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Abstract. We consider G (Galois) coverings of Axiom A flows (restricted to basic sets)
and prove an analogue of Chebotarev's theorem. The theorem provides an asymptotic
formula for the number of closed orbits whose Frobenius class is a given conjugacy
class in G. An application answers a question raised by /. Plante. The basic method is
then extended to compact group extensions and applied to frame bundle flows defined
on manifolds of variable negative curvature.

0. Introduction
In recent years Hejhal [8], Huber [9] and Sarnak [19] have derived very precise
results in the asymptotic analysis of closed orbits for geodesic flows on surfaces of
constant negative curvature. The techniques they used were originally developed
by Selberg in [20]. Similar results for geodesic flows on manifolds of (variable)
negative curvature were announced by Margulis in [11] which were achieved, it
seems, by a rather different approach. Further progress was made by Gangolli [7]
who extended Selberg's analysis to symmetric spaces of rank one. Bowen approached
these problems for the more general case of Axiom A flows via his own work on
symbolic dynamics. Bowen obtained asymptotic formulae of the Chebychev rather
than the Hadamard-de la Valee-Poussin kind [2]. He also extended a combinatorial
result of Manning, for diffeomorphisms, which is central to a more delicate analysis.

This paper, like [12], [13], [14], [16] belongs to the Bowen tradition. It should
also be made clear that Ruelle's book [18] has played an essential part in our recent
work on the asymptotic analysis of closed orbits of Axion A flows.

Unfortunately, there is a forfeit to be paid for the generality of our results (in
[13], [14] and in this paper). We are unable to obtain the orders of approximation
exhibited in [8], [19] etc. It is our hope that further study of the relevant zeta
functions will yield a deeper understanding of this problem.

Here we are concerned with proving an analogue of Chebotarov's theorem
(theorem 3) for Galois coverings of Axiom A flows. This theorem has already been
proved by Sarnak [19] and Sunada [21] for the special case of geodesic flows on
compact locally symmetric manifolds of negative curvature.

It should be remarked that the first author has given a different interpretation of
Dirichlet's theorem (which is usually, regarded as a specialisation of Chebotarov's
theorem) in terms of the spatial equidistribution of closed orbits. This work appears
in [13].
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134 W. Parry and M. Pollicott

In § 7 we provide an application of our main result to homology and prove a
conjecture of J. Plante's to the effect that an Anosov flow with non-wandering set
the entire manifold has the property that its closed orbits generate the first homology
group.t This application was pointed out to us by Sunada to whom we are grateful.

The final sections are concerned with compact, as opposed to finite, group
extensions of Axiom A flows. We show that the earlier Chebotarov distribution
theorem has an analogue in this setting and we apply our results to frame bundle
flows associated with oriented manifolds of negative sectional curvature. In par-
ticular we show that when the frame bundle flow is topologically mixing, holonomy
classes associated with closed geodesies are uniformly distributed in S O ( d - l )
where d is the dimension.

1. Galois coverings and Axiom A flows
Let M be a compact Riemannian manifold and let <£,: M-» M ( /eR) be a C1 flow.
A compact invariant set ft containing no fixed points is called hyperbolic if the
tangent bundle restricted to ft can be written as the Whitney sum of three D<f>t-
invariant continuous sub-bundles

where E is the one-dimensional bundle tangent to the flow and where (for constants
C,A>0) ,

(a) ||D0,(t>)||<Ce-A'||»|| forveE*, f > 0
(b) | |D4>_,(t>)||<Ce-A'H forveE", t>0.

A hyperbolic set ft is called basic if the periodic orbits of <f>,\n are dense in ft, 4>,\n

is a topologically transitive flow, and there is an open set U => ft with ft = (~],£R <t>tU.
We shall always take a basic set ft to be non-trivial i.e. ft is not a topological circle.
Let 4>,:M^*M be an Axiom A flow and assume that G is a finite group of

diffeomorphisms of M which act freely. Furthermore, assume that <£,g = g<j>, for all
t e R, geG. Then we may define a flow <f> on the quotient manifold M = M/ G
by <j>,(Gx) = G(4>,x). Let T T O : M - » M be the covering map, then we can write
(f>,irG = TTG4>t. One can show that <f) is also an Axiom A flow.

We shall be concerned with a basic set ft c M which is G-invariant. It then follows
that ft = ft/ G is a basic set for the flow <f>t. In future we shall understand 4>,, <j>, as
the flows restricted to ft, ft respectively.

We call </>, a regular or Galois covering of <f>, with covering transformations G. In
particular, we refer to <j> as a G-covering of </>,.

2. Zeta functions and L-functions
Let 4> be a G-covering of <j> and let h be the topological entropy of </>. The zeta
function £(s) for <f> is defined by

t Since writing this paper we have noticed that Fried obtains the same result at least for the case where there is
a global cross-section consisting of a closed submanifold. (c.f. Comment Math. Helvetic 57 (1982), 237-259.
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The Chebotarov theorem 135

where this Euler product is over closed (j> orbits r of least period A(T) and
N(T) = eHr)h. This product converges for $t{s)> 1 [14].

For any closed 0-orbit T let f,,..., •?„ be the closed <£-orbits satisfying i7Gf, = T.
Since G is Galois, n| |G| and if n-l = \G\ then A(f,) = ZA(T), 1< J < « . Choose xef ,
then TTGX = 7TG<£A(T)X and so there exists a unique "y(f,) e G such that y(fj)x = <£A(T>X

The Frobenius element -y(f,) is independent of the choice of x e f,. If gf, = Tj then
T('0) = ?')'(^)g~1 SO that the Frobenius class, the conjugacy class of y(f,), is well
defined.

Let Rx be an irreducible representation with irreducible character x = trace Rx.
Rx is unique (up to equivalence). Let dx be the degree of the representation Rx.
The regular representation of G can be written

R=l®dxRx (\G\=ld2X
X \ X I

If Rx is a representation of G with character x we define (up to equivalence)
RX(T) = Rx(y(fj)). For characters x of G we then define (following Artin) L-
functions by the Euler product

which converges for 0t(s)>l. If Xo is the (principal) trivial character then
L{s,Xo) = as).

For characters ^i and Xi we note that

logL(s,Ari+AT2)=I I i^TT^ = 1°8L(x 'A/i) + log L(5, ^ 2 ) ,

where f is an arbitrary $ closed orbit such that iraT=T. Therefore L(s,Xi+X2) =
L(s, X\)L(s, Xi)-

If H <= G is a subgroup and ^ is a character of H we can decompose G into H
cosets G = U i l i Ha; and define the induced character x* of G by

x*(g)= I ArCaigar1).

The following is a well known result of Frobenius (see also Brauer [5]):

PROPOSITION 1. Each non-trivial character x of G is a rational combination of
characters xf induced from non-trivial characters Xi of cyclic subgroups H(.

Thus there exist integers « , « , , . . . , nk with nx =£ ,= , ntxf and in particular

When we study the meromorphic domain of L-functions it will prove easier to deal
with cyclic covering groups. Therefore, bearing in mind (2.1), we need the following.

PROPOSITION 2. Let x be a character of the subgroup H <= G and let L{s, x) be the
L-function with respect to TTH: M-* M/H. Then L(s,x*) = L(s, x)-

Proof. Let T be a closed <£-orbit and choose zer. Assume that fu ... ,rn are the
closed <j> orbits satisfying 7rGf, = T and let y(ri) = g. In particular, this means that
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136 W. Parry and M. Pollicott

if x e f , and ira(x) = z then r , n ir~£{z) = {x, gx,..., g'~'x} and finiro1(z) =
{gi*, g&x, •••, gig''1*} for some g, e G. (Here \g\ = I and / • n = \G\).

The closed orbits f,,..., fn lie over closed orbits TU ..., Tn in SI/H where
% ( : , ) = T,. The images of the g.g'x under irH:tl-> X/H are of the form Hg^ ert.
To eliminate repeated images suppose that, after relabelling if necessary,
HgxKx,..., HgmKx are distinct where we define K = {e, g,g2,..., g ' 1 } . Next,
choose the least positive integer /, for which Hgtg

l'x = HgjX then
/.-i

HgiKx = U Hgig>x.

Evidently G = {J™=1 U/To ^ S ' ^ is a decomposition of G into H cosets. Since /, is
the least positive integer for which gg^gT1 e H we see that 7rH(f,) = T, with A(f,) =
/,A(T,). Therefore the Frobenius elements of H are given by yH(?i) = gig'^gJ1- If X
is a character of H then

1 :£/£/,

= lhx(gigpg7l).

Thus

where T,, . . . , rm are closed orbits in M / / / which lie over r and f, is an arbitrary
closed orbit in M which lies over Th Summing over all closed <£-orbits we see that

y 2 x*(r(f)') «
r pN(rr

where the w are closed orbits in M / H and w is an arbitrary closed orbit in M with
irH(di) = (o. Hence L(s, x*) — L(s, x) a n d this completes the proof. •

Applying the above proposition to (2.1) gives

PROPOSITION 3. If x is an (irreducible) non-trivial character of G then L{s,x)" is a
product of integral powers of L-functions defined with respect to non-trivial characters
of cyclic subgroups of G.

We end this section by relating zeta functions for $ and <j>. Since irG is |G|-to-l it
follows that 4> and $ have the same topological entropy h. As before, we define

where f are closed <£-orbits of least period A(f) and N(f) = eA(T)\ Then f(s) and
£(s) = L(s, Xo) are related by the following.

PROPOSITION 4. £(s) = Uximduabie L(s> x)d"-
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The Chebotarov theorem 137

Proof. Observe that for any ju.eC and g e G (of order /):

v"1 r* \~* —/ \ / n\ v v M"

x n=i

= 1 1 - M " Trace

Thus (l-/Li') |G | / ' = n x d e t ( / - M ^ ( g ) ) ^ . Take ^ = N(T)~S and g=y(f . ) where
^ I = T then we have

= n (I-MTTT1.

Taking products over all closed </>- orbits proves the result. •

3. Symbolic dynamics for Axiom A flows
Let A be a /c x fe irreducible 0-1 matrix and let

have the compact zero dimensional product topology. Let o-. XA -*• XA be the homeo-
morphism such that {crx)n = xn+i then a is called a shift of finite type.

We can define a metric on XA by d(x, )̂" = (3)" where n is the least positive integer
for which x, = yit \i\< n.

A function / : XA -* R is called Holder continuous if there exists C, a > 0 such that
)a. I f / i s strictly positive we define

where (x,/(x)) and (ox, 0) are identified.
The suspended flow crfy. Xf -* Xf is defined by o-fl(x, y) = {x,y+t), with appropriate

identifications.
A closed set S<= ft is called a global cross-section to <£ if each </>-orbit intersects

S infinitely often (both in the future and in the past) and there exists S > 0 such that

inf{f>0|</>,xeS}>5 forallxeS.

For any e > 0, Bowen constructed disjoint (local) cross-sections S , , . . . , 5^ c £1 such
that S = U,-=i Si is a global cross-section with diam S,•,< e, i = 1 , . . . , k. (Bowen refers
to S as e-small). He also constructed a shift of finfte type (XA, a) and a continuous
surjection p: XA -» S such that />{* e XA|x0 = i} = 5,. Furthermore, if x e XA such that
xo= i, x, =_/ then <f>fix)p{x) = po~(x) e SJ5 where

Bowen's construction also allows us to assume (for an arbitrary e>0) t h a t / < e .
With these constructions Bowen [3] showed:

PROPOSITION 5. For an Axiom A flow <f>,: Q, -* fi (restricted to a basic set) and e > 0
there exists the following: an e-small cross-section S; a shift of finite type a: XA-> XA,
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138 W. Parry and M. Pollicott

a Holder continuous function / > 0 and a continuous surjective map p: Xf^il with
pcrf, = (f>,p andp(XA) = S. Furthermore p is at most N-to-l (for some N) andp is a
measure isomorphism (with respect to the measures of maximal entropy for o-fand <j>).

Unfortunately, p:Xf-*Cl does not give a one-one correspondence between closed
o^-orbits and closed ^-orbits. Nevertheless, by extending a technique due to Man-
ning [10], for the Axiom A diffeomorphism case, Bowen showed how to account
for this discrepancy. It suffices for us to note the following: Let E be the set of all
closed 0-orbits T which are not the p images of exactly one closed oy orbit (of the
same period) then

1 1

both converge for 9l(s)> 1 — e, for some e > 0 .
Let 4> be a Galois G-covering of <j> and let (Xf, oy) be a suspended flow correspond-

ing to <f>:il-*il, as in proposition 5. Let Bt be a neighbourhood of S, such that
Bj n Bji = 0 when i ^j. Providing e is sufficiently small we may assume that TTG'B,,

i = l , . . . , f c is a trivial bundle over B,. We define S =77^*5 then S is a global
cross-section for 4>. We can identify 5 with SxG and define p:XAxG^S by
P(x, g) = (px, g).

Define a: XA^> G so that <j>f(x)(x, g) = (ax, a(x)g) then a depends only on x0 and
Xj i.e. a(x) = a(xo,x1).

We can define a 'shift' or: XA x G-» XA x G by

(T(X, g) = (o^c, a(x)g).

Then /? extends to a continuous surjective map p: (XA x G)/-> fi such that pdyif = 4>,p
(where we define f(x, g) =f(x)). Furthermore, p is at most 7V-to-l and is a measure
isomorphism (with respect to the measures of maximal entropy). We can define
•tt'o. (XA x G)/-* Xf by 7T'G((X, g), t) = (x, 0 then 77^07,, = oy,,7r^.

Since the maps p, p, ira, ir'a are all bounded-to-one this means that the flows
o-f, a-f, <f> and <j> all have the same topological entropy [1]. The above equations are
illustrated in the commutative diagram:

(XA x G)-f
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4. The weak-mixing case
An Axiom A flow <f>,: ft -* O is called (topologically) weak-mixing if there is no
non-trivial solution to F(#,x) = e""F(x), where a is non-zero and FeC(fl). (In
fact, it is equivalent to consider Borel measurable solutions.) In particular, if any
of the flows (f>, 4>, <Tf, and &j are weak-mixing then all of them are. When <f>\n is not
weak-mixing there exists a least positive a > 0 called the eigenfrequency.

THEOREM 1. When </>, 4> <*re weak-mixing then f, f have non-zero analytic extensions
to a neighbourhood of 3l{s) > 1 except for simple poles at s = 1.

The proof may be found in [13], [14], or [16].

THEOREM 2. When 4>, <$> are weak-mixing and x is a non-trivial irreducible character
then L(s, x) has a non-zero analytic extension to a neighbourhood of0l{s) a 1.

Proof. By proposition 3 we need only consider the case where G is a cyclic group.
Let Lf(s, x) be the L-function for the covering oy of <f>. Then

Lf(s,x)_ ( - x(y(rT) y - X(V(T)")\
L(s, x) CXP l r t , - £ »-i nN(TT £B nt, nN(r)"s / '

Since the summations converge absolutely for 0t (s) > 1 - e this is a non-zero, analytic
function on £%(s)> 1 - e. It suffices therefore to prove the theorem for Lf(s, x)-

Furthermore, it is easy to see that

= exp ( l - I x(aB(
\ n = l " Fixn

where an(x) = a(x)a(o-x) • • • a(o-n~1x);f"(x)=f(x)+ • • • +f(o-"~1x) and Fixn =
{x o-"x =

Since G is abelian each irreducible character x satisfies ^(an(x)) =

nr:0
1A'(«(^)).

A general theorem (theorem lof [13] and theorem 3 of [16]) implies that Lf(s, \)
has an analytic extension to a neighbourhood of 1 + it unless

^ ) + W(<Tx)-w(x), (4.1)

IGI
where weC(XA), K is integer-valued and

X(a(x)) = exp(2ni0(x)/\G\).
(Here \G\ is the order of the cyclic group G and we choose 0 to take values in
{O,1,...,|G|-1}.)

If (4.1) has a solution then \G\th is an eigenfrequency for af so that t = 0 and
(4.1) becomes

X(a(x)) = H(crx)/H(x)
where H(x) = e'w(x). Hence a is not ergodic, contradicting the fact that &j is
weak-mixing. This contradiction shows that for all teR, L(s,x) is analytic in a
neighbourhood of 1 + it. This completes the proof. •
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5. The case when 4>, 4> are not weak-mixing
Let 4> be a G (Galois) covering of $ and assume <j> and <j> are not weak-mixing
with least eigenfrequencies a and Na respectively (where N\ \G\). Let 07 and oy be
the corresponding suspended flows. Here / can be taken to be the constant function
2ir/Na[2]. Then for ^ G ,

L ( ) I I - s n 2 - / N a ( ( ) )
n = l " Fixn

We may assume, without loss of generality, that a(x) = a(x0, xt). Then

I e-s2™/Na
X(an(x))

Fixn

= I Trace (e-s2™/N"Rx(0{xo, * , ) ) . . . Rx(S(xn.u x0))), (5.1)
Fix,,

where Rx is a representation corresponding to x- Let M denote the matrix

f R x ( 6 ( l , l ) ) • • •

^(0(n,l)) ••• Rx{e(n,n)))

then (5.1) is equal to Trace e-
s2mt/NaMn.

Therefore we have the closed form

Us, X) = exp 11 Trace ( e ^ M " ) = ̂  ( ; _ e L , / w . M ) .

In particular L(s, ^) is meromorphic in C and non-zero. Since

00 A'(r(T:)n)
£(*,*) = exp £ X , ,

where JV(T) = eA(T)/l = e
2"kh/Na, for some positive integer fc, it follows that L(s,x)

has period iNa/h.
Let F< ,̂ = e""F where Fe C(fl) and, by transitivity, \F\ = 1, say. Replace F by

Fg where Fg(x) = F(gx), geG, then by the simplicity of the eigenfrequency Fg =
7)(g)-F where r)-.G->C defines a one-dimensional representation. Furthermore,
taking JVth powers

FN4>, = e
iNa'FN

so that we conclude that FN = F ° nG where F<f>, = e'aN'F. Hence FN is G-invariant
and 7 ^ = 1.

PROPOSITION 6. (i) Each L(s, x) is simply periodic with period iNa/h.
(ii) 77 has order N.
(iii) L(s, 7]') has a nowhere zero analytic extension to 0t(s)> 1 -6 (some 8>0),

except for simple poles at {1 + ia(nN +j)/h: n e Z}.
(iv) If x is a character of G and ^ # 77̂ ,7 = 0 , 1 , . . . , iV- 1 then L(s, x) has a

nowhere vanishing analytic extension to 0l(s)> 1 — 5.

Proof. We have already established (i) and (ii).
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The Chebotarov theorem 141

(iii) Let H = Ker 17 then G/H = (ri) is cyclic. Furthermore ft/H is a G/H Galois
covering of fl and so by proposition 4

where &j/H has period ia/h and L(s, V) has period iaN/h. Assume L(s, 17) has a
pole at 1 + ia/h then this is equivalent to

*(y(T))e'tt(T) = l, forallr^E.

Thus L{s, 7jJ) has its first pole at \ + {ia/h)j.
(iv) Let S be the set of irreducible characters, excluding 17,..., 7]N~1, XO, then

by proposition 4

j=0 *eS

and since the poles of £(s) andnjlo' ^(s> V) are the same we see that J l^s £(•*,#)''*
is analytic for 9l(s)>l-e. Since each L-function is non-zero we conclude that
L(s,x) is analytic in this domain (when -̂ ^ V, j = 0 , 1 , . . . , TV -1) . •

6. Main theorem
As usual take <£, (j> to be Axiom A flows with entropy h and G a (Galois) covering
group. Assume ft is the basic set for 4> and ft = ft/ G is the basic set for <f>.

Given geG write C = C(g) for its conjugacy class and define a complex function

Cc(s)= II ( I - A T ( T ) - T 1 ,
T

r(T)eC

(where 7rG(f) = T). Then

y(f)eC

By the orthogonality relation for characters

y , -1)Yx(y(r))_ ^ _
irreducible ̂ ^ ^ T M T ) " 1 ^ ™ B J V ( T ) - \C\

Thus

(\G\/\C\) log fc(s) = 1 ^ A'Cg"1) log Us, x),
and differentiating:

|C|fc(s) t ;L(5,^)'
By theorem 2 and proposition 6

ffgf (6..)
where if <j>, <t> are weak-mixing 17(5) is analytic in a neighbourhood of
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and when 4>, <f> are not weak-mixing T](s) is analytic in 0t{s) > 1 — 8, except possibly
at the points 1 + nia/h, n^O.

Let rfc be a formal power of a closed orbit T. Define A(rk) = log N(T) = h\.(r) and

(r*) ify(f)eC.
otherwise.

Equation (6.1) can be written as

„ - A C ( T - ) |Cl - A(r-) , _ , . ,

Introducing,

gives
Too I >-.| Toe

J, ' SdFc{t) = \G\l
Since £'(s)/£(s) has residue - 1 at s = 1 we see that Ĵ ° t~s dFc{t) has residue |C|/|G|.
When (j>, (f> are weak-mixing we have from the Ikehara-Wiener Tauberian theorem
[22]:

PROPOSITION 7. For ij>, <f> weak-mixing

F(t)~t

When (/>, 0 are not weak-mixing (6.1) gives

PROPOSITION 8. For <̂ , <j> not weak-mixing

Details of similar calculations may be found in [12], [14]. Now define

where T is a closed <£-orbit and 7rG(f) = T. Then by manipulations of partial sums
(c.f. [12, pp. 50-52]) we have that

F(/)~7r(f)logf and Fc(t)~ irc(t) log t.

This leads to our main result.
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THEOREM 3. Let <j>, <j> be Axiom A flows with <}> a G-covering of<j> where G is a Galois
group. Let Cl be a <j> basic set which is G-invariant and let ft = ft/ G. Then

where:
(i) if <t>, <t> are weak-mixing then

ir(t)~t/logt;

(ii) if 4>, <f> are not weak-mixing then

log t Na \e2nkn/N*sl

(where a, Na are the least eigenfrequencies of'</>, <f>).

Example (Twisted orbits). Let 4>,:M-*M be a (topologically) weak-mixing Axiom
A flow. Let Fu be the vector bundle over M each of whose fibres is the space of
fc-dimensional frames corresponding to E", where /c = d im£" . Furthermore, the
vector bundle can be decomposed as F" = A@B according to the orientation of
the frames. Although Dcf>, preserves F" we observe that this need not be true for
A and B i.e. D(f>,(Ax) = A^ or B^iX and D<f>,(Bx) = B^ or A^. We say that a
closed orbit T is twisted if D<t>K(r)Ax = Bx, for x e T. We can relate this to our above
work by constructing a Z2-extension <J , :MxZ 2 ->MxZ 2 of the flow according to
the action of D<j>, in permuting Ax and Bx. A simple necessary and sufficient condition
for the flow 4> to be (topologically) weak-mixing is that the unstable bundle E"
should not be orientable. By theorem 3 we now have the following: If E" is not
orientable then closed orbits are equally distributed between twisted and untwisted
orbits. (It is obvious that if E" is oriented then none of the closed orbits can be
twisted.)

7. An application to homology
We conclude with an application of theorem 3 to the distribution of closed orbits
(considered as 1 cycles) among the cosets of a cofinite subgroup of H^M, Z) when
the basic set ft = M. Here we are indebted to Sunada who drew our attention to
this application and who, in particular, made the observation that our theorem can
be used to answer a question raised by J. Plante in [15] (see also [21]).

We assume, throughout this section, that ft = M. In particular <j> is an Anosov
flow. Let Ki be the universal homology covering of M i.e. Ht = Hi(M, Z) acts freely
on A? and M = $1/Hx. Let Ho be a cofinite subgroup of H, and define M = 1&/Ho

so that M = {&/H0)l{HJHQ) i.e. M = M/G with G = HJH0. With the definitions
of § 2, the Frobenius class of the closed orbit T, denoted [ T ] , is precisely the coset
of Ho in H, to which the homology class of T belongs. Thus applying theorem 3 to
this situation we have

PROPOSITION 9. If Ho is a cofinite subgroup ofH1 = H1(M,Z) then

Card {T|[T] G h + Ho, N(T) < x} ~ 7r(x)/Card {HJH0)
as x -* co.
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J. Plante in [15], considered an Anosov flow which preserves a smooth volume and
showed that the set of closed orbits generates /f,(M, Z). He conjectured that this
is true if one replaced the smooth volume preserving condition by the weaker
condition that ft = M. As Sunada has observed, our theorem 3 can be used to answer
Plante's question affirmatively. For if Hl is not generated by the closed orbits then
we can find Ho^ Hu a cofinite subgroup of Hu such that Ho contains all the
homology classes represented by closed orbits. Thus [T] is the identity of G = HJ Ho

and G is non-trivial. However, this contradicts proposition 9, which states that the
Frobenius elements are equidistributed.

8. Compact group extensions
In this section we are concerned with compact (as opposed to finite) group extensions
of Axiom A flows. Many of the ideas and proofs of earlier sections carry over,
without serious modifications, to this situation. Where significantly new procedures
are required we shall give, at least in outline, the necessary details. However, it will
be apparent that we allow ourselves a degree of informality in this discussion.

Let 4>t be a C1 flow on the compact Riemannian manifold M and let G be a
compact Lie group which acts differentiably and freely on M and which commutes
with 4>. We suppose that ft is a ^, G invariant closed set. The quotients M =
M/ G, </> = 4>l G, ft = ft/ G are well defined and we suppose that cf> is an Axiom A
flow on M with basic set fl.

Except when G is finite, the flow <j> will not be an Axiom A flow and a priori
there is no guarantee that 4> will have any closed orbits. Nevertheless each closed
<£-orbit T defines a Frobenius class [T] in G as in § 2.

For simplicity we shall always assume that <j> is (topologically) weak-mixing.
As before we define for each (finite dimensional) unitary representation Rx with

character x the L- function

L(s, X) = U det (/ - N(T)-RX(T))-1,

and our main effort is directed towards proving L(s, x) analytic and nowhere zero
in S?(s)s:l when x is n ° t the trivial one dimensional character Xo- However, we
do not have Frobenius's result to help us reduce the problem to the cyclic or abelian
case. Instead we 'lift' the problem using p, p (of § 3) to the G extension (XA x G)j
of Xf where f(x, g) =f{x). These spaces support the suspension flows <?/, oy
which are defined with respect to the maps d(x, g) = {ax, a(x)g) and a respectively.
In this case we cannot claim that a: XA -* G is a function of a finite number of
coordinates. Nevertheless, if one looks at Bowen's construction for the relationship
between (ft, <f>) and (Xfi oy) one concludes that a is Holder. The proof that L(s, x)
is non-zero and analytic in £%($)> 1 therefore reduces to the problem of showing
that Lf(s, x) is non-zero and analytic in 0t(s) > 1 when x ^ Xo, where

) I I - s h f " ( x ) ( { ) )

The important data here is that / and a: XA -» G is Holder and Pressure (-/>/) = 0.

https://doi.org/10.1017/S0143385700003333 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003333


The Chebotarov theorem 145

The flow <f> is said to be topologically mixing if for each pair of non-empty open
subsets U, V of ft there exists t0 such that Un <j>,V7i0 for all t> t0. As a consequence
</> is totally topologically transitive (t.t.t.) which means that for each f 5* 0, <£, is
topologically transitive. (It is well known that a homeomorphism is topologically
transitive if it is topologically mixing). From this fact it is easy to deduce that oy
is t.t.t. since p&i, = 4>,p, where p is continuous and surjective and one-to-one on a
dense Gs set. We conclude, therefore, that oy has no non-constant continuous
eigenfunction, when 4> is topologically mixing.

If <j> is not topologically mixing then it is not mixing with respect to the measure
m, which is the Haar (G) extension of the maximal measure m for <\>, in which case
&j is not mixing for the measure rh°p, which is the Haar extension for the measure
of maximal entropy of ay. Therefore, ay has a non-constant measurable eigenfunction
F" and

F"cr(x, g) = e-iafMF"(x, g) a.e., a * 0.

From this we deduce that

F'(crx) = e-iafMF'(x)x(a(x)) a.e.

for some non-trivial irreducible 1-dimensional character x- A slightly involved
argument enables us to conclude that

for some Fe C(XA). Hence ay has a non-constant continuous eigenfunction. In
short, we have sketched a proof of:

LEMMA. <j> is topologically mixing if and only if ay has no non-constant continuous
eigenfunction.

Remarks (1). The topological mixing and topological weak-mixing conditions
coincide for <\>, oy and aj. They probably coincide for 4> as well but the argument
is likely to be involved. (See [6], for the methods which are likely to be useful).

(2) If fi is an equilibrium state for <f> and /I is its Haar extension then <£ is
weakly-mixing with respect to /Z or even Bernoulli if 4> is topologically mixing. An
analogous statement holds for the flows ay, oy. The proof uses a result of Rudolph
[17].

9. Ruelle operators and analyticity
Let M: XA -* U(d) (the unitary group of d x d matrices) be continuous and let | |
denote the Euclidean norm on Crf. Define

varn M = sup {|M(x) -M(y)\: xt = yh \i\< «}.

We say that MeUe(XA,d) if supn (varn M/02"+1)<+oo. When M':XA^U(d)
is continuous, where X\ is the corresponding one-sided shift space, and
supn (varnM'/6n)<+oo we write M'e U$(XA, d).

It is possible to show that if M e Ue(XA, d) then there exist M'e Ue(XA, d) and
Ne Uev*(XA, d) such that M = N~1M'N°cr, in other words M and M' are
cohomologous. (Here we consider Ug(XA, d)<= Ue^n(X, d).)
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The proof is entirely analogous to the proof of the more familiar fact [4] that
f=f+ka-k where feFe(XA) and keFew(XA). Since x is Holder we can find
a common 0< 6 < 1 such that /€ Fe and Rx(a(x)) e U0(XA, d) and by our remarks
above there is no loss in generality if we assume that /e Fe(XA) and M € US(XA, d)
where M is cohomologous to Rx{a).

Let S£fM be the Ruelle operator acting on the Banach space Fe(XA, d) of Cd

valued functions denned by

(2fMw)(x)= I ef(y)M{y)w{y),
ay = x

where Fe(X^, d) is provided with the norm ||H>|| =supx |w(x)| + supn (varn w/d").
We can now use proposition 3 of [13] and theorem 3 of [16] and their arguments

to prove theorem 4. Let x be a non-trivial irreducible character then with M
cohomologous to Rx(a(x)) we have

L(fe,M) = exp I 1/n I ek"MTr Mn(x),

(where Mn(x) = M(crn~ix)... M(x)) is non-zero and analytic in an Fe(X
+

A, d)
neighbourhood of/when P(Rf) < 0 unless P(Rf) = 0,d = \, S£fMw = w, w e Fg(XA)
in which case L(k, M)(l - ep(k~w)) is non-zero and analytic in a neighbourhood of
/ = u + iv.

THEOREM 4. Iff(x, g) =/(x) is strictly positive, / e Fe(XA) and <JJ is topologically
weak-mixing and if x is a non-trivial irreducible character then

is non-zero analytic in @l{s)> 1.

To prove the theorem we have to exclude the possibility that $-(\+iks)hf,M
w = w f°r

some we F{X\). But this eigenfunction equation implies

e-i'°hfx(a(x))W'(x)= W'(o-x)

for some W'eFe(XA) where x is 1-dimensional. Defining W*(x, g) = x'1(g) W'(x)
we have

which leads to

e-"°h'W=

i.e. a continuous eigenfunction w for the flows &j. Hence w is constant and t0 = 0
so that W* is constant and x is trivial. This is a contradiction.

We have therefore proved:

THEOREM 5. If <}> is topologically mixing and x is a non-trivial irreducible character
then L(s, x) is non-zero and analytic in 0l{s) a 1.

From this we deduce the uniform distribution of Frobenius classes in the conjugacy
classes of G.
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THEOREM 6. If $ is topologically mixing and FeC(G) is a class function
(F(g) = F(hgh~l) for all g,heG) then

JV(T)SX lOg

where dp is Haar measure.

The proof is analogous to the proof of theorem 3 now that we know that L(s, x) is
non-zero analytic for £%(s) a 1 when x is irreducible and non-trivial. For the trivial
character *0, of course, L(s, Xo) — £(•*)•

Finally, we should note the situation where $ is not topologically mixing. In this
case there exists a # 0 and a non-trivial one-dimensional irreducible character x
such that F(<rx) = eiaf(x)

X{a{x))F{x) for some Fe C(XA). Hence X[T] = eiaX(T) for
each o-f closed orbit. We can therefore deduce a similar equation for almost all
closed </>-orbits i.e.

Card {r: N(T) < x, X(r) * eiaA<T)} = O(TT(X))

where

logx J2 logy

Using Stieljes integration with respect to TT{X), it is possible to show that for closed
<f>- orbits T

LEMMA. I M T ) S X eibHT)h ~ xib/{\ + ib).

From this we conclude:

THEOREM 7. If<j> is not topologically mixing then there exists a^O, and an irreducible
non-trivial 1 -dimensional character x such that

xia/h

N(T)SX 1 + ia/h

Thus, in this case, the Frobenius classes are not uniformly distributed.

10. Frame bundle flows
Let <t>, be the geodesic flow on the unit tangent bundle M = TtM0 of Riemannian
manifold Mo of (sectional) negative curvature. This provides a prototypical example
of an Axiom A (or even Anosov) flow. Moreover ft = M is a basic set itself. We
shall suppose, in addition, that Mo is orientable and consider M, the manifold of
positively oriented orthonormal frames (bases). If x is the first vector of such a
frame F*, it determines a geodesic and <f>,x. The frame bundle flow <j> is defined
on M by carrying the frame Fx along the geodesic to 4>,x by parallel translation.
The group G = SO (d -1) acts freely on M in a natural way leaving each first vector
fixed. In this way we see that no:M-*M,G commuting with 4>, so that <j> = 4>l G,

In addition we should note that <f> preserves Liouville measure / and 4> preserves
the Haar extension I of /. We refer the reader to Brin [6], who together with various
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colleagues (Pesin, Gromov) has investigated ergodicity and mixing problems associ-

ated with frame bundle flows (always with respect to I).

In this situation we can interpret the Frobenius class [T] of a closed orbit T in

M as the conjugacy class in G of the holonomy associated with a closed geodesic.

We are therefore entitled to conclude:

THEOREM 8. If the frame bundle flow <j> is topologically mixing (in particular if it is

weak-mixing and therefore Bernoulli with respect to I) then the holonomy class associ-

ated with the closed geodesic is uniformly distributed in the conjugacy classes of

SO(d — I) as lengths tend to infinity.
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