡ 1. Then ηk = ∑k+1

m=0 ηmqmk , k ≥ 0, and, thus,

n∑
k=0

ηk =
n∑

k=0

k+1∑
m=0

ηmqmk.

On rearranging this, we obtain

ηn+1qn+1,n =
n∑

k=0

ηk + η0

∞∑
k=n+1

q0k +
n∑

m=1

ηm

∞∑
k=n+1

qmk.

Thus, by setting σ0 = η0 ≡ 1 and σn = ∑n
k=0 ηk , n ≥ 1, we see that σ1 > σ0 = 1 and, for

n ≥ 1,

σn+1 − σn = 1

qn+1,n

σn + σ0

qn+1,n

∞∑
k=n+1

q0k + 1

qn+1,n

n∑
m=1

∞∑
k=n+1

qmk(σm − σm−1),

which is of the form (6) required in Theorem 1. After a little algebra, we conclude that {σn} is
bounded (that is, η(1) ∈ l+1 ) if and only if

∑∞
n=1 Rn < ∞, and the proof is complete.

Remark 5. The significance of (22) was mentioned briefly in the introduction. If the minimal
Q-transition function F is honest, then F is the unique solution to the forward equations (and
Q is necessarily conservative). However, when F is dishonest, it is the unique solution to the
forward equations if and only if (22) has only the trivial solution. This is true whether or not
Q is conservative.

Corollary 4. For the downwardly skip-free q-matrix Q, let µn = qn,n−1, n ≥ 1, and λn =∑∞
k=n+1 qnk , n ≥ 0, and define

S =
∞∑

n=1

1

µn+1

(
1 + λn

µn

+ λnλn−1

µnµn−1
+ · · · + λn · · · λ2λ1

µn · · · µ2µ1

)

(not to be confused with the state space of the Markov chains). If S = ∞ then (22) has only
the trivial solution. In particular, if

∑∞
n=1 1/µn+1 = ∞ then (22) has only the trivial solution.

Proof. The proof is similar to that of Corollary 2, this time applying Theorem 3.2.3 of [1]
to the birth–death process with birth and death rates λn and µn.

Example 4. We now consider an important subclass of downwardly skip-free processes: the
‘extended’ branching processes discussed in [11]. For simplicity, we will only consider the
absorbing case, where the q-matrix Q = (qij ) satisfies q0j ≡ 0. Here, Q is downwardly
skip-free and

qij =
{

wibj−i+1 if j ≥ i − 1, i ≥ 1,

0 otherwise,
(23)

where the sequence {bj } satisfies b0 > 0, bj ≥ 0 for j ≥ 2, and −b1 = ∑
j �=1 bj > 0, and the

sequence {wj } satisfies w0 = 0, wi > 0 for i ≥ 1, and (without loss of generality) w1 = 1.
Applying Theorem 4 immediately yields the following result.
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Corollary 5. For the extended branching q-matrix Q given by (23), the following statements
hold.

(i) Either N+(Q) = 0 or N+(Q) = 1.

(ii) N+(Q) = 0 if and only if
∑∞

n=1 Rn = ∞, where R0 = 1 and, for n ≥ 1,

Rn = 1

b0wn+1

(
1 +

n∑
m=1

wmτn+2−mRm−1

)
, (24)

with τk = ∑∞
j=k bj , k ≥ 2. In particular, if

∑∞
n=1 1/wn = ∞ then N+(Q) = 0.

Remark 6. The latter sufficient condition,
∑∞

n=1 1/wn = ∞, is not very sharp, but it does
accommodate the ordinary Markov branching process, obtained on setting wn = n for all
n ≥ 1. If Harris’s condition (Theorem 3.3.3(2) of [1]) fails, then there are infinitely many
Q-processes (including infinitely many honest ones). Corollary 5 establishes that there is only
one, namely the minimal Q-process, that satisfies the forward equations, and, hence, only one
that has the ‘branching property’ (Theorem 3.3.1(2) of [1]). When

∑∞
n=1 1/wn < ∞, the

situation is considerably more delicate, as our next theorem demonstrates.

Define the generating function of the sequence {bj } by B(s) = ∑∞
j=0 bj s

j . Recall that B is
a convex function on (0, 1] and, thus, has a smallest zero q ∈ (0, 1] that satisfies q = 1 if
B ′(1) ≤ 0 and q < 1 if B ′(1) > 0. Furthermore, B(s) > 0 for all s ∈ [0, q). Note that
B ′(1) > 0 includes the important case B ′(1) = ∞. Henceforth, q will always denote the
smallest zero of B on (0, 1].
Theorem 5. For the extended branching q-matrix Q with

∑∞
n=1 1/wn < ∞, let w and w be,

respectively, the limit supremum and the limit infimum of n
√

wn+1 as n → ∞. The following
statements then hold.

(i) Suppose that B ′(1) ≤ 0. If w < 1 then N+(Q) = 0, while if w > 1 then N+(Q) = 1. In
particular, if limn→∞ n

√
wn+1 = w exists then N+(Q) equals 1 if w > 1 and 0 if w < 1.

(ii) Suppose that B ′(1) > 0 (including B ′(1) = ∞). If w < 1/q then N+(Q) = 0, while if
w > 1/q then N+(Q) = 1. In particular, if limn→∞ n

√
wn+1 = w exists then N+(Q)

equals 1 if w > 1/q and 0 if w < 1/q.

Proof. Let {Rn} be as in Corollary 5 and let Tn = wn+1Rn, n ≥ 1, and T0 = w1R0 =
R0 = 1. Define the generating function of {Tn} by T (s) = ∑∞

n=0 Tns
n. We will establish that

T (s) has radius of convergence q, that is, lim supn→∞ n
√

Tn = 1/q, by first proving that

lim sup
n→∞

n
√

Tn ≥ 1

q
(25)

and

lim sup
n→∞

n
√

Tn ≤ 1

q
. (26)

If (25) is not true then the radius of convergence of T (s) is strictly greater than q. Hence,
there exists an ε > 0 such that T (s) < ∞ for all s ∈ [0, q + ε), meaning that, in particular,
T (q) < ∞. Now, it is readily established that T (s)B(s) = b0(1 − s) + s for all s ∈ [0, q + ε).
However, T (q) < ∞ and B(q) = 0, so by setting s = q we find that b0(1 − q) + q = 0. This
is a contradiction, and, hence, (25) holds.
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Similarly, if (26) is not true, then the radius of convergence of T (s) is strictly less than q;
hence, there is an r ∈ (0, q) with T (r) = ∞. However, this is impossible, for, as we will now
prove, T (s) < ∞ for all s ∈ [0, q). We need only show that

sup
k≥1

k∑
n=1

Tns
n < ∞ (27)

for all s ∈ [0, q). Using (24), we learn that, for any s ∈ [0, q) and any k ≥ 1,

k∑
n=1

Tns
n = 1

b0

k∑
n=1

sn + 1

b0

k∑
n=1

n∑
m=1

Tm−1τn+2−msn

= 1

b0

k∑
n=1

sn + 1

b0

k∑
m=1

Tm−1s
m−2

k−n+2∑
n=2

τns
n

≤ s

b0(1 − s)
+ 1

b0

k∑
m=1

Tm−1s
m−2

∞∑
n=2

τns
n.

However, it is clear that

∞∑
n=2

τns
n =

∞∑
n=2

∞∑
k=n

bks
n = b0s −

(
s

1 − s

)
B(s)

and, hence, that

B(s)

k−1∑
n=0

Tns
n ≤ b0(1 − s) + s.

Since s ∈ [0, q), we have B(s) > 0 and, therefore,

k−1∑
n=0

Tns
n ≤ b0(1 − s) + s

B(s)
.

The right-hand side of this inequality is certainly finite and does not depend on k. Thus, (27)
and, hence, (26) hold.

We have proved that lim supn→∞ n
√

Tn = 1/q. However, Tn = wn+1Rn and, since both
{wn} and {Rn} are nonnegative, we have

lim sup
n→∞

n
√

Rn lim inf
n→∞

n
√

wn+1 ≤ lim sup
n→∞

n
√

Tn ≤ lim sup
n→∞

n
√

Rn lim sup
n→∞

n
√

wn+1

and, hence,

w lim sup
n→∞

n
√

Rn ≤ 1

q
≤ w lim sup

n→∞
n
√

Rn. (28)

Now, if w < 1/q then the right-hand side of (28) implies that lim supn→∞ n
√

Rn > 1. Thus, the
radius of convergence of

∑∞
n=1 Rns

n is strictly less than 1 and, therefore,
∑∞

n=1 Rn = ∞. If
w > 1/q then the left-hand side of (28) gives lim supn→∞ n

√
Rn < 1, implying that the radius

of convergence is strictly greater than 1 and, hence, that
∑∞

n=1 Rn < ∞. The result follows,
remembering that, for statement (i), q = 1 when B ′(1) ≤ 0.
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As a direct consequence of Theorem 5, we obtain the following result, which settles the
question of uniqueness for a large class of extended branching process. Guided by the fact that,
for an ordinary Markov branching process, the ‘branching property’ holds only if its transition
function obeys the forward equations, we will say that a continuous-time Markov chain taking
values in N+ is an extended branching process if its q-matrix is of the form (23) and its transition
function satisfies the forward equations.

Theorem 6. For the q-matrix Q defined by (23), the following statements hold.

(i) If B ′(1) ≤ 0 then there is only one extended branching process, namely the minimal
Q-process. It is honest.

(ii) If B ′(1) > 0 and qw < 1, where w = lim supn→∞ n
√

wn+1, then there is only one
extended branching process, namely the minimal Q-process. It is dishonest.

(iii) If B ′(1) > 0 and qw > 1, where w = lim infn→∞ n
√

wn+1, then there are infinitely many
extended branching processes, of which one is the minimal Q-process. Exactly one of
these is honest, but it is not the minimal Q-process.

(iv) In particular, if B ′(1) > 0 and limn→∞ n
√

wn+1 = w exists, then if qw < 1, there is
only one extended branching process, which is the (dishonest) minimal Q-process, while
if qw > 1, there are infinitely many extended branching processes, one of which is the
minimal Q-process; exactly one is honest, but it is not the minimal Q-process.

Proof. The proof of statement (i) can be found in [11]. The proofs of statement (ii) and
the first part of statement (iii) follow from Corollary 5. Statement (iii) follows directly from
Theorem 14.2.8 of [16]. Statement (iv) combines statements (ii) and (iii).

In many instances, we actually have w := limn→∞ n
√

wn+1 = 1. For example, for the
so-called generalized Markov branching process discussed in [5], we have wn = nθ , where
θ > 0 and, hence, w = 1. Thus, statements (i) and (ii) of Theorem 6 allow us to deduce that
there is always a single generalized Markov branching process. It is the minimal Q-process,
whether or not Q is regular. On the other hand, it is easy to construct examples in which
statement (iii) applies. For example, if we set wn = (1/q + ε)n, where ε > 0, then, recalling
that 0 < q < 1 because B ′(1) > 0, we have w = 1/q + ε > 1/q. The resulting unique,
honest nonminimal extended branching process has many interesting properties, but we will
not pursue this here.

We conclude this section with the following result, the proof of which is very similar to that
of Theorem 4.

Theorem 7. If Q is a downwardly skip-free q-matrix, then it has a unique invariant measure,
that is, πQ = 0 has an essentially unique positive solution. This satisfies

∑
i πi < ∞ (and,

hence, Q admits a unique invariant probability measure) if and only if

∞∑
n=1

Rn < ∞,

where R0 = R−1 = 1 and, for n ≥ 1,

Rn = 1

qn+1,n

n∑
m=0

∞∑
k=n+1

qmkRm−1.
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5. Quasi-regularity

In many situations, it is necessary to assume that the transition function in question satisfies
both the backward and the forward equations. For example, Karlin and McGregor’s integral
representation of the transition function of a birth–death process is valid only when it satisfies
both sets of equations (see, for example, Section 8.2 of [1]). Also, if Q is conservative (or, more
generally, if the set of nonconservative states is finite), then the minimal transition function is
the unique Q-process if and only if it uniquely satisfies both sets of equations (Corollary 3.13
of [8]). However, if the q-matrix is not regular, then there may exist honest transition functions
satisfying both. We are interested in determining when there is exactly one.

Definition 3. A conservative q-matrix Q is called quasi-regular if there exists exactly one
honest Q-process satisfying both the backward and the forward equations.

If Q is regular then it is quasi-regular, but the converse is not always true. It is therefore of
interest to find conditions under which a nonregular q-matrix is quasi-regular. Such conditions
were given in Chapter 14 of [16]. However, in many cases, and in particular for the model
discussed in the next section, it is more convenient to identify quasi-regularity by studying
certain restrictions of the q-matrix (such restrictions will usually be nonconservative).

Lemma 2. Suppose that Q is a conservative q-matrix over a countable state space E. Let
b ∈ E and let Q∗ denote the restriction of Q to E \ {b}. Then the following statements
hold.

(i) Q is regular if and only if

(λI − Q∗)u(λ) = 0, u(λ) ∈ l+∞, (29)

has only the trivial solution for some (and, thus, all) λ > 0.

(ii) If Q is not regular then it is quasi-regular if and only if N+(Q∗) = 1, that is,

η(λ)(λI − Q∗) = 0, η(λ) ∈ l+1 , (30)

has one and only one linearly independent solution for some (and, thus, all) λ > 0.

Lemma 2 can be proved using the resolvent decomposition theorem, refined in [6] and [7],
together with Theorem 14.2.8 of [16]. For brevity, we shall omit the details.

The role of Theorem 1 in identifying quasi-regularity will now be clear. Certainly, if Q∗ is
either upwardly or downwardly skip-free then we can, in principle, follow the programme laid
out in the previous sections. However, note that Q itself need not be skip-free. An interesting
class of Markov chain, which are neither upwardly skip-free nor downwardly skip-free, but
which can be treated using Lemma 2, are the ‘asymptotic birth–death processes’. These will
be studied in detail in the next section.

6. Asymptotic birth–death processes

Definition 4. A conservative q-matrix Q = (qij , i, j ∈ N+) is called an asymptotic birth–
death q-matrix if there is a finite subset G of N+ for which the restriction of Q to N+ \ G,
denoted Q∗, is a birth–death q-matrix. Each corresponding Q-process is called an asymptotic
birth–death process.
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For simplicity, we shall only consider the case G = {0}, but our conclusions hold, with
obvious modifications, when G is any finite subset. We may therefore assume that Q∗ =
(qij , i, j ≥ 1) takes the form

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai if j = i − 1, i ≥ 2,

bi if j = i + 1, i ≥ 1,

−(ai + bi + di) if j = i ≥ 1,

0 otherwise,

(31)

where ai > 0, bi > 0, and di ≥ 0, i ≥ 1. Since Q is assumed to be conservative, we may
write the entries (qi0, i ≥ 1) in terms of Q∗.

The next two theorems provide a means of checking regularity and quasi-regularity for
asymptotic birth–death processes.

Theorem 8. For the nonconservative birth–death q-matrix Q∗ given in (31), (29) has only the
trivial solution if and only if

R :=
∞∑

n=1

(
1 + dn

bn

+ an(1 + dn−1)

bnbn−1
+ anan−1(1 + dn−2)

bnbn−1bn−2
+· · ·+ anan−1 · · · a2(1 + d1)

bnbn−1 · · · b1

)
= ∞.

Proof. On substituting (31) into (29) we find that u2(λ) = (λ + a1 + b1 + d1)u1(λ)/b1 and

un+1(λ) =
(

λ + an + bn + dn

bn

)
un(λ) − an

bn

un−1(λ), n ≥ 2.

Hence, u2(λ) − u1(λ) = (λ + a1 + d1)u1(λ)/b1 and

un+1(λ) − un(λ) =
(

λ + dn

bn

)
un(λ) + an

bn

(un(λ) − un−1(λ)), n ≥ 2,

which is of the form (6) required by Theorem 1. If u1(λ) > 0 then ui(λ) > 0 for all i and,
after evaluating {Rn} using (8), we find that R (above) is equal to

∑∞
n=1 Rn. Thus, {ui(λ)} is

bounded if and only if R < ∞, and the result follows.

Observe that Reuter’s result, Lemma 1, is enough to prove Theorem 8. However, we certainly
need Theorem 1 to obtain conditions under which (30) has exactly one solution.

Theorem 9. For the nonconservative birth–death q-matrix Q∗ given in (31), (30) has only the
trivial solution if and only if S := ∑∞

n=1 Sn = ∞, where S0 = 0, S1 = 1/a2, and

Sn+1 =
(

an+1 + bn+1 + dn+1

an+2

)
Sn − bn

an+2
Sn−1, n ≥ 1. (32)

Furthermore, N+(Q∗) = 1 if and only if
∑∞

n=1 Sn < ∞.

Proof. Let η = (ηi, i ≥ 1) be any nonnegative solution of η(λ)(λI −Q∗) = 0 correspond-
ing to λ = 1. This satisfies (1 + a1 + b1 + d1)η1 = a2η2 and

(1 + an + bn + dn)ηn = an+1ηn+1 + bn−1ηn−1, n ≥ 2.
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Since η1 = 0 implies that ηn = 0 for all n ≥ 1, we shall assume that η1 > 0. Then, setting
σ0 = 0 and σn = ∑n

m=1 ηm for n ≥ 1, we obtain

σn+1 − σn = 1

an+1
σn + 1

an+1

(
(a1 + d1)(σ1 − σ0)

+
n−1∑
m=2

dm(σm − σm−1) + (dn + bn)(σn − σn−1)

)

for all n ≥ 1, noting that σ1 > σ0 = 0. Hence, by Theorem 1, {σn} is bounded (that is,∑∞
n=1 ηn < ∞) if and only if

∑∞
n=1 Rn < ∞, where R1 = r1 and

Rn = rn +
n−1∑
m=2

dm

an+1
Rm−1 + dn + bn

an+1
Rn−1, n ≥ 2,

with rn = (1 + a1 + d1)/an+1, n ≥ 1. However, in view of Remark 2,
∑∞

n=1 Rn < ∞ if and
only if

∑∞
n=1 Sn < ∞, where S1 = 1/a2 and

Sn = 1

an+1
+ 1

an+1

n∑
m=2

(dm + δmnbn)Sm−1, n ≥ 2.

(Here, δmn is the Kronecker delta.) In addition, it is easily shown that {Sn} satisfies (32) with
S0 = 0.

The final part follows because Q∗ is a birth–death q-matrix: (30) can have at most one
linearly independent solution. Therefore, N+(Q∗) = 1 when

∑∞
n=1 Sn < ∞.

Remark 7. When dn ≡ 0, Theorems 8 and 9 reduce to the well-known results for birth–death
q-matrices, based on series commonly denoted R and S; see, for example, Theorems 3.2.2 and
3.2.3 of [1].

Theorems 8 and 9 and Lemma 2 combine to give the following simple result.

Corollary 6. Let Q be the asymptotic birth–death q-matrix over N+ whose restriction Q∗ is
determined by (31), and let R and S be the series defined in Theorems 8 and 9, respectively.
Then

(i) Q is regular if and only if R = ∞, and

(ii) if Q is not regular then Q is quasi-regular if and only if S < ∞.

Our final example illustrates all of these results. It has the simplifying feature that both
dn/an and bn/an do not depend on n.

Example 5. Suppose that an = anθ , bn = bnθ , and dn = dnθ , n ≥ 1, where a > 0, b > 0,
d > 0, and θ is any real number. After a modicum of algebra we find that

R = 1

b

( ∞∑
n=1

1

nθ
+ d

∞∑
n=0

(
a

b

)n) ∞∑
n=0

(
a

b

)n

.

So, by Corollary 6(i), Q is regular if and only if θ ≤ 1 or a ≥ b.
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In order to evaluate S we set Tn = an+1Sn, meaning that the recursion (32) can be written
more simply as

Tn+1 =
(

an+1 + bn+1 + dn+1

an+1

)
Tn − bn

an

Tn−1, n ≥ 1.

We then obtain Tn+1 = (1+b/a+d/a)Tn−(b/a)Tn−1, n ≥ 1, with T0 = 0 and T1 = a2S1 = 1.
The characteristic polynomial of this difference equation has the two real zeros

a + b + d

2a
±

√
(a − b)2 + d2 + 2ad + 2bd

2a

(given by 3/2 ± √
5/2 if a = b = d > 0). Denoting these zeros by λ1 and λ2, we can see that

0 < λ1 < 1 < λ2. Thus, since T0 = 0 and T1 = 1, we obtain Tn = (λn
2 − λn

1)/(λ2 − λ1),
n ≥ 0. We deduce that

Sn = λn
2 − λn

1

a(λ2 − λ1)(n + 1)θ
, n ≥ 1,

and, hence, that S = ∞. Corollary 6(ii) allows us to conclude that if Q is not regular (that is,
θ > 1 and a < b), then Q is never quasi-regular.

Acknowledgements

We would like to thank the referee for valuable comments and suggestions, which lead to
a much improved presentation of our results. The support of the Australian Research Council
(grant no. A00104575) is gratefully acknowledged. The work of Ben Cairns is supported by a
PhD scholarship from the Australian Research Council Centre of Excellence for Mathematics
and Statistics of Complex Systems.

References

[1] Anderson, W. J. (1991). Continuous-Time Markov Chains: An Applications-Oriented Approach. Springer,
New York.

[2] Brockwell, P. J. (1985). The extinction time of a birth, death and catastrophe process and of a related diffusion
model. Adv. Appl. Prob. 17, 42–52.

[3] Brockwell, P. J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl.
Prob. 23, 851–858.

[4] Brockwell, P. J., Gani, J. and Resnick, S. I. (1982). Birth, immigration and catastrophe processes. Adv. Appl.
Prob. 14, 709–731.

[5] Chen, A. Y. (2002). Uniqueness and extinction properties of generalized Markov branching processes. J. Math.
Anal. Appl. 274, 482–494.

[6] Chen, A. Y. and Renshaw, E. (1990). Markov branching processes with instantaneous immigration. Prob.
Theory Relat. Fields 87, 204–240.

[7] Chen, A. Y. and Renshaw, E. (1993). Existence and uniqueness criteria for conservative uni-instantaneous
denumerable Markov processes. Prob. Theory Relat. Fields 94, 427–456.

[8] Chen, M. F. (1992). From Markov Chains to Nonequilibrium Particle Systems. World Scientific, Singapore.
[9] Chen, M. F. (1999). Single birth processes. Chinese Ann. Math. Ser. A 20, 77–82.

[10] Chen, M. F. and Zheng, X. G. (1983). Uniqueness criterion for q-processes. Sci. Sinica Ser. A 26, 11–24.
[11] Chen, R. R. (1997). An extended class of time-continuous branching processes. J. Appl. Prob. 34, 14–23.
[12] Feller, W. (1940). On the integro-differential equations of purely discontinuous Markoff processes. Trans.

Amer. Math. Soc. 48, 488–515.
[13] Hart, A. G. and Pollett, P. K. (1996). Direct analytical methods for determining quasistationary distributions

for continuous-time Markov chains. In Athens Conf. on Applied Probability and Time Series Analysis, Vol. 1
(Lecture Notes Statist. 114), eds C. C. Heyde et al., Springer, New York, pp. 116–126.

https://doi.org/10.1239/aap/1134587753 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587753


1074 A. CHEN ET AL.

[14] Hart, A. G. and Pollett, P. K. (2000). New methods for determining quasi-stationary distributions for Markov
chains. Math. Comput. Modelling 31, 143–150.

[15] Hou, C. T. (1974). The criterion for uniqueness of a Q-process. Sci. Sinica 17, 141–159.
[16] Hou, Z. T. and Guo, Q. F. (1988). Homogeneous Denumerable Markov Processes. Springer, Berlin.
[17] Pakes, A. G. (1986). The Markov branching-catastrophe process. Stoch. Process. Appl. 23, 1–33.
[18] Pollett, P. K. (1991). Invariant measures for Q-processes when Q is not regular. Adv. Appl. Prob. 23, 277–292.
[19] Pollett, P. K. (2001). Quasi-stationarity in populations that are subject to large-scale mortality or emigration.

Environ. Internat. 27, 231–236.
[20] Pollett, P. K. and Taylor, P. G. (1993). On the problem of establishing the existence of stationary distributions

for continuous-time Markov chains. Prob. Eng. Inf. Sci. 7, 529–543.
[21] Reuter, G. E. H. (1957). Denumerable Markov processes and the associated contraction semigroups on l. Acta

Math. 97, 1–46.
[22] Reuter, G. E. H. (1976). Denumerable Markov processes. IV. On C. T. Hou’s uniqueness theorem for

Q-semigroups. Z. Wahrscheinlichkeitsth. 33, 309–315.
[23] Yan, S. J. and Chen, M. F. (1986). Multidimensional Q-processes. Chinese Ann. Math. Ser. A 7, 90–110.
[24] Zhang, J. K. (1984). Generalized birth–death processes. Acta Math. Sinica 46, 241–259 (in Chinese).
[25] Zhang, Y. H. (2001). Strong ergodicity for single-birth processes. J. Appl. Prob. 38, 270–277.

https://doi.org/10.1239/aap/1134587753 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587753

