FINITE SETS OF INTEGERS WITH EQUAL POWER SUMS

BY
 D. Ž. DJOKOVIĆ(${ }^{1}$)

This note originated in an attempt to generalize the assertion of Problem 164 which was proposed by Moser [2].

Let us first state our generalization. We fix positive integers $m \geq 2$ and n. If i is an integer and

$$
0 \leq i \leq m^{n}-1
$$

then i can be written, in a unique way, as

$$
i=\sum_{r=0}^{n-1} a_{r} m^{r}
$$

where a_{r} are suitable integers which satisfy

$$
0 \leq a_{r} \leq m-1 \quad(0 \leq r \leq n-1) .
$$

We define

$$
\sigma(m, i)=\sum_{r=0}^{n-1} a_{r} .
$$

Let E be the set of integers $0,1,2, \ldots, m^{n}-1$. If

$$
E_{k}=\{i \in E \mid \sigma(m, i) \equiv k(\bmod m)\}
$$

then $\left(E_{k}\right), 0 \leq k \leq m-1$ is a partition of E. We shall agree that $0^{0}=1$.
Then we have the following:
Theorem 1. With the above notations we have
(i) the equality

$$
\begin{equation*}
m \sum_{i \in E_{k}} i^{s}=\sum_{i \in E} i^{s} \tag{1}
\end{equation*}
$$

is valid for all $0 \leq s \leq n-1$ and all $0 \leq k \leq m-1$;
(ii) if $\epsilon_{m} \neq 1$ is an mth root of unity in the complex field then

$$
\sum_{i \in E} \epsilon_{m}^{\sigma(m, i)} i^{s}= \begin{cases}0 & \text { for } 0 \leq s \leq n-1 \tag{2}\\ S & \text { for } \quad s=n\end{cases}
$$

where

$$
\begin{equation*}
S=n!m^{n}\left(\epsilon_{m}-1\right)^{-n} m^{\binom{n}{2}} . \tag{3}
\end{equation*}
$$

[^0]In order to obtain the assertion of Problem 164 from this theorem we take $m=2$. One can easily check that the coefficients e_{i} defined in [2] are given by

$$
e_{i}=-(-1)^{\sigma(2, i)}
$$

Then the second assertion of Theorem 1 coincides with that of Problem 164.
The first assertion of Theorem 1 is in fact a particular case of a theorem of Lehmer [1]. Two other proofs of Lehmer's theorem were published by Wright [3]. We refer to [1] and [3] for the references to earlier results connected with this theorem. I am grateful to Professor J. W. S. Cassels for bringing to my attention the work of E. M. Wright.

It turned out that our proof of Theorem 1 applies, without any change, to Lehmer's theorem. Moreover we have a result for $s=n$ which does not appear in [1] or [3].

Theorem 2. Let $m \geq 2$ and $m \geq 1$ be integers and let $z_{r}(0 \leq r \leq n-1)$ be any complex numbers. Let $E(k)(0 \leq k \leq m-1)$ be the set of all sequences

$$
\left(a_{i}\right)=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)
$$

such that a_{i} 's are integers, $0 \leq a_{i} \leq m-1$, and

$$
a_{0}+a_{1}+\cdots+a_{n-1} \equiv k(\bmod m)
$$

Then
(i) if $0 \leq s \leq n-1$ is an integer the sum

$$
\begin{equation*}
\sum_{\left(a_{i}\right) \in E(k)}\left(a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{n-1} z_{n-1}\right)^{s} \tag{4}
\end{equation*}
$$

does not depend on k;
(ii) if $\epsilon_{m} \neq 1$ is an mth root of 1 then

$$
\sum_{k=0}^{m-1} \epsilon_{m}^{k} \sum_{\left(a_{i}\right) \in E(k)}\left(a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{n-1} z_{n-1}\right)^{s}= \begin{cases}0 & \text { for } 0 \leq s \leq n-1 \tag{5}\\ S & \text { for } s=n\end{cases}
$$

where

$$
\begin{equation*}
S=n!m^{n}\left(\epsilon_{m}-1\right)^{-n}\left(\prod_{r=0}^{n-1} z_{r}\right) \tag{6}
\end{equation*}
$$

Proof. Let I be the ideal of $Z[X]$ generated by $1+X+X^{2}+\cdots+X^{m-1}$ and let ξ be the image of X under the canonical mapping $Z[X] \rightarrow Z[X] / I$.

Then

$$
\begin{align*}
\xi^{m} & =1 \tag{7}\\
1+\xi+\xi^{2}+\cdots+\xi^{m-1} & =0 \tag{8}\\
(\xi-1) \sum_{a=0}^{n-1} a \xi^{a} & =m \tag{9}
\end{align*}
$$

Let

$$
R=\sum_{k=0}^{m-1} \xi^{k} \sum_{\left(a_{i}\right) \in E(k)}\left(a_{0} z_{0}+a_{1} z_{1}+\cdots+a_{n-1} z_{n-1}\right)^{s}
$$

If $E=\bigcup_{k=0}^{m-1} E(k)$ then

$$
\begin{aligned}
R & =\sum_{\left(a_{i}\right) \in E} \xi^{a_{0}+\cdots+a_{n-1}\left(a_{0} z_{0}+\cdots+a_{n-1} z_{n-1}\right)^{s}} \\
& =\sum_{\left(a_{i}\right) \in E} \sum_{f \in F} \xi^{a_{0}+\cdots+a_{n-1}} \prod_{r=1}^{s} a_{f(r)} z_{f(r)}
\end{aligned}
$$

where F is the set of all mappings $\{1,2, \ldots, s\} \rightarrow\{0,1,2, \ldots, n-1\}$.
If $0 \leq s \leq n-1$ then (8) implies that

$$
\begin{equation*}
\sum_{\left(a_{i}\right) \in E} \xi^{a_{0}+\cdots+a_{n-1}} \prod_{r=1}^{s} a_{f(r)} z_{f(r)}=0 \tag{10}
\end{equation*}
$$

for each $f \in F$. Hence, in that case $R=0$ which proves the first assertion of the theorem.
If $s=n$ then (10) is valid for those $f \in F$ which are not bijective. Hence, in that case we have

$$
R=n!\left(\prod_{r=0}^{n-1} z_{r}\right)\left(\sum_{a=0}^{m-1} a \xi^{a}\right)^{n} .
$$

Using (9) we get

$$
\begin{equation*}
(\xi-1)^{n} R=n!m^{n}\left(\prod_{r=0}^{n-1} z_{r}\right) \tag{11}
\end{equation*}
$$

We have a homomorphism $Z[\xi] \rightarrow Z\left[\epsilon_{m}\right]$ which sends ξ to ϵ_{m}. This homomorphism transforms (11) into (5) for $s=n$ with S given by (6). Of course, formula (5) for $0 \leq s \leq n-1$ follows from the first assertion of the theorem.

This completes the proof of Theorem 2.
If we choose

$$
z_{r}=m^{r}, \quad 0 \leq r \leq n-1
$$

then we obtain Theorem 1 from Theorem 2.
Note that formula (5) for $s=n$ implies that the sums (4) for $s=n$ and $k=0,1,2$, $\ldots, m-1$ cannot be all equal.

References

1. D. H. Lehmer, The Tarry-Escott problem, Scripta Math. 13 (1947), 37-41.
2. L. Moser, Problem 164, Canad. Math. Bull. (1) 13 (1970), p. 153.
3. E. M. Wright, Equal sums of like powers, Proc. Edinburgh Math. Soc. (2) 8 (1949), 138-142.

University of Waterloo,
Waterloo, Ontario

[^0]: ${ }^{(1)}$ This work was supported in part by National Research Council of Canada Grant A-5285.

