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Abstract We study a three parameter deformation Uabc of U(sl2) introduced by Le Bruyn in 1995.
Working over an arbitrary algebraically closed field of characteristic zero, we determine the centres, the
finite-dimensional irreducible representations, and, when the parameter a is not a non-trivial root of
unity, the prime ideals of those Uabc, with ac �= 0, which are conformal as ambiskew polynomial rings.
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1. Introduction

In [19], a seven-parameter family of deformations of U(sl2) was introduced, namely the
filtered C-algebra with generators x, y and t and defining relations

tx − αxt = βx,

yt − γty = δy,

xy − εyx = ζt + ηt2,

where α, β, γ, δ, ε, ζ, η ∈ C. As was observed in [13], not all of these algebras will have
desirable ring-theoretic properties, such as being a domain, having finite global dimension
or a PBW basis. In the classical case the associated graded ring of U(sl2) is a commu-
tative polynomial ring, and so the above properties follow. However, for these algebras
the associated graded ring is not necessarily commutative. In [13], Le Bruyn gave the
definition of a conformal sl2 enveloping algebra as being those seven-parameter algebras
above whose associated graded ring is an Auslander regular algebra of global dimension
three. This allows conformal sl2 enveloping algebras to enjoy some of the same good
ring-theoretic and homological properties as in the classical case.
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In [13] all the conformal sl2 enveloping algebras were classified: for a, b, c ∈ C, let Uabc

denote the C-algebra with generators x, y and t and defining relations

tx − axt = x,

yt − aty = y,

xy − cyx = t + bt2.

Then every conformal sl2 enveloping algebra is isomorphic to Uabc for some a, b, c ∈ C
and, conversely, every Uabc is a conformal sl2 enveloping algebra. It was also shown in [13]
that if ac �= 0, then Uabc is Auslander regular of global dimension three and satisfies the
Cohen–Macaulay property. For the definition of such terms as Auslander regular and the
Cohen–Macaulay property, we refer the reader to [14]. Observe that U(sl2) is a conformal
sl2 enveloping algebra, and is isomorphic to U101.

The algebras Uabc have previously been considered in [13] and [12], where the finite-
dimensional irreducible representations were studied. In these two papers quite different
approaches were taken: [13] used non-commutative projective geometry, and [12] classi-
fied the finite-dimensional irreducible representations for generic values of parameters in
certain root-of-unity cases using techniques from non-commutative algebraic geometry
developed by Rosenberg. Here we take a more ring-theoretical approach; we use methods
developed by Jordan to study Uabc, with ac �= 0, over an arbitrary algebraically closed
field k of characteristic zero.

When considering conformal sl2 enveloping algebras, it is worth noting that two of
the most interesting cases (that of Ua0c and Uabc for a, b, c ∈ k∗) lie on the borderline
between two types of algebras currently being studied, namely down–up algebras and
ambiskew polynomial rings. The definition of a down–up algebra has a combinatorial
origin, relating to the operators of a differential partly ordered set, and was first given by
Benkart and Roby in [4]. It is known from [4, 1.5] that, when a and c are non-zero, Ua0c

is isomorphic to a down–up algebra. The finite-dimensional irreducible representations of
down–up algebras have been determined in [4], [6] and [11], and the centre of a down–up
algebra in [20].

An ambiskew polynomial ring (see [11] and § 2 below) is a certain skew polynomial ring
in two indeterminates, whose commutativity on elements of the base ring is controlled by
an automorphism of the base ring. There is a close relation between down–up algebras
and ambiskew polynomial rings: it is shown in [11, 3.1] that all Noetherian down–up
algebras belong to a precise subclass of ambiskew polynomial rings. In § 2 we show that
when a, b, c ∈ k, with ac �= 0, then Uabc is an ambiskew polynomial ring. To study these
algebras we want to use the techniques developed in [9] and [10]. The methods of [9]
and [10] apply only to conformal ambiskew polynomial rings. In § 3 we explain what this
means and make some notational alterations to clear any confusion between the two uses
of the adjective ‘conformal’. We refer to those Uabc, with ac �= 0, which are conformal as
ambiskew polynomial rings as J-conformal. The main results of this paper are as follows.

(1) Characterization of when certain subclasses of Uabc are J-conformal (Proposi-
tions 3.3 and 3.4).
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(2) Description of the centre in all cases where Uabc is J-conformal (Theorem 4.6).

(3) Description of the finite-dimensional irreducible representations of J-conformal Uabc

(Theorems 5.9, 5.10, 5.11 and 5.12).

(4) The prime spectrum of J-conformal Uabc in all cases except where a is a non-trivial
root of unity (Theorems 7.5, 7.6, 7.7 and 7.8).

It should be pointed out that, by [11, 2.1], every ambiskew polynomial ring, and
therefore every Uabc with ac �= 0, is isomorphic to a Generalized Weyl Algebra in the sense
of Bavula [1]. We could have employed the techniques of [1], [2] and [3] to determine the
finite-dimensional irreducible Uabc-modules. However, as the title of this paper suggests,
we will be adopting the ambiskew polynomial ring approach throughout.

Crucial to our arguments will be the study of the localization Labc of J-conformal Uabc

at a certain normal element g, which is only defined when a �= 1 (see Notation 2.3 (c) and
Definition 3.9 below). In § 5 we show that when we factor by this normal element g we
always obtain a familiar algebra, the finite-dimensional irreducible modules and the prime
ideals of which are well known. Therefore, successfully obtaining result (3) is equivalent
to finding all the finite-dimensional irreducible modules of J-conformal U1bc and, when
a �= 1, the finite-dimensional irreducible modules of Labc; similarly, successfully obtaining
result (4) is equivalent to finding all the prime ideals of J-conformal U1bc and, when a is
not a root of unity, the prime ideals of Labc.

Many (if not all) of the particular deformations of U(sl2) which have been studied
over the past 20 years can be realized as particular cases of the algebras Uabc or Labc, or
algebras closely related to these. Thus we demonstrate in Examples 3.6, 3.7 and 3.8 and
Theorem 3.10 that

(1) the standard quantized enveloping algebra Uq(sl2) is isomorphic to Lq2,((q2−1)/2),q−2

and that Lq−40q2 [g1/2] exists and is isomorphic to Uq(sl2);

(2) [13] Uq−1,((q−1−1)/2),q is isomorphic to the algebra studied in [8];

(3) [13] Uq,q−1,1 is isomorphic to Witten’s quantum sl2 enveloping algebra [19, 5.2];
and

(4) if fourth and twelfth roots of unity are excluded, Uq2,q2−1,1 is isomorphic to the
enveloping algebra of the quantum Lie algebra sl(2)q [15].

2. Preliminaries

Throughout, we let k be an algebraically closed field of characteristic zero.

Definition 2.1 (see [13]). Let a, b, c ∈ k. Then the conformal sl2 enveloping algebra,
denoted Uabc, is the k-algebra generated by x, y and t with defining relations:

tx − axt = x, (2.1)

yt − aty = y, (2.2)

xy − cyx = t + bt2. (2.3)
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Definition 2.2 (see [11]). Let T be a commutative k-algebra, let σ be a k-algebra
automorphism of T , let v ∈ T and let ρ ∈ k∗. Extend σ to the skew polynomial ring
T [Y ; σ] by setting σ(Y ) = ρ−1Y . There is a σ−1-derivation δ of T [Y ; σ] such that δ(T ) = 0
and δ(Y ) = v, by [7, Example 1F]. The ambiskew polynomial ring R(T, σ, v, ρ) is the skew
polynomial ring T [Y ; σ][X; σ−1, δ]. Thus XY −ρY X = v and, for all h ∈ T , Y h = σ(h)Y
and Xσ(h) = hX.

Notation 2.3. Let a, b, c ∈ k with ac �= 0 and consider Uabc. Throughout we will use
the following fixed notation.

(a) A = k[t], where t is one of the generators of Uabc exactly as in Definition 2.1.

(b) α is the k-algebra automorphism of A given by α(t) = at + 1.

(c) Whenever a �= 1 we let g = (a−1)t+1. Observe that αi(g) = aig, for all integers i.

(d) For γ ∈ k∗ and an integer j > 1 we write [γ]1 = 1 and [γ]j = 1 + γ + · · · + γj−1.

Proposition 2.4. Suppose that a, b, c ∈ k with ac �= 0. Then Uabc
∼= R(A, α, t+bt2, c).

It follows that Uabc is a right and left Noetherian ring, and that, whenever a �= 1, g is a
normal element of Uabc.

Proof. By the definition of α we have that α−1(t) = a−1t − a−1. Thus we have by
(2.1) that xt = a−1tx − a−1x = (a−1t − a−1)x = α−1(t)x and by (2.2) that yt = y +
aty = (at + 1)y = α(t)y. Since {tiyjxk : i, j, k � 0} is a PBW type basis of Uabc (as
can be seen by a straightforward application of the Diamond Lemma [5, 1.2]), and as
{XiY j : i, j � 0} is linearly independent over T , the isomorphism follows by (2.3) and
Definition 2.2. That Uabc is right and left Noetherian follows from [7, 1.12]. Now suppose
that a �= 1. Observe that tg = gt, yg = α(g)y = agy and gx = xα(g) = ag. As Uabc is
generated as a k-algebra by t, y and x, g is a normal element of Uabc. �

The representation theory of the algebras Uabc is influenced by the maximal ideals of
A and the action of α on these maximal ideals. The proof of the next lemma is routine.

Lemma 2.5. Let a ∈ k∗.

(i) Suppose that a = 1. Then every maximal ideal of A has infinite orbit under α.

(ii) Suppose a �= 1. The only maximal ideal of k[t] invariant under α is gk[t].

(iii) Suppose a �= 1. Let m be a positive integer and choose any µ ∈ k. Then αm(t−µ) =
amt + [a]m − µ and α−m(t − µ) = a−m(t − [a]m − amµ), and therefore we have
αm((t − µ)k[t]) = (t + a−m[a]m − a−mµ)k[t] and α−m((t − µ)k[t]) = (t − [a]m −
amµ)k[t].

(iv) Suppose a �= 1. If a is not a root of unity, then the only maximal ideal of k[t] with
finite orbit under α is the α-invariant maximal ideal gk[t].
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(v) If a is a non-trivial root of unity, of multiplicative order n > 1 in k∗, then every
maximal ideal of k[t] not equal to the α-invariant maximal ideal gk[t] has orbit of
order n under α.

Corollary 2.6. Let a ∈ k∗.

(i) Suppose that a is a non-root of unity. Then the only non-zero, proper α-invariant
ideals of k[t] are gik[t], ∀i � 1. In fact, if I is a non-zero, proper ideal with finite
orbit under α, then I is necessarily α-invariant, and so I = gik[t] for some i � 1.

(ii) Suppose that a = 1. Then every non-zero, proper ideal of A has infinite orbit under
α.

Proof. We know by Lemma 2.5 (iv) that the only maximal ideal of finite orbit under
α is gk[t]. Let I be a non-zero, proper ideal of k[t]. Then I = fk[t] for some f ∈ k[t]
of degree m � 1, say. Now, I is contained in a finite number of maximal ideals of k[t],
corresponding to the linear factors of f . Therefore, if I has finite orbit under α, then so
too must each of the maximal ideals containing I. Hence f is a non-zero scalar multiple
of gm and I = gmk[t]. This proves part (i). Part (ii) is proved in a similar way, noting
Lemma 2.5 (i). �

3. J-conformality

In [11], an ambiskew polynomial ring R(T, σ, v, ρ) (as in Definition 2.2) is said to be
conformal if XY −ρY X = v = w−ρσ(w) for some w ∈ T . We let Z = XY −w. As Z is a
generalization of the definition of the Casimir element of U(sl2) to an arbitrary conformal
ambiskew polynomial ring, Z is referred to as the Casimir element of R(T, σ, w−ρσ(w), ρ).
Recall that the adjective ‘conformal’ has already been used in [13] in the title of the
algebras Uabc. To avoid confusion we make the following definition.

Definition 3.1. Let a, b, c ∈ k with ac �= 0.

(i) We will say that the conformal enveloping algebra Uabc is J-conformal (with respect
to w ∈ A, of degree m > 0) if it is conformal as an ambiskew polynomial ring, with
w − cα(w) = t + bt2, where w is of degree m > 0 in A.

(ii) Let Uabc be J-conformal (with respect to w ∈ A, of degree m > 0). Then, as in [11],
z := xy − w = c(yx − α(w)) is the Casimir element of Uabc; we extend α to the
polynomial k-algebra in two indeterminates A[z] by setting α(z) = c−1z. Observe
that yz = c−1zy = α(z)y and xz = czx = α−1(z)x.

Notation 3.2. Let a, b, c ∈ k, ac �= 0, and suppose that Uabc is J-conformal with
respect to w ∈ A, of degree m > 0. Then we set r(w) to be the number of distinct roots
in k of the equation w = 0 (so 1 � r(w) � m); we denote these roots by ρ1, . . . , ρr(w).

Proposition 3.3. Let a, c ∈ k∗.

(i) Ua0c is J-conformal with respect to w ∈ A, of degree 1, if and only if c /∈ {1, a−1}.
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(ii) Ua0c is J-conformal with respect to w ∈ A, of degree 2, if and only if a = 1 = c,
that is Uabc = U101 ∼= U(sl2).

(iii) Ua01 and Ua0a−1 are not J-conformal for all non-roots of unity a ∈ k∗.

(iv) U−101 and U−10−1 are not J-conformal.

Proof. We do not include the proofs here. Parts (i), (ii) and (iii) can be proved
through straightforward calculation; (iv) is proved using elementary linear algebra. �

Proposition 3.4. Let a, b, c ∈ k∗.

(i) (a) U1bc is J-conformal of degree 2 for all c �= 1. (b) U1b1 is not J-conformal of
degree 2, but is J-conformal of degree 3.

(ii) Suppose that a �= 1. There exists an element w ∈ k[t] of degree 2 such that w −
cα(w) = t + bt2 if and only if one of the following holds:

(a) (a, b, c) ∈ F = {(a, b, c) ∈ k∗ × k∗ × k∗ : a �= 1, c /∈ {1, a−1, a−2}};

(b) (a, b, c) ∈ {(d, 1
2 (d − 1), d−1) : d ∈ k \ {0, 1}};

(c) (a, b, c) ∈ {(d, d − 1, 1) : d ∈ k \ {0, 1}}.

(iii) For a �= 1, suppose that a and c are not both roots of unity, or that c �= a−n for all
integers n > 2. Then Uabc is conformal as an ambiskew polynomial ring if and only
if there exists an element w ∈ k[t] of degree 2 such that w − cα(w) = t + bt2.

Proof. Parts (i) and (ii) can be proved by careful, though straightforward, calculation.
We now prove (iii). The reverse direction is certainly true, by the definition of confor-
mality of an ambiskew polynomial ring. For the forward direction suppose that there
exists w =

∑n
i=0 µit

i, for some n � 0, µi ∈ k with µn �= 0, satisfying w − cα(w) = t+ bt2.
Clearly n � 2. If n = 2 we are done. Suppose then that n > 2. Then µn −canµn = 0, and,
therefore, since µn is non-zero, 1 = can. It is clear that if c �= a−n for all n > 2, or if only
one of a and c is a root of unity, then no such w of degree strictly greater than two can
exist. Thus in these cases such an element w, if it exists, must be of degree 2. Now suppose
that a and c are both non-roots of unity. We show that 1 = can implies that (a, b, c) ∈ F .
By our hypothesis on a and c, neither is equal to 1. Suppose that c ∈ {a−1, a−2}. Then
1 ∈ {an−1, an−2}, where n − 1 > n − 2 > 0, contradicting our hypothesis on a. Hence
(a, b, c) ∈ F , and so we are done. This proves the proposition. �

Lemma 3.5. Let a, b, c ∈ k, ac �= 0, with a �= 1, and suppose that Uabc is J-conformal
with respect to w ∈ A, of degree m > 0. (i) When c = 1, if g divides w, then b = a − 1;
when c �= 1, g divides w if and only if b = a − 1. (ii) Suppose that m > 1. Then gi does
not divide w for each i = 2, . . . , m.

Proof. (i) Let η ∈ k be such that −η is equal to the evaluation of w at t = 1/(1 − a)
(recall that w ∈ A = k[t]). Then g always divides w + η and, since α(g) = ag, g always
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divides w + η − cα(w + η) = t + bt2 + (1 − c)η. Hence

1
1 − a

+
b

(1 − a)2
= (c − 1)η.

Suppose that c = 1. Then we must have that b = a − 1. Now suppose that c �= 1, and so

η =
1 − a + b

(c − 1)(a − 1)2
.

Thus g divides w, i.e. η = 0, if and only if b = a − 1. (ii) A straightforward calculation
shows that g2 divides w only if b = 1

2 (a − 1). Since g must also divide w in this case we
have, by (i), that b = a − 1. Since a �= 1 this gives a contradiction. Hence we have the
result. �

Example 3.6. As was noted in [13, 2.2], when (a, b, c) is as in Proposition 3.4 (ii) (b),
Uabc is isomorphic to the deformation Uq of U(sl2) defined and studied in [8]. In fact, for
q ∈ k∗ we have that Uq is isomorphic to Uq−1,((q−1−1)/2),q.

Example 3.7. As was noted in [13, 2.2], when (a, b, c) is as in Proposition 3.4 (ii) (c),
Uabc is isomorphic to the quantum sl2 enveloping algebra of Witten [19, 5.2].

Example 3.8. When (a, b, c) is as in Proposition 3.4 (ii) (c) with a = q2, where q ∈ k∗

is not a fourth, nor a primitive twelfth, root of unity, then Uabc is isomorphic to the
enveloping algebra of the quantum Lie algebra sl(2)q as defined in [15].

Definition 3.9. Let a, b, c ∈ k with ac �= 0 and a �= 1. Recall Proposition 2.4. Since g

is a normal element of Uabc, {gi : i � 0} is a right Ore set in the Noetherian ring Uabc, and
so is automatically a right denominator set by [16, 1.13 (iii)]. We can therefore localize
to Labc := Uabc[gi : i � 0]−1. Note that Labc is isomorphic to R(S, α, t + bt2, c), where
S := A[gi : i � 0]−1 and α is extended by setting α(g−1) = α(g)−1. Whenever a, b, c ∈ k

with ac �= 0 and a �= 1, this notation for S and Labc will be fixed throughout.

Theorem 3.10. For q ∈ k∗ with q2 �= 1, let Uq(sl2) denote the quantized enveloping
algebra of sl2, namely the k-algebra generated by K, K−1, E and F with defining relations
KK−1 = 1 = K−1K, KE = q2EK, KF = q−2FK and EF − FE = (q − q−1)−1(K −
K−1).

(i) Let q ∈ k∗, with q2 �= 1. Recall Example 3.6. Then Lq2,((q2−1)/2),q−2 is isomorphic
to Uq(sl2) as a k-algebra.

(ii) Let q ∈ k∗, with q4 �= 1. Then we have that Uq−40q2 [g1/2] exists, and its localization
with respect to {gi/2 : i � 0} is isomorphic as a k-algebra to Uq(sl2) (cf. [18, 2.6]).

Proof. (i) Note that g = (q2 − 1)t + 1. Then L = Lq2,((q2−1)/2),q−2 is generated by
x, y, g and g−1. Let e = g−1x and f = 2qy. Then it is clear that e, f , g and g−1

generate L. It is easily seen that gg−1 = 1 = g−1g, ge = q2eg, gf = q−2fg, and that
ef − fe = (q − q−1)−1(g − g−1). Thus the map ψ : Uq(sl2) → Lq2,((q2−1)/2),q−2 given by
ψ(K) = g, ψ(K−1) = g−1, ψ(E) = e and ψ(F ) = f is a k-algebra homomorphism, which
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is clearly surjective. Since {Ki1Ei2F i3 : ii, i2, i3 ∈ Z, i2, i3 � 0} is a PBW-type basis for
Uq(sl2) and {gi1ei2f i3 : ii, i2, i3 ∈ Z, i2, i3 � 0} is a PBW-type basis for Lq2,((q2−1)/2),q−2 ,
we have that ψ is injective. Thus ψ is a k-algebra isomorphism.

(ii) Let U = Uq−40q2 . Define φ : U → Uq(sl2) by φ(x) = K−1E, φ(g) = K−2 and
φ(y) = λF , where λ = q(1 + q−2)−1 ∈ k. By straightforward calculation we have that φ

respects the relations between the generators x, y and g of U , namely that φ(g)φ(x) =
q−4φ(x)φ(g), φ(y)φ(g) = q−4φ(g)φ(y) and φ(x)φ(y)−q2φ(y)φ(x) = (q−4−1)−1(φ(g)−1),
where we note that t = (q−4 − 1)−1(g − 1). By a similar argument involving PBW-type
bases as in (i), we have that Ker φ = 0. Thus U is isomorphic to B0 := Im φ, a k-
subalgebra of Uq(sl2). Note that K−1 = φ(g)1/2 ∈ Uq(sl2). Thus the k-algebra U [g1/2]
exists and is isomorphic, by extending φ(g1/2) = K−1, to B := 〈B0, K

−1〉, which is
just the subalgebra of Uq(sl2) generated by K−1E, F and K−1. Hence U [g−1/2], the
localization of U [g1/2] at {gi/2 : i � 0}, is isomorphic to the localization of B with
respect to {K−i : i � 0}, which is, of course, equal to Uq(sl2). �

Note 3.11. Let q ∈ k∗ with q �= 1. Then Example 3.6 and Theorem 3.10 (i) together
show that Jing and Zhang’s algebra Uq of [8] is isomorphic to the subalgebra k〈K, KE, F 〉
of Uq−1/2(sl2).

4. Centre of J-conformal Uabc for a, b, c ∈ k, ac �= 0

Definition 4.1 (see 1.7 in [9]). Let R = R(T, σ, w − ρσ(w), ρ) be a conformal
ambiskew polynomial ring where T is a commutative domain which is finitely generated
as a k-algebra, and 0 �= w ∈ T . Suppose that there exists a non-zero element h ∈ T , such
that σ(h) = ρnh for some n � 1. Let n � 1 be minimal for the existence of such h. Then
any non-zero element h ∈ T satisfying σ(h) = ρnh will be called a principal eigenvector
and n will be its degree.

Theorem 4.2 (see 2.1(ii) in [9]). Let R = R(T, σ, w − ρσ(w), ρ) be a conformal
ambiskew polynomial ring where T is a commutative domain which is finitely generated
as a k-algebra, and 0 �= w ∈ T ; let Z denote the corresponding Casimir element. Suppose
that T is σ-simple, i.e. T has no non-zero, proper σ-invariant ideals. (i) If T has no
principal eigenvectors then Z(R) = k. (ii) If T �= k and has a principal eigenvector h of
degree n, then Z(R) = k[hZn].

Lemma 4.3. Let a, b, c ∈ k, ac �= 0 with a not a root of unity and suppose that Uabc

is J-conformal. Recall that Labc := Uabc[gi : i � 0]−1 = R(S, α, t + bt2, c).

(i) Suppose that c is not a root of unity.

(a) There exist principal eigenvectors of S if and only if there exists integers l, n

with n � 1 and l �= 0 such that cn = al.

(b) Suppose there exist principal eigenvectors of S. Let N � 1 be minimal such
that cN is a non-zero integer power of a. Then there is a unique non-zero
l ∈ Z such that cN = al, and {λgl : λ ∈ k∗} is a complete set of principal
eigenvectors of S. Each has degree N .
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(ii) Suppose that c is a root of unity, of multiplicative order l � 1 in k∗. Then principal
eigenvectors of S exist; k∗ is a complete list of principal eigenvectors, and each has
degree l.

Proof. (i) (a) (⇒) Let v ∈ S be a principal eigenvector of degree N , for some integer
N � 1. Then 0 �= v = fg−i, for some 0 �= f ∈ A, i � 0, and α(v) = cNv. Hence
cNfg−i = α(f)α(g−i) = a−iα(f)g−i, since α(g) = ag. Therefore

cNaif = α(f). (4.1)

Thus the ideal of A generated by f is α-invariant. Therefore, by Corollary 2.6, f = λgj

for some 0 �= λ ∈ k, j � 0. By (4.1), cNaiλgj = λajgj and so cN = aj−i. Since c is
not a root of unity, the integer j − i is non-zero, as claimed. Notice that v = λgl, where
0 �= l ∈ Z and cN = al. (⇐). Suppose that there exist integers N , M with N � 1
and M �= 0 such that cN = aM . Choose N � 1 minimal for the existence of such an
M . Now gM ∈ S \ {0} and α(gM ) = aMgM = cNgM . If N = 1, then gM is certainly
a principal eigenvector of degree N . Let N > 1. Suppose that there exists 0 �= v ∈ S

such that α(v) = cnv for some n ∈ Z, 1 � n < N . By the proof of the (⇒) direction,
cn must be a non-zero integer power of a which contradicts the minimality of N . Hence
no such v exists, and so gM is a principal eigenvector, as required. (b) Suppose that
principal eigenvectors exist. We know that cN = al for some 0 �= l ∈ Z. Since a is
not a root of unity, l is necessarily unique. By the proof of the (⇐) direction of (i) (a),
{λgl : 0 �= λ ∈ k} are all principal eigenvectors of S, with degree N . By the proof of
the (⇒) direction of (i) (a) we know that if v is a principal eigenvector of S (necessarily
of degree N since we already have explicit eigenvectors of degree N), then v = λgl′ ,
where 0 �= λ ∈ k, 0 �= l′ ∈ Z and cN = al′ . Hence l′ = l, v = λgl and so we are
done.

(ii) We know by [9, 1.7 (ii)] that 1 is a principal eigenvector of degree l. Thus every
element of k∗ is a principal eigenvector of degree l. Now suppose that v is a principal
eigenvector of S, necessarily of degree l. Then v is non-zero and α(v) = clv = v. Thus
v is a non-zero element of S fixed by α. Now v = fgr for some integer r and non-zero
polynomial f ∈ A, where g does not divide f in A. As v is fixed by α we have that
α(f) = a−rf . Therefore fA is a non-zero α-invariant ideal of A. If fA �= A then, by
Corollary 2.6, g divides f in A. Thus fA = A, and so f ∈ k∗. Therefore v = α(v) =
arfgr = arv. As a is not a root of unity, r = 0. Hence v = f ∈ k∗, and the result
follows. �

Notation 4.4. Let a, b, c ∈ k with ac �= 0 and suppose that Uabc is J-conformal,
with respect to w ∈ A. By [10, 1.7] we can form the localization of Uabc with respect
to y, denoted Uy, which is equal to A[z][y, y−1; α]. Similarly, we can form Ux which is
equal to A[z][x, x−1; α−1]. When a �= 1, we also have, using analogous notation, that
Ly = S[z][y, y−1; α] and Lx = S[z][x, x−1; α−1].

Lemma 4.5. Let a, b, c ∈ k with ac �= 0, and suppose that Uabc is J-conformal with
respect to w ∈ A. Recall the notation of 4.4. Suppose that c is a non-root of unity. Then
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every non-zero element of Z(Uy) is of the form
∑n

i=0 aiz
i, where 0 � n ∈ Z, ai ∈ A, an �= 0

and α(ai) = ciai for each i = 0, . . . , n. When a �= 1, every non-zero element of Z(Ly) is
of the form

∑n
i=0 siz

i, where 0 � n ∈ Z, si ∈ S, sn �= 0 and α(si) = cisi for each
i = 0, . . . , n.

Proof. We only prove the Uy case, the other being similar. Let 0 �= f ∈ Z(Uy). Then f

is expressible as the finite sum
∑

i�0, j∈Z
aijz

iyj , where each aij ∈ A. Since yz = c−1zy,∑
aijz

i+1yj = zf = fz =
∑

aijc
−jzi+1yj .

Hence aij = c−jaij for all i, j; so aij �= 0 implies c−j = 1. Since c is not a root of unity,
j = 0. Thus, without loss of generality, f =

∑n
i=0 aiz

i, where 0 � n ∈ Z, ai ∈ A, an �= 0.
Since yf = fy we must have that α(ai) = ciai for each i = 0, . . . , n. �

Theorem 4.6. Let a, b, c ∈ k, ac �= 0, and let Uabc be J-conformal, with respect to
w ∈ A of degree m > 0.

(i) (a) Suppose that c is not a root of unity. Then Z(U1bc) = k.
(b) Suppose that c is a primitive lth root of unity, where 0 < l ∈ Z. Then

Z(U1bc) = k[zl].

(ii) Suppose that a is not a root of unity.

(a) Suppose that c is a root of unity, with multiplicative order l � 1 in k∗. Then
Z(Labc) = k[zl] and Z(Uabc) = k[zl].

(b) Suppose that c is not a root of unity and that there exists N � 1 minimal
with respect to the property that cN is a non-zero integer power of a. Let
0 �= l ∈ Z be such that cN = al. (i) Z(Labc) = k[glzN ]. (ii) If l > 0, then
Z(Uabc) = k[glzN ]. (iii) If l < 0, then Z(Uabc) = k.

(c) Suppose that c is not a root of unity and that there does not exist an integer
N � 1 such that cN is a non-zero integer power of a. Then Z(Labc) = k and
Z(Uabc) = k.

(iii) Suppose that a is a primitive Nth root of unity, for some 1 < N ∈ Z, and that c is
not a root of unity. Then Z(Labc) = k[g±N ] and Z(Uabc) = k[gN ].

(iv) Let a be a primitive nth and c a primitive lth root of unity, for integers n > 1 and
l > 0. Set B = {(i, j) ∈ Z × Z : 0 � i < n, 0 � j < l, ai = cj}, and note that
|B| < ∞ and (0, 0) ∈ B. Let s = lcm(n, l).

(a) Let
Z0 =

∑
(i,j)∈B

gizjk[gn, zl] ⊆ Uabc.

Then Z0 is a central k-subalgebra of Uabc, the sum is direct over k[gn, zl] and,
as a Z-graded k-algebra,

Z(Uabc) =
∑⊕

r>0

Z0x
rs

⊕
Z0

⊕ ∑⊕

r>0

Z0y
rs.
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(b) Let
Z1 =

∑
(i,j)∈B

gizjk[g±n, zl] ⊆ Labc.

Then Z1 is a central k-subalgebra of Labc, the sum is direct over k[g±n, zl]
and, as a Z-graded k-algebra,

Z(Labc) =
∑⊕

r>0

Z1x
rs

⊕
Z1

⊕ ∑⊕

r>0

Z1y
rs.

Proof. (i) (a) By Corollary 2.6, A has no non-zero, proper α-invariant ideals. Suppose
that there exists a principal eigenvector h ∈ A. Then h �= 0 and α(h) = cnh for some
0 < n ∈ Z. Consider the non-zero ideal I = hA of A. Then α(I) = cnhA = I, and
so we must have that I = A. Therefore h ∈ k and so cn = 1, a contradiction. It
follows that principal eigenvectors do not exist, and the result follows by Theorem 4.2.
(b) By [9, 1.7(ii)], 1 is a principal eigenvector of degree l. Apply Theorem 4.2.

(ii) The results on Z(Labc) are clear from Theorem 4.2 and Lemma 4.3. Observe that
Z(Uabc) = Z(Labc) ∩ Uabc. Therefore in cases (a), (b) (ii) and (c) we have that Z(Uabc) =
Z(Labc). It remains to prove (b) (iii). Let l = −p, for some 0 < p ∈ Z. Set

B = k[g−pzN ] ∩ Uabc = Z(Uabc) = Z(Uy) ∩ Uabc.

Let 0 �= f ∈ B. Then, by Lemma 4.5, f =
∑n

i=0 aiz
i, where 0 � n ∈ Z, ai ∈ A,

an � 0. However, we also have that f =
∑q

r=0 γrg
−przNr for some 0 � q ∈ Z, γr ∈ k

with γq �= 0. Hence gpqf =
∑q

r=0 γrg
p(q−r)zNr ∈ A[z], and gpqf =

∑n
i=0 aig

pqzi ∈ A[z].
Comparing leading coefficients, Nq = n and γq = angpq. If q > 0 this gives a contradiction
since g /∈ k. Thus q = 0; therefore n = 0 and f ∈ k. Hence B ⊆ k ⊆ B, i.e. B = k. This
proves (b) (iii).

(iii) Let 0 �= f ∈ Z(Ly). Then, by Lemma 4.5, f =
∑n

i=0 siz
i, where 0 � n ∈ Z,

si ∈ S, sn �= 0 and α(si) = cisi for each i = 0, . . . , n. Observe that sn is expressible as
a finite sum

∑
i∈Z

γig
i, for some γi ∈ k. Therefore α(sn) =

∑
i∈Z

γia
igi, and so, since

α(sn) = cnsn, γia
i = γic

n for each i. Since sn �= 0, we can choose a non-zero γi. Then
1 = aNi = cNn and, as c is not a root of unity, Nn = 0. Therefore n = 0, since N �= 0.
Thus f = s0, where α(s0) = s0. Thus Z(Ly) ⊆ Sα ⊆ Labc, and so Z(Ly) = Z(Labc).
Since Labc is generated as a k-algebra by S, y and x, we have Sα ⊆ Z(Labc). Hence
Z(Labc) = Sα. It is clear that k[g±N ] ⊆ Sα. Let s ∈ Sα. Then s is expressible as a finite
sum

∑
i∈Z

µig
i for some µi ∈ k, and µia

igi = µig
i for each i. Therefore, if µi is non-zero

for some i, we have ai = 1, i.e. i is a multiple of N . Thus s, and so Sα, is contained in
k[g±N ]. Hence Z(Labc) = Sα = k[g±N ]. Now let B = Z(Labc) ∩ Uabc = Z(Uabc). Choose
0 �= h ∈ B. Then h = h− + h+ for some h− ∈ k[g−N ] and h+ ∈ k[gN ]. Since h, h+ ∈ Uabc

so too must h−. Hence h− is expressible as a finite sum
∑

r,s,t�0 λrstg
rysxt for some

λrst ∈ k. However, we also have h− =
∑M

i=0 λig
−Ni for some 0 � M ∈ Z, λi ∈ k. Thus

gNMh− =
M∑
i=0

λig
N(M−i) ∈ k[gN ] and gNMh− =

∑
λrstg

NM+rysxt.
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By the k-linear independence of {gi1yi2xi3 : i1, i2, i3 � 0}, λrst = 0 whenever s or t is
non-zero. Hence h− ∈ k[g] = A, and so h ∈ A. Then h ∈ Sα implies that h ∈ Aα = k[gN ].
Thus k[gN ] ⊆ B ⊆ k[gN ], i.e. Z(Uabc) = B = k[gN ].

(iv) We prove (a) only; (b) is proved in a similar manner. Set U0 = A[z], Ur =
A[z]yr(r > 0) and Ur = A[z]x−r(r < 0). Then

∑⊕

r∈Z

Ur

is a Z-grading for Uabc, by [9, 1.9]. Since Uabc is generated by homogeneous elements,

Z(Uabc) =
∑⊕

r∈Z

Z(Uabc) ∩ Ur.

Let r > 0 and suppose that Z(Uabc)∩Ur is non-zero. Then there exists 0 �= v = fyr ∈ Ur,
for some f ∈ A[z], such that v is central in Uabc. Since vz = zv we have zfyr = c−rzfyr,
which implies that c−r = 1, i.e. r is a multiple of l. Also gv = vg, which gives gfyr =
argfyr. Thus ar = 1, and so r is a multiple of n. We therefore have that r is a multiple of
s. It is clear that ys commutes with A[z]. Since Uy = A[z][y, y−1; α], ys ∈ Z(Uy) ∩ Uabc =
Z(Uabc). Therefore yr ∈ Z(Uabc) and, since Uabc is a domain, v = fyr ∈ Z(Uabc) if and
only if f ∈ Z(Uabc). So Ur ∩ Z(Uabc) ⊆ (A[z] ∩ Z(Uabc))yr. As (A[z] ∩ Z(Uabc))yr ⊆
Ur ∩Z(Uabc), Ur ∩Z(Uabc) = (A[z] ∩Z(Uabc))yr. Similarly, when r < 0, Ur ∩Z(Uabc) �= 0
implies that r is a multiple of s. Since xs commutes with A[z] and Ux = A[z][x, x−1; α−1],
xs ∈ Z(Ux) ∩ Uabc = Z(Uabc) and so we also have Ur ∩ Z(Uabc) = (A[z] ∩ Z(Uabc))xr.
Thus Z(Uabc) is equal to

∑⊕

r>0

(A[z] ∩ Z(Uabc))xrs ⊕ (A[z] ∩ Z(Uabc)) ⊕
∑⊕

r>0

(A[z] ∩ Z(Uabc))yrs.

Notice that k[gn, zl] ⊆ A[z] ∩ Z(Uabc). It is clear that

A[z] =
n−1∑⊕

i=0

l−1∑⊕

j=0

gizjk[gn, zl]

as a k[gn, zl]-module. Choose i, j with 0 � i < n, 0 � j < l. Then gizj ∈ Z(Uabc) implies
that xgizj = gizjx, which is equivalent to a−icjgizjx = gizjx, i.e. (i, j) ∈ B. Similarly,
ygizj = gizjy if and only if ai = cj , i.e. (i, j) ∈ B. Therefore gizj ∈ Z(Uabc) if and only
if (i, j) ∈ B. Thus

Z0 =
∑⊕

(i,j)∈B
gizjk[gn, zl] ⊆ A[z] ∩ Z(Uabc).

Let f ∈ A[z] ∩ Z(Uabc). Since {gizj : 0 � i < n, 0 � j < l} form a k-basis for A[z] over
k[gn, zl], and since {gr1zr2xr3 : r1, r2, r3 � 0} are linearly independent over k, it is clear,
on considering the relation fx = xf , that Z0 is the whole of A[z] ∩ Z(Uabc). The result
now follows. �
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5. Finite-dimensional irreducible representations of
J-conformal Uabc for a, b, c ∈ k, ac �= 0

Let a, b, c ∈ k, ac �= 0 and suppose that a �= 1. As was noted in Definition 3.9, g is a
normal element of Uabc; we consider the k-algebra U := Uabc/gUabc. For c ∈ k∗, c �= 1,
recall the quantum plane Λc = k〈X, Y : XY = cY X〉 and the quantum Weyl algebra
Ac

1 = k〈X, Y : XY − cY X = 1〉.

Lemma 5.1. Let a, b, c ∈ k with ac �= 0 and a �= 1.

(i) Suppose that b = a−1. When c = 1, U is isomorphic to a commutative polynomial
k-algebra in two indeterminates; when c �= 1, U is isomorphic to the quantum plane
Λc.

(ii) Suppose that b �= a − 1. When c = 1, U is isomorphic to the first Weyl algebra;
when c �= 1, U is isomorphic to the quantum Weyl algebra Ac

1.

Proof. Let X = x + gUabc and Y = y + gUabc be elements of U . Then U is generated
by X and Y and, noting that t is equal to (1 − a)−1 modulo g, is subject to the relation
XY − cY X = (1 − a)−1(1 + b(1 − a)−1). When b = a − 1 we have that XY − cY X = 0.
Otherwise XY − cY X is equal to a non-zero scalar, which we can assume without loss
of generality to be 1. Hence the result. �

Remark 5.2. Let a, b, c ∈ k with ac �= 0. Suppose that Uabc is J-conformal. The
aim of this section is to determine all the finite-dimensional irreducible Uabc-modules.
Consider the case a �= 1. The finite-dimensional irreducible Uabc-modules that are anni-
hilated by g are precisely the finite-dimensional irreducible U-modules, and those that
are not annihilated by g are precisely the finite-dimensional irreducible Labc-modules.
By Lemma 5.1, U is a well-known algebra. When c = 1 the finite-dimensional irreducible
representation theory of U has long been known; when c �= 1 the finite-dimensional irre-
ducible representation theory of U has been determined in [2], [3] and [17]. Therefore, to
achieve our aim for Uabc when a �= 1, it is the finite-dimensional irreducible Labc-modules
that we must calculate. The a = 1 case will be considered separately. We will be using
the methods of [10], and for the reader’s convenience we will state the results that we
need here.

Theorem 5.3 (see 2.6, 3.3 and 3.4 in [10]). Let R = R(T, σ, w − ρσ(w), ρ) be an
arbitrary conformal ambiskew polynomial ring as in Definition 2.2, where T is a finitely
generated commutative k-algebra and w ∈ T . Let Z = XY − w, and set σ(Z) = ρ−1Z.
For r = Y or X, we say that a right R-module is r-torsion (respectively r-torsion free)
if it is torsion (respectively torsion free) with respect to {ri : i � 1}. A module which is
both Y -torsion and X-torsion will be called XY -torsion. Then every finite-dimensional
irreducible R-module is isomorphic to one of the following, for a suitable maximal ideal
M of T ; conversely, for M a maximal ideal of T , all of the following modules, when they
exist, are irreducible.
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(i) A d-dimensional XY -torsion module

L(M) =
R

MR + XR + Y dR
,

where d > 0 is minimal with w − ρdσd(w) ∈ M .

(ii) An n-dimensional Y -torsion-free module

C(M, ξ) =
R

MR + ZR + (Y n − ξ)R
,

or an n-dimensional X-torsion-free module

C+(M, ξ) =
R

MR + ZR + (Xn − ξ)R
,

where M has finite orbit of order n under σ and 0 �= ξ ∈ k.

(iii) An s-dimensional Y -torsion-free module

B(M, ξ, η) =
R

MR + (Z − η)R + (Y s − ξ)R
,

or an s-dimensional X-torsion-free module

B+(M, ξ, η) =
R

MR + (Z − η)R + (Xs − ξ)R
,

where M has finite orbit under σ, ρ is a root of unity, s is the least common multiple
of the orders of M and ρ, and ξ, η ∈ k∗.

No pair of modules of different types is isomorphic.

Notation 5.4. Let a, b, c ∈ k with ac �= 0. Suppose that Uabc is J-conformal (with
respect to w ∈ A, of degree m > 0).

(i) When a = 1, let DA = {M ∈ Maxspec(A) : ∃ d > 0 minimal such that w −
cdαd(w) ∈ M}. When a �= 1, let DS = {M ∈ Maxspec(S) : ∃ d > 0 minimal such
that w − cdαd(w) ∈ M}.

(ii) Suppose that a �= 1. Whenever M is a maximal ideal of S and η ∈ k, set NM,η =
MS[z] + (z − η)S[z], a maximal ideal of S[z].

(iii) Suppose that a �= 1. For M a maximal ideal of S or of S[z], set Ω(M) = {αi(M) :
i ∈ Z}.

Proposition 5.5. Let a, b, c ∈ k, ac �= 0, a �= 1, and suppose that Uabc is J-conformal
(with respect to w ∈ A, of degree m > 0). The set {L(M) : M ∈ DS} form a complete
and repetition-free list of the finite-dimensional irreducible Labc-modules of the form
listed in Theorem 5.3 (i). When b = 0 there can exist no more than one, and when b �= 0
no more than two, distinct n-dimensional irreducible Labc-modules of the form L(M) for
each positive integer n.
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Proof. As a polynomial in A, we have that w − cα(w) has degree one when b = 0,
and degree 2 when b �= 0. It can be shown by a straightforward induction argument that,
for each positive integer n, the degree of w − cnαn(w) is always less than or equal to the
degree of w − cα(w) (when n > 1, we write w − cnαn(w) as

w−cn−1αn−1(w)+cn−1αn−1(w)−cnαn(w) = w−cn−1αn−1(w)+cn−1αn−1(w−cα(w)),

and then apply the inductive step). The stated result is then immediate from Theo-
rem 5.3, and the fact that w − cnαn(w) can lie in no more than one maximal ideal of S

when b = 0, and no more than two maximal ideals of S when b �= 0. �

Proposition 5.6. Let a, b, c ∈ k, ac �= 0, and let a be a non-trivial root of unity of
multiplicative order n > 1 in k∗. Let Uabc be J-conformal (with respect to w ∈ A, of
degree m > 0). Recall the notation introduced in Notations 3.2 and 5.4. Set P = {Ω(M) :
M ∈ Maxspec(S)} and

Q =
{

Ω((t − ρi)S) : 1 � i � r(w), ρi �= 1
1 − a

}
.

(i) (a) There is a bijective correspondence between distinct pairs (Γ, ξ) ∈ P × k∗

and n-dimensional irreducible Labc-modules of the form C(M, ξ). Denote this
module WΓ,ξ.

(b) There is a bijective correspondence between distinct pairs (Γ, ξ) ∈ P ×k∗ and
n-dimensional irreducible Labc-modules of the form C+(M, ξ). Denote this
module W+

Γ,ξ.

(ii) Let Γ ∈ P. Consider the isomorphism classes of Labc-modules S1 = {WΓ,ξ : ξ ∈ k∗}
and S2 = {W+

Γ,ξ : ξ ∈ k∗}.

(a) Then S1 and S2 are disjoint if and only if Γ ∈ Q, and coincide otherwise.
Always, 1 � |Q| � r(w) (� m). However, when m > 1 with b = a − 1 and
c �= 1 we have that |Q| < r(w).

(b) Let Γ ′ ∈ P. If Γ �= Γ ′, then S1 ∩ {W+
Γ ′,ξ : ξ ∈ k∗} = ∅.

Proof. (i) Let (Γ, ξ) ∈ P × k∗. Then Γ = Ω(M) for some maximal ideal M of S.
We have by Lemma 2.5 (v) that every maximal ideal of A not equal to gA has order
n under α. Therefore, every maximal ideal of S has order n under α. Thus we can
form the n-dimensional irreducible Labc-module C(M, ξ). It is clear from [10, 3.5] that
C(M, ξ) ∼= C(M ′, ξ′) if and only if αi(M) = M ′ for some i ∈ Z and ξ = ξ′. Therefore,
the correspondence in (a) is bijective. Part (b) is similar.

(ii) Let M ∈ Maxspec(S) and ξ ∈ k∗. Then, by [10, 3.4], C(M, ξ) is x-torsion free,
i.e. C(M, ξ) ∼= V ∈ {C+(M ′, ξ′) : ξ′ ∈ k∗} if and only if αi(w) /∈ M for all i =
0, 1, . . . , n − 1; in fact we can take, up to isomorphism, V = C+(M, ξ′), for some ξ′ ∈ k∗.
By symmetry, C+(M, ξ) is y-torsion free if and only if αi(w) /∈ M for all i = 0, 1, . . . , n−1.
Hence, for Γ = Ω(M), the isomorphism classes S1 and S2 are disjoint if and only if
αi(w) ∈ M for some 0 � i � n − 1, which is equivalent to

∏n−1
j=0 αj(w) ∈ M , which is
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equivalent to Γ ∈ Q; S1 and S2 coincide otherwise. Suppose m = 1. Then b = 0 and,
since a �= 1, g does not divide w by Lemma 3.5. Hence Q �= ∅, and so |Q| = 1. Now
suppose that m > 1. By Lemma 3.5, gj does not divide w for all j = 2, . . . , m. Hence
1 � |Q| � r(w). When b = a − 1 and c �= 1, Lemma 3.5 states that g divides w, and
so |Q| < r(w) in this case. This proves (a). Let ξ ∈ k∗. By the above remarks, if WΓ,ξ

is x-torsion free, then WΓ,ξ
∼= W+

Γ,ξ′ , for some ξ′ ∈ k∗. Part (b) is now clear from the
correspondence given in (i). �

Proposition 5.7. Let a, b, c ∈ k with a and c both roots of unity, of multiplicative
orders n > 1 and l � 1 in k∗, respectively. Suppose that Uabc is J-conformal (with
respect to w ∈ A, of degree m > 0). Let s = lcm(n, l). In the notation of 5.4, let
W = {Ω(NM,η) : M ∈ Maxspec(S), 0 �= η ∈ k}. Note that |Ω(N)| = s for all maximal
ideals N of S[z]. For each η ∈ k∗, we set M(η) = {M ∈ Maxspec(S) : αj(w)+ c−jη ∈ M

for some j = 0, 1, . . . , s − 1}, and note that |M(η)| � ms.

(i) (a) There is a bijective correspondence between distinct pairs (Γ, ξ) ∈ W × k∗

and isomorphism classes of s-dimensional irreducible Labc-modules of the form
B(M, ξ, η). Denote the corresponding module VΓ,ξ.

(b) There is a bijective correspondence between distinct pairs (Γ, ξ) ∈ W × k∗

and isomorphism classes of s-dimensional irreducible Labc-modules of the form
B+(M, ξ, η). Denote the corresponding module V +

Γ,ξ.

(ii) Let Γ ∈ W. Then Γ = Ω(NM,η) for some M ∈ Maxspec(S) and η ∈ k∗. Set
V1 = {VΓ,ξ : ξ ∈ k∗} and V2 = {V +

Γ,ξ′ : ξ′ ∈ k∗}.

(a) Then V1 ∩ V2 = ∅ if and only if Γ ∈ {Ω(NM ′,η) : M ′ ∈ M(η)}, a set of no
more than ms elements. Otherwise V1 = V2.

(b) Let Γ ′ ∈ W. If Γ �= Γ ′, then V1 ∩ {V +
Γ ′,ξ : ξ ∈ k∗} = ∅.

Proof. (i) Let (Γ, ξ) ∈ W × k∗. Then W = Ω(NM,η), for some M ∈ Maxspec(S)
and η ∈ k∗. By Lemma 2.5 (v), M has finite order n under α. Hence we can form
the s-dimensional irreducible Labc-module B(M, ξ, η). Now, for some M ′ ∈ Maxspec(S)
and ξ′, η′ ∈ k∗, we have by [10, 3.5] that B(M, ξ, η) ∼= B(M ′, ξ′, η′) if and only if
NM ′,η′ ∈ Ω(NM,η) and ξ = ξ′. Therefore the correspondence in (a) is bijective. Part (b)
is similar.

(ii) Let M ∈ Maxspec(S) and η, ξ ∈ k∗. Then it is implicit in [10, 3.1, 3.3] that
B(M, ξ, η) is x-torsion free, i.e. B(M, ξ, η) ∼= V ∈ {B+(M ′, ξ′, η′) : M ′ ∈ Maxspec(S)
and ξ′, η′ ∈ k∗} if and only if η + ciαi(w) /∈ M for all i = 0, 1, . . . , s − 1; in fact we can
take, up to isomorphism, V = B+(M, ξ′, η) for some ξ′ ∈ k∗. By symmetry, B+(M, ξ, η)
is y-torsion free if and only if η + ciαi(w) /∈ M , for all i = 0, 1, . . . , s − 1. Hence the
isomorphism classes V1 and V2 are disjoint if and only if η + cjαj(w) ∈ M for some
0 � j � s − 1, i.e. M ∈ M(η), and coincide otherwise. Since 1 � |M(η)| � ms, (a) is
now proved. Let ξ ∈ k∗. By the above remarks, if VΓ,ξ is x-torsion free, then VΓ,ξ

∼= V +
Γ,ξ′ ,

for some ξ′ ∈ k∗. Part (b) is now clear by the correspondence given in (i). �
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Remark 5.8. Let a, b, c ∈ k with ac �= 0 and suppose that Uabc is J-conformal (with
respect to w ∈ A, of degree m > 0). Consider the remarks in 5.2. We can therefore split
the task of determining all the finite-dimensional irreducible representations for Uabc into
the following four subproblems, namely the determination of

(A) the finite-dimensional irreducible U1bc-modules;

(B) the finite-dimensional irreducible Labc-modules, when a �= 1 is not a root of unity;

(C) the finite-dimensional irreducible Labc-modules when a �= 1 is a root of unity, but
c is not a root of unity; and

(D) the finite-dimensional irreducible Labc-modules when a �= 1 and both a and c are
roots of unity.

The next four theorems give the answers to subproblems (A), (B), (C) and (D), respec-
tively.

Theorem 5.9. Let b, c ∈ k, with c �= 0. Suppose that U1bc is J-conformal (with respect
to w ∈ A, of degree m > 0). Then {L(M) : M ∈ DA} is a complete and repetition-free
list of the finite-dimensional irreducible U1bc-modules. When b = 0 there can exist no
more than one, and when b �= 0 no more than two, distinct n-dimensional irreducible
U1bc-modules for each positive integer n.

Proof. By Lemma 2.5 (i), every maximal ideal of A has infinite orbit under α. By
Theorem 5.3, every finite-dimensional irreducible U1bc-module is of the form stated. The
result follows by arguing as in the proof of Proposition 5.5. �

Theorem 5.10. Let a, b, c ∈ k, ac �= 0, a �= 1, and suppose that Uabc is J-conformal
(with respect to w ∈ A, of degree m > 0). Suppose that a is not a root of unity. Then
{L(M) : M ∈ DS}, as in Proposition 5.5, form a complete and repetition-free list of the
finite-dimensional irreducible Labc-modules.

Proof. By Lemma 2.5 (iv) we have that every maximal ideal of A that is not equal
to gA has infinite orbit under α. Therefore every maximal ideal of S has infinite orbit
under α, and so, by Theorem 5.3, every finite-dimensional irreducible Labc-module is of
the form L(M) for some M ∈ DS . �

Theorem 5.11. Let a, b, c ∈ k, ac �= 0, a �= 1, and suppose that Uabc is J-conformal
(with respect to w ∈ A, of degree m > 0). Suppose that a is a root of unity of multiplica-
tive order n > 1, and that c is not a root of unity. Then the finite-dimensional irreducible
Labc-modules are, without repetition,

(i) {L(M) : M ∈ DS} as in Proposition 5.5 and

(ii) the finite-dimensional irreducible Labc-modules listed in Proposition 5.6.

Proof. Apply Theorem 5.3 and Propositions 5.5 and 5.6. �
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Theorem 5.12. Let a, b, c ∈ k, ac �= 0, a �= 1, and suppose that Uabc is J-conformal
(with respect to w ∈ A, of degree m > 0). Suppose that a is a primitive nth root of unity,
for some n > 1, and that c is a primitive lth root of unity, for some l � 1. Let s = lcm(l, n).
Then the finite-dimensional irreducible Labc-modules are, without repetition,

(i) {L(M) : M ∈ DS} as in Proposition 5.5,

(ii) the finite-dimensional irreducible Labc-modules listed in Proposition 5.6, and

(iii) the finite-dimensional irreducible Labc-modules listed in Proposition 5.7.

Proof. Apply Theorem 5.3 and Propositions 5.5, 5.6 and 5.7. �

Remark 5.13. Compare Theorems 5.11 and 5.12 with [12, Theorem 4.2.1], where it is
stated that for generic a, b, c ∈ k there exists at most two n-dimensional irreducible Uabc-
modules for each positive integer n, and with [13, Proposition 4.1.5], where it is stated
that for generic a, b, c and n > 1 there will be precisely two n-dimensional irreducible
Uabc-modules.

6. Height one prime ideals of Uabc for a, b, c ∈ k, ac �= 0
and a not a non-trivial root of unity

Remark 6.1. Let a, b, c ∈ k, ac �= 0 with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal (with respect to w ∈ A, of degree m > 0).

(i) Consider the case a �= 1. The set of prime ideals of Uabc that contain g is in 1–
1 correspondence with the prime ideals of U . The set of prime ideals of Uabc that do
not contain g is in 1–1 correspondence with the prime ideals of Labc. By Lemma 5.1, U
is always isomorphic to a familiar algebra, whose prime ideal structure is well known.
Therefore, in order to determine Spec(Uabc) when a is not a root of unity, it will be
enough to determine Spec(Labc).

(ii) We split the study of the prime ideals of Uabc when a is not a non-trivial root of
unity into the following subcases.

(a) c is a primitive lth root of unity, for some l � 1. When a = 1, set R = U1bc. When
a �= 1, set R = Labc. We study Spec(R).

(b) c is not a root of unity, and for all i, j ∈ Z with i > 0 we have that ci �= aj . When
a = 1, set R = U1bc. When a �= 1, set R = Labc. We study Spec(R).

(c) c is not a root of unity, but there exists N � 1 minimal such that cN = al for some
(necessarily unique) non-zero integer l. Note that a �= 1 in this case. We study
Spec(Labc) for the two cases l > 0 and l < 0.

Definition 6.2 (see 2.10 in [9]). Let R = R(T, σ, w − ρσ(w), ρ) be a conformal
ambiskew polynomial ring (as in Definition 2.2), where T is a commutative domain
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which is a finitely generated k-algebra, and w is a non-zero element of T . For each prime
ideal P of T we can form the right R-module V (P ) which, as a T -module, can be written

V (P ) =
∑⊕

i�0

T/σ−i(P )

and which, for all i � 0 and h ∈ T , has R-module action

(h + σ−i(P ))X = σ(h)(σ(w) − ρ−iσ−(i−1)(w)) + σ−(i−1)(P )

and

(h + σ−i(P ))Y = σ−1(h) + σ−(i+1)(P ).

Observe that V (P ) is isomorphic to R/PR + XR as a right R-module via the map that
takes, for each i � 0, 1 + σ−i(P ) to the right coset Y i + PR + XR. Suppose that there
exists j > 0 minimal such that w − ρjσj(w) ∈ P . Then we have that

∑⊕

i�j

T/σ−i(P )

is an R-submodule of V (P ). We denote the corresponding factor module by L(P ) and
set Q(P ) := AnnR(L(P )).

Remark 6.3. Let a, b, c ∈ k, ac �= 0 with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal with respect to w ∈ A, of degree m > 0.

(i) Suppose that a �= 1. Let M ∈ DS . Then the Labc-module L(M) as defined in
Remark 6.1 is, by the remarks in [11, 2.1], isomorphic to the finite-dimensional irreducible
Labc-module L(M) as defined in Theorem 5.3 (i), and so there is no clash of notation.
Analogous statements are true when a = 1 regarding the equivalence, up to isomorphism,
of the two definitions of the U1bc-module L(M) for some M ∈ DA.

(ii) Recall from Theorem 5.9 that {L(M) : M ∈ DA} is a complete and repetition-free
list of the finite-dimensional irreducible U1bc-modules, and from Theorem 5.10 (when
a �= 1) that {L(M) : M ∈ DS} is a complete and repetition-free list of the finite-
dimensional irreducible Labc-modules. Therefore, in view of (i), {Q(M) : M ∈ DA}
are precisely all the prime ideals of U1bc with finite codimension; when a �= 1, {Q(M) :
M ∈ DS} are precisely all the prime ideals of Labc with finite codimension.

(iii) Let R = R(T, σ, w − ρσ(w), ρ) be a conformal ambiskew polynomial ring where
T is a commutative domain which is a finitely generated k-algebra, and 0 �= w ∈ T . Let
P be a prime ideal of T . Then, by [9, 2.12], the prime ideal Q(P ) of R, if it exists, is
non-principal. In particular, by the remarks in (ii), all the prime ideals of U1bc with finite
codimension are non-principal ideals; when a �= 1 all the prime ideals of Labc with finite
codimension are non-principal ideals.

Theorem 6.4 (see 2.17 in [9]). Let R = R(T, σ, w − ρσ(w), ρ) be a conformal
ambiskew polynomial ring (as in Definition 2.2) where T is a commutative domain which
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is a finitely generated k-algebra, and 0 �= w ∈ T ; let Z denote the corresponding Casimir
element. Suppose that T �= k and that T is σ-simple. Then the height one prime ideals
of R are as follows:

(i) ZR;

(ii) (vZn − ε)R when there is a principle eigenvector v with degree n, ε ∈ k∗ and
v(−w)n �= ε;

(iii) Y nR and XnR when w is a unit and w−n is a principal eigenvector with degree n;
and

(iv) a non-principal ideal Q(P ) for each height one prime P of T such that w−ρdσd(w) ∈
P for some d > 0, w /∈ P and, if v is a principal eigenvector with degree n,
v(−u)n − ε /∈ P for all ε ∈ k∗.

Notation 6.5. Let a, b, c ∈ k, ac �= 0, and suppose that Uabc is J-conformal with
respect to w ∈ A, of degree m > 0. Recall the notation of 3.2. Define HA := DA ∩ {(t −
ρi)A : 1 � i � r(w)}. When a �= 1, define HS := DS ∩ {(t − ρi)S : 1 � i � r(w)}.

Theorem 6.6. Let a, b, c ∈ k, ac �= 0, and suppose that Uabc is J-conformal with
respect to w ∈ A, of degree m > 0.

(i) Suppose that c is a primitive lth root of unity, where l � 1. When a = 1, set
R = U1bc (and T = A); when a �= 1, set R = Labc (and T = S). Note that
Z(R) = k[zl]. Then {zR} ∪ {(zl − γ)R : 0 �= γ ∈ k} is a complete, repetition-free
list of the height one prime ideals of R.

(ii) Suppose that c is not a root of unity and that, for all i, j ∈ Z with i > 0 and j �= 0,
we have that ci �= aj . When a = 1, set R = U1bc (and T = A); when a �= 1, set
R = Labc (and T = S). Note that Z(R) = k. Then the height one prime ideals of
R are, without repetition, {zR} ∪ {AnnR(L(M)) : M ∈ DT \ HT }.

(iii) Suppose that c is not a root of unity, and that there exists an integer N � 1
minimal such that cN = al for some (necessarily unique) non-zero l ∈ Z. Note
that Z(Labc) = k[glzN ]. Then the set {zLabc} ∪ {(glzN − γ)Labc : 0 �= γ ∈ k} is a
complete and repetition-free list of the height one prime ideals of Labc.

Proof. (i) In the case a = 1, 1 is a principal eigenvector of degree l, by [9, 1.7(ii)].
The α-simplicity of A then implies that k∗ is a complete list of principal eigenvectors
of A, each of degree l. In the case a �= 1, we have by Lemma 4.3 (ii) that principal
eigenvectors of S exist and are precisely the non-zero elements of k, each of degree l.
By Theorem 6.4 (i), zR is a height one prime ideal of R. Choose any λ ∈ k∗. Then λ is
a principal eigenvector of degree l and, since λ(−w)l /∈ k∗, (λzl − µ)R is a height one
prime ideal of R, by Theorem 6.4 (ii), for all µ ∈ k∗. Setting λ = 1, we have that
{(zl − γ)R : 0 �= γ ∈ k} is a complete, repetition-free list of the height one prime ideals
of R of the type corresponding to Theorem 6.4 (ii). It is clear that w is not a unit in A.
Suppose that a �= 1. Note that the integer powers of g are, up to scalar, precisely the
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units of S. Suppose m = 1. Since it is impossible for g to divide w in this case, w cannot
be a unit in S. Suppose m > 1. Then it follows from Lemma 3.5 that w cannot be a unit
in S. Thus w is not a unit in T . Hence there do not exist any height one primes of R of
the type listed in Theorem 6.4 (iii). Since T is an α-simple domain, of Krull dimension
one, and possesses principal eigenvectors, all height one prime ideals of R are principal,
by [9, 2.18]. Thus by Theorem 6.4 (iv) there are no more height one prime ideals of R.

(ii) Suppose that a = 1. Then it was shown in the proof of Theorem 4.6 (i) (a) that there
do not exist principal eigenvectors of A. Suppose that a �= 1. Then, by Lemma 4.3 (i) (a),
principal eigenvectors of S do not exist. Thus T does not have principal eigenvectors,
and so the height one prime ideals of R are zR and those non-principal height one
primes listed in Theorem 6.4 (iv). Now, the height one prime ideals of T are precisely
the maximal ideals of T . Thus, noting 6.3 (ii) and (iii), we have by Theorem 6.4 that
{AnnR(L(M)) : M ∈ DT and w /∈ M} is a complete and repetition-free list of the
non-principal height one prime ideals of R. The result follows by the definition of HT .

(iii) By Lemma 4.3 (i) (b) principal eigenvectors of S exist; they are precisely the ele-
ments of the form {λgl : 0 �= λ ∈ k} and are of degree N . There exist height one prime
ideals of Labc of the type listed in Theorem 6.4 (iii) only if w is a unit in S. By the proof
of part (i) we know that w is not a unit of S. Hence there do not exist any height one
primes of Labc of the type listed in Theorem 6.4 (iii). Since S is an α-simple domain,
of Krull dimension one, and possesses principal eigenvectors, there are no non-principal
height one prime ideals of Labc, by [9, 2.18]. Therefore, all the height one prime ideals of
Labc are of the types listed in Theorem 6.4 (i) and (ii). �

7. Prime spectrum of J-conformal Uabc with a, b, c ∈ k, ac �= 0
and a not a non-trivial root of unity

Definition 7.1. Let R be a ring. Let P be a height one prime ideal of R. We set
ΓP = {Q ∈ Spec(R) : P � Q}.

Theorem 7.2. Let a, b, c ∈ k, ac �= 0, with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal with respect to w ∈ A, of degree m > 0. When a = 1 set
R = U1bc (and T = A); when a �= 1, set R = Labc (and T = S).

(i) Let P be a height one prime ideal of R. Then either ΓP is empty, or ΓP ⊆
{AnnR(L(M)) : M ∈ DT }.

(ii) Let P and Q be distinct height one prime ideals of R. Then ΓP ∩ ΓQ = ∅.

Proof. We have that R = R(T, α, w − cα(w), c). (i) Let P be a height one prime ideal
of R and suppose that there exists a prime ideal Q of R such that P � Q. Then Q/P is
a non-zero, proper ideal of R/P . Since T has principal eigenvectors, the localizations of
R/P with respect to the right denominator sets {xi + P : i � 0} and {yi + P : i � 0},
respectively, are both simple rings, by [9, 2.3]. Therefore there exists an integer n � 1
such that xn +P, yn +P ∈ Q/P , and so xn, yn ∈ Q. By [9, 2.12] there exists I ∈ Spec(T )
satisfying the conditions for the existence of Q(I), as in Definition 6.2, and such that
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Q(I) ⊆ Q. Suppose that I = 0. Then w = cdαd(w) for some d > 0, and so wA is an
ideal of A(⊆ T ) of finite orbit under σ. However, when a = 1 this is impossible, by
Corollary 2.6. When a �= 1 we must have, by Corollary 2.6, that w = λgm, for some
λ ∈ k∗. However, this is clearly impossible when m = 1, and for m > 1, by Lemma 3.5.
Thus in both cases we have that I is non-zero, and since K dim(T ) = 1, I is a maximal
ideal of T ; so I ∈ DT . Therefore Q(I) is the annihilator of a finite-dimensional R-module,
by the definition of Q(I) and Theorem 5.3. Therefore Q(I) ∈ Maxspec(R), and Q = Q(I).

(ii) Recall Theorem 4.6. Suppose that Z(R) = k. Then by Theorem 6.6 (ii) there is a
unique height one prime ideal P ′ of R for which ΓP ′ �= ∅ is not an impossibility. The result
therefore holds in this case. Now suppose that Z(R) �= k. By Theorem 4.6, Z(R) = k[Ω],
where Ω = glzN (only if a �= 1) for some non-zero integer l and positive integer N , or
Ω = zl for some positive integer l. Suppose that ΓP ∩ ΓQ �= ∅, and let Q′ ∈ ΓP ∩ ΓQ.
Then, by part (i), Q′ = AnnR(L(M)) for some M ∈ DT . By Schur’s Lemma, Ω acts on
L(M) as multiplication by a unique scalar δ ∈ k. On inspection of the height one prime
ideals of R listed in Theorem 6.6 (i) and (ii), Q′ can only contain a unique height one
prime ideal: zR (if δ = 0) or (Ω − δ)R (if δ �= 0). Therefore P and Q must be equal,
which is a contradiction. Hence ΓP ∩ ΓQ = ∅. �

Theorem 7.3. Let a, b, c ∈ k, ac �= 0, with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal with respect to w ∈ A, of degree m > 0. When a = 1, set
R = U1bc (and T = A); when a �= 1 set R = Labc (and T = S).

(i) ΓzR = {AnnR(L(M)) : M ∈ HT }.

(ii) 0 � |ΓzR| � r(w) − 1.

Proof. (i) Suppose that zR /∈ Maxspec(R). Let M ∈ DT . By [9, 2.13(i)], z ∈
AnnR(L(M)) if and only if w ∈ M , that is, M ∈ HT . Part (i) is now immediate from
Theorem 7.2 (i).

(ii) By part (i), it will suffice to show that 0 � |HT | � r(w) − 1. Recall that every
maximal ideal of T is of infinite order under α. It is clear that for M ∈ Maxspec(T ),
w ∈ M if and only if M ∈ {(t − ρi)T : 1 � i � r(w)}. Let r(w) = 1; so w = λ(t − ρ1)m

for some λ ∈ k∗. Suppose that (t − ρ1)T ∈ DT . Then there exists d > 0 such that w −
cdαd(w) ∈ (t − ρ1)T ; therefore αd(w) ∈ (t − ρ1)T , i.e. w ∈ α−d((t − ρ1)T ). However,
this means that α−d((t − ρ1)T ) = (t − ρ1)T , a contradiction. Hence (t − ρ1)T /∈ DT .
Now let r(w) > 1. Suppose that |HT | = r(w). Then (t − ρ1)T ∈ DT , and so there exists
d1 > 0 minimal such that w − cd1αd1(w) ∈ (t − ρ1)T . Therefore αd1(w) ∈ (t − ρ1)T ,
and so w ∈ α−d1((t − ρ1)T ). Hence we must have α−d1((t − ρ1)T ) = (t − ρi)T , for
some 2 � i � r(w). Without loss of generality we take i = 2. By hypothesis there
exists d2 > 0 minimal such that w − cd2αd2(w) ∈ (t − ρ2)T . Therefore αd2(w) ∈ (t −
ρ2)T , and so w ∈ α−d2((t − ρ2)T ). Hence there exists 1 � i � r(w), i �= 2, such
that (t − ρi)T = α−d2((t − ρ2)T ) = α−d2−d1((t − ρ1)T ). If r(w) = 2 we must have i = 1,
which implies that (t−ρ1)T has finite order under α, a contradiction. Hence 0 � |HT | � 1.
Suppose that r(w) > 2. By continuing in this manner we have that

(t − ρr(w))T = α−dr(w)−1((t − ρr(w)−1)T ) = · · · = α−dr(w)−1−···−d2−d1((t − ρ1)T ),
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where each dj > 0. This means that for each j = 1, . . . , r(w) − 1, there exists 0 <

ej ∈ Z such that (t − ρr(w))T = α−ej ((t − ρj)T ). However, (t − ρr(w))T ∈ DT , by our
hypothesis. So there exists an integer dr(w) > 0 such that w ∈ α−dr(w)((t − ρr(w))T ), that
is α−dr(w)((t − ρr(w))T ) = (t − ρl)T for some 1 � l � r(w)−1. Hence (t−ρr(w))T is equal
to α−el−dr(w)((t − ρr(w))T ), which is a contradiction. Therefore 0 � |HT | � r(w)−1 when
r(w) > 2, and this completes the proof. �

Lemma 7.4. Let a, b, c ∈ k, ac �= 0, with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal with respect to w ∈ A, of degree m > 0. When a = 1, set
R = U1bc (and T = A); when a �= 1, set R = Labc (and T = S). Choose M ∈ DT and
suppose that dimk L(M) = d. Recall from Theorem 5.3 (i) that L(M) = R/I, where
I = MR + xR + ydR is a right ideal of R. Then, for each positive integer n, zn + I =
(−1)nwn + I.

Proof. Recall that z = xy − w. Since (xy)w = w(xy), we have zn = (xy − w)n =
xf + (−1)nwn for some f ∈ R. Therefore zn + I = (−1)nwn + I. �

We can now summarize our results. As in § 6, we consider the three cases (a), (b)
and (c) of Remark 6.1 (ii) in turn.

Theorem 7.5. Let a, b, c ∈ k, ac �= 0, with a not a non-trivial root of unity. Suppose
that Uabc is J-conformal with respect to w ∈ A, of degree m > 0. Suppose that c is a
root of unity, of multiplicative order l > 0 in k∗. When a = 1, set T = A; when a �= 1, set
T = S. For every γ ∈ k, set hl,γ(t) = (−1)lwl − γ ∈ k[t] and DT (γ) = DT ∩ {(t − µ)T :
hl,γ(µ) = 0}. When a = 1, set R = U1bc; when a �= 1, set R = Labc.

(i) The zero ideal, the height one prime ideals of R listed in Theorem 6.6 (i), the set
{AnnR(L(M)) : M ∈ DT \HT } together with, when they exist, the finite collection
of prime ideals of R strictly containing zR, as in Theorem 7.3, form a complete and
repetition-free list of the prime ideals of R.

(ii) For each γ ∈ k, let Pγ = (zl − γ)R. Then ΓPγ = {AnnR(L(M)) : M ∈ DT (γ)}, and
so 0 � |ΓPγ | � lm.

Proof. (i) That all the listed ideals of R are prime is clear from Theorem 6.6 (i) and
Remark 6.3 (ii). That there are no other prime ideals is a consequence of Theorem 7.2.

(ii) Recall Theorem 7.2. Let M ∈ DT ; so M = (t − µ)T , for some µ ∈ k. Recall
that L(M) = R/I, where I is the right ideal of R as in the statement of Lemma 7.4.
By Schur’s Lemma, zl acts on L(M) as multiplication by some scalar γ ∈ k, and so
zl −γ ∈ AnnR(L(M)). In fact, by centrality, zl −γ ∈ AnnR(L(M)) if and only zl −γ ∈ I.
By Lemma 7.4 this is equivalent to (−1)lwl −γ ∈ I ∩T = M , which can occur if and only
if hl,γ(µ) = 0. That ΓPγ is as stated for each γ ∈ k is now proved. Since the polynomial
hl,γ(t) can have no more than lm distinct roots in k, the result follows. �

Theorem 7.6. Let a, b, c ∈ k, ac �= 0, with a not a non-trivial root of unity and c

not a root of unity, such that, for each i, j ∈ Z with i > 0 and j �= 0, we have ci �= aj .
Suppose that Uabc is J-conformal with respect to w ∈ A, of degree m > 0. When a = 1,
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set R = U1bc (and T = A); when a �= 1, set R = Labc (and T = S). Then the zero ideal,
the height one prime ideals listed in Theorem 6.4 (ii) and, when they exist, the finite
collection of prime ideals of R strictly containing zR, as in Theorem 7.3, form a complete
and repetition-free list of the prime ideals of R.

Proof. That all the listed ideals of R are prime is clear from Theorem 6.6 (ii) and
Remark 6.3 (ii). That there are no other prime ideals is a consequence of Theorem 7.2. �

Theorem 7.7. Let a, b, c ∈ k, ac �= 0, with a and c non-roots of unity. Suppose that
Uabc is J-conformal with respect to w ∈ A, of degree m > 0. Suppose that there exists an
integer N � 1 minimal such that cN = al for some (necessarily unique) non-zero integer
l > 0. For every γ ∈ k, set h+

N,l,γ(t) = (−1)NglwN −γ ∈ k[t] and D+(γ) = DS ∩{(t−µ)S :
h+

N,l,γ(µ) = 0}.

(i) The zero ideal, the height one prime ideals of Labc listed in Theorem 6.6 (iii), the
set {AnnLabc

(L(M)) : M ∈ DS \ HS} and, when they exist, the finite collection of
prime ideals of Labc strictly containing zLabc, as in Theorem 7.3, form a complete
and repetition-free list of the prime ideals of Labc.

(ii) For each γ ∈ k∗, let Pγ = (glzN − γ)Labc. Then we have that

ΓPγ = {AnnLabc
(L(M)) : M ∈ D+(γ)},

and 0 � |ΓPγ
| � l + mN .

Proof. Similar to the proof of Theorem 7.5. �

Theorem 7.8. Let a, b, c ∈ k, ac �= 0, with a and c non-roots of unity. Suppose that
Uabc is J-conformal with respect to w ∈ A, of degree m > 0. Suppose that there exists
an integer N � 1 minimal such that cN = al for some (necessarily unique) non-zero
integer l < 0. For every γ ∈ k, set h−

N,l,γ(t) = (−1)NwN − γg−l ∈ k[t] and D−(γ) =
DS ∩ {(t − µ)S : h−

N,l,γ(µ) = 0}.

(i) The zero ideal, the height one prime ideals of Labc listed in Theorem 6.6 (iii) and
{AnnLabc

(L(M)) : M ∈ DS \ HS} and, when they exist, the finite collection of
prime ideals of Labc strictly containing zLabc, as in Theorem 7.3, form a complete
and repetition-free list of the prime ideals of Labc.

(ii) For each γ ∈ k, let Pγ = (glzN −γ)S. Then ΓPγ = {AnnLabc
(L(M)) : M ∈ D−(γ)},

and so 0 � |ΓPγ | � max{−l, mN}.

Proof. Similar to the proof of Theorem 7.5. �
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