
J. Austral. Math. Soc. (Series A) 49 (1990), 327-346

SPECTRALITY OF ELEMENTARY OPERATORS

MILAN HLADNIK

(Received 30 January 1989; revised 6 October 1989)

Communicated by S. Yamamuro

Abstract

Spectrality and prespectrality of elementary operators x >-> H"=1 aixbi, acting on the algebra
38(%?) of all bounded linear operators on a separable infinite-dimensional complex Hilbert
space %?, or on von Neumann-Schatten classes in 3§(%?), are treated. In the case when
(al, a2, ... , an) and (bl, b2, ... , bn) are two n-tuples of commuting normal operators on
2? , the complete characterization of spectrality is given.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 B 40, 47 B 47.

1. Introduction

Let 38{%?) be the C*-algebra of all bounded linear operators on a separa-
ble infinite-dimensional complex Hilbert space %?. For any two w-tuples
a = (a,, a2,... , an) and b — (b{, b2,... , bn) of commuting elements of
38{%?) one defines an elementary operator on ^{^) to be a bounded op-
erator of the form

(1) Rx =
1=1

(JC € 38{%?)). The operator R depends on its coefficients ai and b(, and
so the notation R = i?a b is usually used. However, the non-uniqueness of
the representation (1) of R is only up to certain linear transformations of
the coefficients (see Fong and Sourour [9]).
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328 Milan Hladnik [2]

The spectral, range inclusion, compactness, and Fredholm properties of
R have already been studied in great detail, and also in the case when R is
restricted to some symmetrically normed ideals of 3§{^) (see Fialkow [7],
[8] and the references given there). For example, it is known (Fialkow [8],
Mathieu [15]) that the spectrum of R = /?a b is given by

(2)

where A = (A,, A2, . . . , An), p = (//,, n2 > • • • , PH), A • /< = X1/il + k2n2 +
—\-Xnfin and <r(a) and cr(b) are the joint spectra of the /i-tuples a and b ,
respectively, in the sense of Harte [11] (see also [12, Chapter 11]). Probably
best understood are the so-called generalized inner derivations Da b denned
for each pair a, b e &{%*) by Da bx = ax - xb (x e 3B(&)) and the
elementary multiplications Ma b denned by Ma bx = axb ( x € ^ ( / ) ) .

In [13] and [14] spectrality and prespectrality (in the sense of Dunford [6])
of generalized inner derivations acting on von Neumann-Schatten classes in
SSffl) were characterized in terms of the spectra of coefficients a and b.
This paper, dealing with general elementary operators, is an extension of [13].
Like there, we shall consider only the case where the coefficients are normal
operators in 38(%?), although a straightforward generalization to the case of
spectral coefficients is possible (see the concluding remarks).

In Section 2 we shall first give a geometrical classification of elementary
operators on £§{%?) related to mutual geometrical position of joint spectra,
a (a) and <r(b), and according to which elementary operators are classified
into operators of the first and operators of the second kind. Although very
simple, this classification is crucial for the spectrality of elementary opera-
tors on &(<%?). It will be shown in subsequent sections that only elementary
operators of the first kind can be spectral (they are spectral under some nat-
ural additional conditions) while elementary operators of the second kind
never have this property. Section 3 is devoted to some preparatory results
connected with elementary operators having normal coefficients. The main
result, that is, the characterization of spectrality and prespectrality of ele-
mentary operators with normal coefficients, is given in Section 4 together
with some final comments.

2. A classification of elementary operators

Let R = i?a b be an elementary operator acting on the algebra
Recall that the joint spectra o(a) and <r(b) are nonvoid compact subsets
in C" since it is assumed that each of the «-tuples, a and b , consists of
commuting elements of the algebra (see Harte [11], [12]).
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[3] Spectrality of elementary operators 329

2.1. DEFINITION. We say that i?a b is
(i) of the first kind if there exist finite decompositions of joint spectra <r(a)

and c(b) into nonvoid and pairwise disjoint closed subsets A{, A2, ... , Ar

and B{, B2, ... , Bs, respectively, such that on each rectangle A( x Bj , i e
{1,2,... ,r} , j e {1, 2 , . . . , s} , the function (A, ft) H->A• ft depends only
on one variable, k or ft;

(ii) of the second kind if there exist infinite subsets A c <r(a) and B c cr(b)
such that the function (A, ft) H-> A • ft is one-to-one on Ax B.

The above definition is unambiguous, that is, independent of concrete
representation of the operator /?a b in the form (1). Namely, we may sup-
pose that the representation Ra b of the non-zero elementary operator R is
minimal in the sense that n is minimal, or equivalently, that the elements in
both n-tuples form linearly independent sets (Mathieu [15, Proposition 4.6]).
Then for any other minimal representation /?a/ b/ of the same operator R
there exists a unique invertible complex nxn matrix F = {yik)x<j k<n such
that

k=\ j=\

(Mathieu [15, Corollary 4.7]). If we write F~' for the inverse of the transpose
of F , we have a' = Fa and b' = F~'b. This yields the bijections A »-»• k' =
Yk and ft i-> ft = T~'fi from <r(a) onto o-(a') and tr(b) onto <r(b'),
respectively, by the spectral mapping theorem (Harte [11]). Since we have
A' • ft = A • ft, it follows that the properties of the map (A, ft) •-> A • ft from
er(a) x a(b) to C, pointed out in Definition 2.1, do not depend on changing
a minimal representation of R. In a similar way the same can also be shown
for other representations and so Definition 2.1 is correct.

Moreover, we shall show now that 2.1(i) and 2.1 (ii) are the only two pos-
sibilities for an elementary operator. So, the class of elementary operators is
divided into two (disjoint) subclasses: that of the first and that of the second
kind. This classification is a consequence of the following purely combina-
torial result on infinite matrices having finite rank.

2.2. LEMMA. Let A be an infinite matrix over C with finite rank. Then
one and only one of the following two possibilities holds.

(a) The matrix A splits into finitely many submatrices each of which has
constant rows or constant columns.

(b) In the matrix A there exists an infinite submatrix with all entries
different.

This result might be well known to specialists, but since we were not able
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to find it in the available literature, we sketch an elementary proof of the
lemma.

PROOF OF LEMMA 2.2. If the rank of the matrix A is equal to 1, the
statement of the lemma is almost evident. Namely, in this case we can write
A as the matricial product of a column C and a row R, that is, A — CR.
If there are only finitely many different entries in C (or in R), the matrix
A splits (after making some appropriate permutations of rows or columns)
into finitely many horizontal (vertical) strips with constant columns (rows).
Otherwise, let Cx be an infinite subcolumn in C with different elements,
and R{ be an infinite subrow in R with different elements. It is then easy
to choose an infinite submatrix in C,/?, having all entries different.

We shall prove the lemma by induction on the rank of A. Let n > 1 and
suppose we have already proved the lemma for all matrices with rank less
than n . Let A be an infinite matrix with rank equal to n . It is easy to show
and also well known that we can write A in the form A = CR where C is a
matrix with infinitely many rows and n linearly independent columns, while
R is a matrix with infinitely many columns and n linearly independent rows.

Choose in the matrix C a maximal family of rows with the property
that any subfamily of it, consisting of no more than n rows, is linearly
independent. Do the same with the columns in the matrix R. Then, by
maximality, every other row in C (column in R) depends linearly already
on « - l rows (columns) in the chosen family.

If the chosen maximal family in C (or in R) is finite, then, obviously, the
matrix C (or R, respectively), and consequently also the matrix A, splits
into finitely many submatrices of rank less than n . By inductive hypothesis,
for each of these submatrices the lemma holds. Then, either in one of them
there exists an infinite submatrix with different entries, or all submatrices,
and hence also the whole matrix A, split into finitely many submatrices with
constant rows or columns. Thus, we see that either (a) or (b) holds for the
matrix A.

Suppose now that the chosen maximal family of rows in C is infinite and
that the same is true for the chosen maximal family of columns in R. Let Co

(respectively, Ro ) be the submatrix in C (respectively, in R) consisting of
chosen rows (respectively, columns). Then in the infinite matrix Ao = CQRQ

every n x n submatrix is the product of two invertible n x n submatrices
in Co and RQ and, hence, no minor of order n in Ao is equal to zero.
It follows that there are no two rows (columns) in AQ such that in both of
them an element repeats infinitely many times on the same places. From
this property of AQ we can now easily derive that there exists an infinite
submatrix A{ in AQ such that any of its elements repeats only finitely many
times in the same row or in the same column. Consequently, there exists also
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an infinite submatrix A2 in Ax having all entries different, so that in this
case (b) holds for the matrix A.

In fact we shall need the following classification of pairs of closed subsets
in C" according to a given bilinear form.

2.3. PROPOSITION. Let A and B be arbitrary nonvoid closed subsets in
Cn and let p : C " x C " - + C be a bilinear form. Then for the pair (A, B) one
and only one of the following two possibilities holds.

(i) There exist finite decompositions A = \Ji=x Ai and B = (Js
j=l Bj of

these sets A and B into nonvoid disjoint closed subsets Ax, A2, ... , Ar and
Bx, B2, ... , Bs respectively, such that for each i G {1,2, ... , r} and j e
{1, 2,... , s} we have either

(*) q>(k,ft) = (p(k,ft) for every keA^ ft,ft' GBJ

or

(**) <p{k, ft) = q>{k', ft) for every k,k'&At, ft &Bj

or both.
(ii) There exist infinite subsets A' c A and B' C B such that the map (p

is one-to-one on A1 x B1.

PROOF. If A or B is a finite set, then we have (i). So, we can suppose
that both sets, A and B, are infinite. Take any dense countable subset
{A,, k2, ...} c A and any dense countable subset {/#,, ft2, . . . } c B and
form the infinite matrix {aij)i y€N where atj — <p(kx, ftj). This matrix is
certainly of finite rank and therefore it has one and only one of the properties
(a) and (b) of Lemma 2.2.

If (b) holds, we clearly have (countable) infinite subsets A' c A and B1 C
B such that <p is one-to-one on A' x B'. Thus, (ii) is valid.

On the other hand, if (a) holds for the matrix {aij)i j&i, there exist finite
decompositions N = |J^=1 Mi and N = |K=1 ^ , of positive integers such that
for every i e { 1 , 2, ... , r} a n d j e{l,2, ... , s} we have e i the r

Hr) forfceAf,., 1,1'eNj

o r
<p(Xk, nx) = (?(kk,, n,) f o r k,k' €.Mt, le Nj

or both. Let A{ be the closure of {kk; k e Mt} and Bj be the clo-
sure of {ft/', I € Nj}, for each pair (/, j). Clearly, Ax, A2, ... , Ar and
Bx, B2,... , Bs are nonvoid closed subsets in A and B, respectively, with
the property that A = \Jr

i=l At and B = [fj=l Bj. Further, it is possi-
ble to show that the sets Ax, A2, ... , Ar (and, in the same way, the sets
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Bx, B2, ... , Bs) can be taken to be pairwise disjoint (otherwise join two in-
tersecting sets together to get a new one with the same property). Since <p
is continuous in both arguments, it is easy to see that (*) or (**) holds for
each pair (/, j), and we have proved (i).

REMARK. By requiring that the decomposition in 2.3(i) is minimal, that
is, that r and 5 are minimal, we can show that this decomposition is unique.

Taking tp: (A, ft) t-> k • fi and recalling Definition 2.1, we have as a conse-
quence of Proposition 2.3 the following classification of elementary operators.

2.4. THEOREM. Every elementary operator is either of the first or of the
second kind.

2.5. EXAMPLE. From Definition 2.1 and Theorem 2.4 it is clear that a
generalized inner derivation Da b and an elementary multiplication Ma b

are of the first kind if and only if at least one of the spectra, a {a) or a(b),
is finite. This follows from the fact that in this case k-/i is equal to k-fi or
Xfi for k € a(a) and fi e a{b). Namely, if a(a) or a(b) is finite, we easily
find finite decompositions of a{a) and a{b) as in Definition 2.1(i). On the
other hand, if both spectra, o(a) and o(b) ,are infinite, it is always possible
to choose infinite subsets {A,, k2, ...} c a{a) and {Xl, k2, ...} c a{b)
such that the numbers kt; - jt. (i, j = 1, 2, . . . ) are all different and the
same is true for the numbers k(Hj (i, j = 1, 2, . . . ) . Hence, by Definition
2.1, Da b and Ma b are of the second kind.

3. Elementary operators with normal coefficients

In this and subsequent sections we assume that all coefficients are normal
operators.

3.1. Let a = (a, , ax,... , an) be a normal n-tuple (consisting of com-
muting normal operators) and let C*(a) be the commutative C*-subalgebra
in &{%*) generated by 1 and at, i = 1, 2 , . . . , « . It is well known that in
this case the maximal ideal space of C*{a) can be identified with the joint
spectrum a (a) . By the inverse of the Gelfand representation every element
of C(ff(a)), that is, every continuous function / on <r(a), determines a
unique element /(a) in C*(a). It is also known that the map / •-» /(a) can
be extended from C(<r(a)) to all bounded Borel functions on <j(a). Further-
more, there exists a unique spectral measure p, defined on the a-algebra of
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all Borel subsets in a (a), such that

/(•)= f f{X)dpk

for every bounded Borel function / on tr(a) (see Rudin [17, Theorem
12.22]). We shall call p the spectral resolution of identity for the normal
H-tuple a.

Having now two normal «-tuples a and b with spectral resolutions of
identity p and q, respectively, one can suggestively write elementary oper-
ator -Ra b in the "spectral" form

(3) Kbx=ff {k-ft)dpkxdq

{x € gUffi)). One may guess from this expression that spectral projections
for Rt b corresponding to any Borel subsets <5cC should be given by

dpxxd

but, of course, the double integral is still to be defined. However, this is
possible only for finite rank operators x.

For fixed «J, t] e %? and every C e < f put (£ ® r\)£, = (£, rj)£,, where
( , ) denotes the inner product in <%?. Let x be a finite rank operator on
%? w r i t t e n i n t h e f o r m x — J2?=\ £/ ® */, • F ° r e a c h Bore l subse t i c C a n d
each C, 0 G < T define

Here, of course, the double integral is nothing else but the value of the product
measure of (p(-)< ,̂. 0) and (q(-)C, »/,•) on the subset {(A, ft); k • ft € 6} c
C " x C " .

Obviously, w{ e(<5) depends linearly on £ and antilinearly on 0. Since
it is also bounded by

(see Diestel, Uhl [3, page 4]), the map (f, 6) i-> wf ^(^) defines a bounded
linear operator y e

3.2. DEFINITION. For each finite rank operator x and each Borel subset
8 c C let

(4) (f dpkxdq
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be the unique bounded linear operator y 6 3§(%?) such that (yf, 8) =
mc e(S).

The above definition is correct since it can be shown that m, g(S) is
independent of the concrete representation of x in the form x = 52?=i ^,®'/, •

Thus, the double integral (4) is defined (in the weak sense) for any finite
rank operator x and is, obviously, linear in x.

3.3. REMARKS, (a) Note that, unlike x, the value of the double integral
(4) is in general not an operator of finite rank. However, it will follow from
the next proposition that it always belongs to the Hilbert-Schmidt class.

(b) Note that (4) can be written in the form

where x§ *s the characteristic function of the set 8. In a similar way as
above one can define also

/ /
for every Borel function / on o(Ru b) (see (2)).

3.4. In the sequel we shall consider also restrictions of Ra b to von
Neumann-Schatten ideals WfJ?), 1 < p < oo, in 38{%?). Recall that

consists of all compact operators x e 3§{%?) such that

where tr is the trace function and \x\ = (x*x)^2 . Equivalently

UP

where k( are eigenvalues for |JC| denumerated according to their multiplici-
ties (see Gohberg and Krein [10, page 92]). Now ^ ( ^ ) is a Banach space
in the above norm, and its dual space may be identified with ^ ( ^ " ) where
l//> + l/q = 1 (Gohberg and Krein [10, pages 129-132]). For p = 1 one
must take q = oo and ^ o o ( ^ ) = &{%*). Duality is given by the bilinear
form (x,y)~ tr(xy), x e %{ST), y € Wq(^).

Note that the Hilbert-Schmidt class W2(^) is in fact a Hilbert space with
inner product (x, y) = tr(xy*).

3.5. PROPOSITION. The restriction of the elementary operator Rt b with
normal commuting coefficients to ^ (<^) is a normal operator. If E% b is its
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[9] Spectrality of elementary operators 335

resolution of identity, we have

for every Borel subset S c C and every finite rank operator x.

PROOF. The normality of i?a ^&1{%r) is a consequence of the equality

n n n n

E E WjXbjbi = E £ w W
/=1 7=1 1=1 ; = 1

valid by Fuglede's theorem (Rudin [17, page 300]) for each x € &(%?), and
the identity

which can be easily verified using the definition of inner product in ^
Here ** = {a*, a*2, ..., a*n) and b* = (b\, b\ , ... , b*).

By the spectral representation theorem (see Dunford and Schwartz [5, The-
orems X.5.1 and X.5.3]) there exist a finite positive scalar measure ma on
a measurable space (S, Xs) and a unitary operator u: <%* —> L2(ma) such
that for every bounded Borel function / on <r(a) the operator M/(a)«~' is
multiplication by a measurable function foa (a: S —»<r(a)) on the space
L2(ma). In the same way there exist another finite positive scalar measure mb

on a measurable space (T, LT) and a unitary operator v: 3? —• L2(mb) such
that for every bounded Borel function g on o-(b) the operator ^(b)!*"1 is
multiplication by a measurable function g o 0 (/?: r —* <r(b)) on the space
L2(mh).

Now, we can identify the Hilbert-Schmidt class W2(3?) with the space
L2(m> x wb) since this Hilbert space is isometrically isomorphic to the Hilbert
space of all Hilbert-Schmidt operators from L2(mb) to L2(mJ . In this in-
terpretation the restriction of Ra b to ^ ( ^ ) obviously becomes multipli-
cation by the function (s, t) •-> a(s) • fi{t) (s e S, t e T) on the space
l}(m% x mb) while its spectral resolution of identity E% b taken on the Borel
subset 8 c o{R^ b) becomes multiplication by the characteristic function
(i , f) H xs(

a(s) * fiW) (s € S, t € T). Hence, the proof of the proposi-
tion will be completed if we show that, for each finite rank operator x, the
value of the double integral (4), represented as an element of L (/na x mb),
is exactly the representation of x in X-2(ma x wb) multiplied by the above
characteristic function. But this follows directly from Definition 3.2 and we
omit the details (compare the proof of [13, Proposition 3.2]).
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In the next section we shall find conditions under which the resolution of
identity £ a b can be extended from %{^) to ^p{MT) for p > 2.

4. Main results

We shall need later the following specific result on prespectral operators
and their restrictions to an invariant, not necessarily closed, subspace (for
basic facts on prespectrality and spectrality see Dowson [4]).

Let a Banach space ( ^ , ||.||) be continuously imbedded into another Ba-
nach space [3f, | |. | |), so that we can write simply ^ o c / . If a bounded
linear operator T e 3§{Sf) leaves invariant the subspace ^ , then its re-
striction T\%?Q to 3?Q defines on SfQ a linear operator To which is bounded
in the norm of %?§ by the closed graph theorem.

4.1. PROPOSITION. Using the above notation, let T and To be prespectral
operators on the spaces 3? and 3?^, respectively, with canonical decompo-
sitions T = S + Q and To = So + Qo and with the spectral resolutions of
identity E of the class F and Eo of the class F o . If T\3?Q c r o , then the
subspace %?0 is invariant also for operators S, Q and E(8), for every Borel
subset 8 c C , and we have So = S\3f0, Qo = Q\M?0 and E0(8) = E(8)\8?o.

PROOF. Let us define ^=2?®%^ with ||(JC, xo)|| = ||x|| + ||xo||, T{ =
T®T0, S, = 5 ©So , Q, = Q © Qo, EX{S) = E{5) © E0(S) for every Borel
subset S, and T{ = r © r o . Then F{ is a total subset in %?{, the dual of %?x,
and Tj is a prespectral operator on Sfx with the canonical decomposition
r , = S{ + £?i and with the spectral resolution of identity Ex of the class
Yx. Let A be the bounded linear operator on J2^ , defined by A(x, x0) for
x e 8?, x0 e J^Q. Then A commutes with T{ and therefore by Dowson
[4, Theorems 4.22 and 5.23] A commutes also with S{ and Qx. Since
,4'Fj C FJ because of F|<^ c F o , it follows from the proof of [4, Theorem
6.6] that A commutes also with EX{S) for every Borel subset 8 c C (see
also Ricker [16]). Now, the proposition is a consequence of the definition of
A.

4.2. Let us consider more closely elementary operators Rt b of the first
kind. If

are decompositions from Definition 2.1(i), let us choose fixed points A, e At

a n d ftj e Bj f o r e a c h i = 1 , 2 , ... , r a n d j = 1 , 2 , . . . , s . T h e n f o r e v e r y
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pair (/, j) we have by Definition 2.1 (i)

(5') k-p = k-/ij f o r A € ^ . , ,*€£, .

or

(5") k,i = kin iovkeAt, MeBj.

Let / ' consist of all those pairs (i,j) where (5') holds and let / " be the
rest of the set / — {(i, j); i — 1, 2 , . . . , r, j = 1, 2, ... , s} . So / ' and
/ " are disjoint sets and I - i' Ul" .

Now suppose that a and b are normal «-tuples with spectral decom-
positions of identity p and q, respectively, and let pt = p(At) for i =
1, 2, ... , r and q. = q{B.) for j — 1, 2, ... , s be spectral projections
belonging to the above decompositions of the joint spectra cr(a) and a (b).
Note that p{,p2, ... , pr are all nontrivial pairwise orthogonal projections
on ff with the sum equal to 1, and the same is true for qx, q2, ... , qs.

It is easy to see from (3) that, in the above notation, the action of an
elementary operator Ru b of the first kind with normal coefficients on a
finite rank operator x e g§{^) can be written in the form

(jij • tfPjXqj +

('.;)€/' a, mi"

Here we have
n n

V~* i i u ^ ~ ^ 1 I.

ji • • a = y n U&1, ana / • • D = y A^DL.
k=l k=\

It is clear that the same formula holds in fact for every x e £%{%?). Since
according to decompositions

r s

i=\ 7=1

we have also

i=\ j=\

for all p, 1 < p < oo, and since for each pair (/, j) the subspace p ^ p j
of ^ ( ^ ) is invariant under left multiplications by (Borel) functions of a
and under right multiplications by (Borel) functions of b , we see that the
operator /?a b is equal to a direct sum of left and right multiplications by
normal operators. As is well known, the direct sum of prespectral operators
is again a prespectral operator (see Dowson [4, Lemma 10.1]). Hence, the
following proposition is not surprising.
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4.3. PROPOSITION. The elementary operator Ra b of the first kind with
normal coefficients, acting on the space ^ , ( ^ ) with 1 < p < oo, is a scalar-
type prespectral operator of the class T = 9^(^"), l/p+l/q = I. Its spectral
resolution of identity is given by

PixqjX8(irb)

for every x e ^ ( ^ " ) and every Borel subset 5 c C.

PROOF. The above expression obviously defines a bounded spectral mea-
sure Ea b concentrated on o-(i?a b) and commuting with Rt b .

For p — 2 this is exactly the resolution of identity from Proposition 3.5
for the normal operator Rt b acting on the Hilbert space W2(^). Since the
operators a • a and A( • b are normal, it follows that all maps

are bounded and countably additive in the weak (and also in the strong)
operator topology. Consequently, they are countably additive also in the
weak *-topology on the Banach space ^ , ( ^ ) as the dual of ^ ( ^ ) (see,
for example, Conway [2]) for p > 1 and the dual of compact operators for
p — 1. So, the map

S~tr((Eah(d)x)y)

is a scalar measure for every x e %7 {%?) and y e ^ ( ^ ) and E% b is of the
class r = ^ ^

The other properties needed for Ra b to be a prespectral operator follow
directly from the definition of Ra b and Ea b .

Also, the operator i?a b is of scalar type. For p > 2 this is a consequence
of Proposition 4.1 since its restriction to W2{^) is normal and hence spectral
of scalar type. For p < 2 one may use the obvious fact that the Banach
adjoint of the operator /?a b on the space Cp(3?) is the operator Rh a acting
on the space *&(%?) where l/p+l/q = 1. Note that /?a b is an elementary
operator of the first kind with normal coefficients if and only if the same is
true for Rb a .

4.4. REMARK. Because of duality between ^ , ( ^ ) and ̂ ( ^ ) it is obvi-
ous that for 1 < p < oo the elementary operator /?a b of the first kind with
normal coefficients is in fact not only prespectral but also spectral (of scalar
type). For p — oo this is not true; in general we have only prespectrality of
the class F = ̂  {£?). However, the next theorem covers this special case.
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4.5. THEOREM. An elementary operator Ra b of the first kind with normal
coefficients, acting on the space 38{%?), is a (scalar-type) spectral operator
if and only if there exist decompositions

1=1 j=\

which satisfy besides the condition (i) of Definition 2.1 also the following: the
map (A, /t) •-> A • ft is constant on every rectangle A{ x Bj with projections
pt = p(At) and qj = q(Bj) of infinite rank.

PROOF. Let us suppose we have a decomposition with the property that
k- p = kt- fij for A e A{ and /i € Bj and every pair (/, j) e / where /?.
and q, are projections of infinite rank (see 4.2). Then for every x e £§(%?)
and every Borel subset 8 c C we have, according to Proposition 4.3, that

The first sum spreads over (i, j) € I with infinite rank projections pt and
qj, the second one over (/, j) G I' where at least one of the projections,
pt or qj, has finite rank, and the third one over (/, j) e / " with the same
property.

Obviously, each summand in the first sum is a countably additive operator
function of S. Now, take any summand in the second sum. The map S >-*
Xs(jij -a) is a countably additive operator function in the strong operator
topology. Since ptxqj is of finite rank for each x e 38{%?), the map

is countably additive in the norm topology. The same is true also for the
map

since we have

PtXqjXadi •b) = (**(*,-
As a result we get countable additivity of the map

S~Eth(S)x

for every x e 38(%?) and hence R% b is a (scalar-type) spectral operator.
Let us now turn to the necessity of the given condition. Suppose that for

each decomposition there is a rectangle At x B. such that both projections
p( and qj are of infinite rank and yet the map (A, p) i-> k • /t is not con-
stant on it. At least for one such a rectangle a'tj = {A • ft ; A € At} or
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'!
a'!j — { ĵ•' P 5 M e Bj) has to be infinite for otherwise a rectangle with the
above property could not exist. Suppose a'r is infinite. This set is the
spectrum of the normal operator «. • 9\p^ and we can find an infinite
sequence of pairwise disjoint Borel subsets 6k c a'^ such that appropriate
spectral projections P,,(<5fe) = X$ (/*,'»)l/7,^' for ft •a|/>(^' are all nontrivial.
Now, take a partial isometry x e SSffl), mapping the subspace q^ onto
the subspace p^ such that we have xx* — pt. Since both subspaces are of
the same (infinite) dimension, such a partial isometry exists. Then we have

Since

the map S i-> Ea h(S)x is not countably additive in the norm topology and,
hence, Ru b is not spectral.

Let us now turn our attention to elementary operators of the second kind.
We first need the following simple result (A° denotes the interior of the

set A).

4.6. LEMMA. Let Rt b be an elementary operator of the second kind. Then
there exist two infinite sequences A{ and B- of closed subsets in Cn having
the following properties

(i) A°na(a)^0, B°n<r(b)?0for i, j=l,2,....
(ii) A. n At. =0, BjD Bf = 0 for i ? i and j ? / .

(iii) / / Mk = {(i,j);2k-i < i,j < 2k - 1} for k = 1,2,... and
C, j = ArBj {={X-^;k&Ai,fieBj}) for i, j = 1, 2, . . . , then
we have

CijnCi,J, = 0

for (i, j), (/', / ) G Ur=i Mk and V. J) * ('"'. / ) •

THE SKETCH OF THE PROOF. Since the operator Rt b is of the second
kind, one can choose by definition infinitely many points kt•., A2, . . . e a (a)
and fi{, fi2, . . . e ff(b) such that the points kt.,• ftj (i, j = 1, 2, . . . ) are all
different. Obviously, by taking an appropriate subsequence, this can be done
in such a way that the points A( -/ij are also isolated in the set {A( -/tj; i, j =
1 , 2 . . . } .

The desired sets Ai and Bj are defined inductively. Start with two closed
polydiscs, Ax and Bl, centered in A, and fix , respectively, such that A; ^

https://doi.org/10.1017/S1446788700030603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030603


[15] Speciality of elementary operators 341

Ax, fij $ 5 , and A. • /ij £ 9j , = Al • B{ for / , j > 1. Then, on
the nth step, construct closed polydiscs Ai, Bj around the points kt, n)

with (i, j) e Mn and small enough to ensure (separate) disjointness of the
sets At for 1 < i < n and {kt; i > n}, as well as of the sets B. for
1 < j < n and {/i;; j > n} , and also of the sets Ct i for (/, j) e \Jl=i Mk

and {kj • /i]; (i, j) e Ufc>n -^it) • Proceeding in this way we get the required
infinite sequences {A(} and {Bj} .

4.7. We shall need also some elementary spectral properties of Hadamard
matrices Em , defined inductively in the following way

[ F -F 1
E E

for w = 1,2, 2 2 , 23 , . . . , and of related matrices E'm constructed from
Em simply by replacing each - 1 with 0.

It can be shown by a direct but rather cumbersome computation that for
m = 1, 2, 22 , 23, ... the matrix \EJ = (E*mEm)l/2 has a single eigenvalue
A = m1/2 of multiplicity m, while for m = 2, 22, 23 , . . . the matrix
l̂ ml = ^'m^m^2 ^ a s a n eigenvalue Ao = \mx^2 of multiplicity m - 2 and
two simple eigenvalues kx = Aoum and A2 = kovm where we have

"m = 3((»J + 8)1/2 + '«1/2) aQd vw = i((w + 8)1/2 - m1/2).
In the following proposition fsa b is the spectral resolution of identity for

the operator /?a b restricted to W2{^) (see Proposition 3.5).

4.8. PROPOSITION. Let Ra b be the elementary operator defined by normal
n-tuples a and b and let p > 2. If i?a b « o/f«e second kind, then there
exist a Borel subset 5 c C anrf a sequence of finite rank operators xm such
that Wxm\\p = l Meach m and 11^,1,(^)^1^ - oo as m - o o .

PROOF. If the operator Rt b is of the second kind, one can construct
closed sets A{, Bj and Ci j = At • B. as in Lemma 4.6. Let p and q
be spectral resolutions of identity for n-tuples a and b , respectively, and
denote pi — p{A() and qj = q(Bj) for i, j = 1, 2, . . . . Since ^4°ncr(a) ^ 0
and B° n <r(b) ^ 0 by 4.6(i), the projections pt and q. are nontrivial. Also,
by 4.6(ii), the projections pi are pairwise orthogonal and the same is true
for qj.

For each / and j choose ^ e p^ and Vj e q^ and put zf. = ^ (gi n̂
(that is z.;C = (C, ^X,- for each C e ^ ) . Denote by e;fe the elements of
the direct sum of matrices Em and by e'jk the elements of the direct sum of
matrices E' (m = 1, 2, 22, 23 , . . . ) from 4.7.
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For m = 1, 2, 22 , 2 3 , . . . define
2 m - 1 2 m - 1

and
2m-12m-l

r=m s=m
Then xm and x'm are bounded operators on %?, of rank w , and the non-
zero eigenvalues for jjcm| and |x^| are the same as the eigenvalues of ma-
trices m~l/2~l/p\Em\ and m~l/2~i/p\E'm\, respectively, together with their
multiplicities.

So the norms of xm and x'm as elements of the class ^ , ( ^ ) can be
computed as follows:

P l^ + t+Zf = i(l - 2. + ±/m + Jj^)'/'
with the notation from 4.7. It is easy to see that ^t/m -* oo and ^vp

m —• 0
as m - » o o . Hence, ||*^|| - t o o as m —* oo. This is true also for p = oo

because in this case we have H-x^H^ = m~ 'A , = \um .
Now, let M = {(/, » ; eij > 0} . If Mk (k > 1) is as in Lemma 4.6, then

M c U £ i JWfc and by 4.6(iii)

is a countable union of pairwise disjoint closed sets C( . and hence a Borel
subset in C.

The rest of the proof consists in showing that £ a b(S)xm = x'm . From
Proposition 3.5 we have

2m-1 2m-1
-1/2-1/p

2m—1 2m—1
-1/2-1/p

-m '
r=m J=

So, we have to compute the integrals

.III—I £.111—1 - -

v—» v—v II , ,
r=m s=m J Ji.'M€i

E E - . E Lc *>

//.
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Since zrs is of finite rank, the above integral is well denned (see 3.2). If
T is a Borel subset in C with T n Ar — 0 and t n 5 s = 0 , then we have
p(t)zrs = zrsq(x) = 0. This means the integration above spreads in fact only
over Ar x Bs. But, if A € Ar and ft e Bs, then we have k-/i € Ar •Bs = Cr s,
and because of pairwise disjointness of these sets, the last integral is non-zero
only when (/, j) = (r, s) (and hence (r,s)e M). In this case it is equal to

Thus, we have

2m-1 2m-1
F / c \ —1/2—1/p ^""* V~"»

2m-\2m-\
-1/2-1/p v—v v~* ' '

~— VYI \ » F 7 "~~ Y*

r=m s=m

We can now formulate and prove our main result.

4.9. THEOREM. Let i?a b be an elementary operator with normal coeffi-
cients, defined on the space c£p{%') with p / 2 . Then Ra b is a scalar-type
prespectral operator of the class Y = <^q{^>) if and only if it is of the first kind.

PROOF. If /?a b is of the first kind, its prespectrality follows from Propo-
sition 4.3.

Now, let p > 2. If Ru b is of the second kind, then by Proposition 4.8
we can find a Borel subset 8 c C and a sequence of finite rank operators
xm with the property \\xj\p = 1 and \\E%>h(8)xm\\p -> oo. So, the spectral
projection £ a b(<J) is not bounded in the norm ||«|| and, by Proposition 4.1,
R% b cannot be a prespectral operator on ^ ( ^ " ) of the class r = ^ ( ^ " ) .

in the case p > 2 we use the duality between von Neumann-Schatten
classes. If J?a b is of the second kind on the space ^p(^), then its Banach
adjoint Rb a on the space ^ ( ^ ) is also of the second kind. But now
q > 2 and by the first part of this proof Rh a cannot be prespectral of the
class F = Wp(^). Hence, neither can Rt b be prespectral of any class (see
Dowson [4, Theorem 5.22]).

REMARK. For 1 < p < oo the space l^q{%') can be identified with the
dual of ^ , ( ^ ) and Theorem 4.9 gives in fact a characterization of spectrality
for the operator /?a b. However, this is not true for p = oo. In this case a
characterization of spectrality has to be stated and proved separately.
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4.10. THEOREM. An elementary operator R^ b with normal coefficients,
acting of 38(%?), is a scalar-type spectral operator if and only if it is of the
first kind and there exists a decomposition

1=1 7=1

into closed disjoint subsets such that the map

is constant on every rectangle Ai x B. with spectral projections p(At) and
q(Bj) of infinite rank.

PROOF. The theorem follows immediately from Theorems 4.5 and 4.9.

CONCLUDING REMARKS, (a) Since on the Hilbert space every spectral op-
erator is similar to a normal operator modulo a commuting quasinilpotent
operator (see Dowson [4]), there is a straightforward generalization of The-
orem 4.9 to elementary operators with spectral coefficients (instead of only
normal coefficients). The result is that such an operator is prespectral on
WpiW) with p ± 2 of the class T = Wq{^) if and only if it is of the first
kind. Compare similar reduction to normal coefficients in [14, Section 1].

(b) In the special case of a generalized inner derivation Da b (or an ele-
mentary multiplication Ma b ) with normal coefficients, acting on the space
^ , ( ^ " ) , p ^ 2, we find that it is a scalar-type prespectral operator of the
class F = ^ ( ^ ) if and only if at least one of the spectra, <r(a) or er(b),
is finite. This follows immediately from the characterization in 4.9 and 2.5
(see also [13]). Acting on 3§{%?), Da b is a spectral operator if and only if
both spectra, <r(a) and er(b), are finite (compare 4.10). The last result was
given by J. Anderson and C. Foias. in [1].

(c) For a generalized derivation Da b some kind of converse is true: if
Da b is a prespectral operator on ^p{^f) of the class F = ^q{^), then the
coefficients a and b also have to be spectral. This is proved in [14]. It is not
known to the author whether the same holds for an elementary multiplication
Mab instead of Dab.

(d) Finally, we can look on elementary operators as a source of interesting
examples or counterexamples. For instance, it is well known that even on a
reflexive Banach space the sum or the product of commuting spectral opera-
tors need not be spectral any more. Classical counterexamples were given by
S. Kakutani and C. A. McCarthy many years ago (see, for example, Dowson
[4, Chapter 9]). The generalized derivation Da b and the elementary mul-
tiplication Ma b provide us with other very natural examples of the same
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kind. Writing Da b = La — Rb and Ma b — LaRb; where Lax = ax and
Rbx = xb for every x e 3§{%?), we see from the main results in this paper
that, for normal a and b, the operators La and Rb are spectral on ^ ( ^ ) ,
1 < p < oo, while Da b and Ma b are not spectral unless p = 2 or at least
one of the sets a(a) and a{b) is finite.

Acknowledgements

The author wishes to thank his Ph.D. supervisor Professor M. Omladic for
help and encouragement during the preparation of this work and Professor
B. Magajna for reading the first version of the paper.

References

[1] J. Anderson and C. Foia$, 'Properties which normal operators share with normal deriva-
tions and related operators', Pacific J. Math. 61 (1975), 313-325.

[2] J. B. Conway, Subnormal operators, (Research Notes in Mathematics 51, Pitman, Boston,
London, Melbourne, 1981).

[3] J. Diestel and J. J. Uhl, Vector measures, (Math. Surveys 15, Amer. Math. Soc, Provi-
dence, R. I., 1977).

[4] H. R. Dowson, Spectral theory of linear operators, (Academic Press, London, New York,
San Francisco, 1978).

[5] N. Dunford and J. T. Schwartz, Linear operators, part II: Spectral theory, (Interscience,
New York, London, 1963).

[6] N. Dunford and J. T. Schwartz, Linear operators, part III: Spectral operators, (Wiley-
Interscience, New York, London, Sydney, Toronto, 1971).

[7] L. A. Fialkow, 'Spectral properties of elementary operators', Acta Sci. Math. (Szeged)
46(1983), 269-282.

[8] L. A. Fialkow, 'Spectral properties of elementary operators IF, Transl. Amer. Math. Soc.
290 (1985), 415-429.

[9] C. K. Fong and A. R. Sourour, 'On the operator identity Y.AkXBk = °'> Canad. J.
Math. 31 (1979), 845-857.

[10] I. C. Gohberg and M G. Krein, Introduction to the theory of linear nonselfadjoint oper-
ators, (Transl. Math. Monographs 18, Amer. Math. Soc, Providence, R. I., 1960).

[11] R. Harte, 'Spectral mapping theorems,' Proc. Roy. Irish Acad. Sect. A 72 (1972), 89-107.
[12] R. Harte, Invertibility and singularity for bounded linear operators, (Monographs and

Textbooks in Pure and Applied Mathematics 109, Marcel Dekker, New York and Basel,
1988).

[13] M. Hladnik, 'On prespectrality of generalized derivations', Proc. Roy. Soc. Edinburgh
Sect. .4 104(1986), 93-106.

[14] M. Hladnik, When are generalized derivations spectral, Operator Theory: Advances and
Appl. 24, pp. 215-226, Birkhauser-Verlag, Basel, 1987).

[15] M. Mathieu, 'Elementary operators on prime C*-algebras F, Math. Ann. 284 (1989),
223-244.

https://doi.org/10.1017/S1446788700030603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030603


346 Milan Hladnik [20]

[16] W. Ricker, 'A commutativity criterion for prespectral operators', Bull. Austral. Math.
Soc. 36 (1987), 113-119.

[17] W. Rudin, Functional analysis, (McGraw-Hill, 1973).

Department of Mathematics
E. K. University of Ljubljana
Jadranska 19,
61000 Ljubljana
Yugoslavia

https://doi.org/10.1017/S1446788700030603 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030603

