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We extend the Matsuno–Gill model, originally developed on the equatorial β-plane, to the
surface of the sphere. While on the β-plane the non-dimensional model contains a single
parameter, the damping rate γ , on a sphere the model contains a second parameter, the
rotation rate ε1/2 (Lamb number). By considering the different combinations of damping
and rotation, we are able to characterize the solutions over the (γ, ε1/2) plane. We find
that the β-plane approximation is accurate only for fast rotation rates, where gravity waves
traverse a fraction of the sphere’s diameter in one rotation period. The particular solutions
studied by Matsuno and Gill are accurate only for fast rotation and moderate damping
rates, where the relaxation time is comparable to the time on which gravity waves traverse
the sphere’s diameter. Other regions of the parameter space can be described by different
approximations, including radiative relaxation, geostrophic, weak temperature gradient
and non-rotating approximations. The effect of the additional parameter introduced by the
sphere is to alter the eigenmodes of the free system. Thus, unlike the solutions obtained
by Matsuno and Gill, where the long-term response to a symmetric forcing consists solely
of Kelvin and Rossby waves, the response on the sphere includes other waves as well,
depending on the combination of γ and ε1/2. The particular solutions studied by Matsuno
and Gill apply to Earth’s oceans, while the more general β-plane solutions are only
somewhat relevant to Earth’s troposphere. In Earth’s stratosphere, Venus and Titan, only
the spherical solutions apply.

Key words: rotating flows, atmospheric flows, shallow water flows

1. Introduction

One of the pillars of tropical meteorology is the Matsuno–Gill model, which provides
a simple, yet informative, description of the circulation patterns in the tropics using
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(a)

(b)

Figure 1. The fleur-de-lis on the β-plane: rendition of figure 9 in Matsuno (1966). (a) The mass source/sink –
forcing. (b) The steady-state geopotential (colour shading) and winds (arrows) – response. The meridional
domain extends from −18◦ to 18◦. The equatorial Rossby deformation radius is 5.7◦ (637 km). Contours range
from −1 (deep blue) to 1 (strong red) every 0.25.

the framework of the forced-dissipated rotating shallow-water equations (RSWEs). The
model is named after the seminal works of Matsuno (1966) and Gill (1980) who studied
these equations on the infinite equatorial β-plane and obtained steady-state solutions in
response to heating that is meridionally variable (i.e. the Hadley circulation) and zonally
asymmetric (i.e. the Walker circulation) subject to linear damping (i.e. Rayleigh friction)
and thermal relaxation (i.e. Newtonian cooling).

While studying ‘quasi-geostrophic’ motions in the equatorial area, Matsuno obtained
explicit expressions for the frequencies and latitude-dependent amplitudes of zonally
propagating wave solutions of the (free) RSWEs on the infinite equatorial β-plane by
solving for the eigenvalues and corresponding eigenfunctions of the associated eigenvalue
problem (Matsuno 1966). Using those eigensolutions, Matsuno then obtained the spatial
distribution of forced stationary waves for general forms of forcing (provided that they can
be spanned by the eigenfunctions) and examined the particular response to a (stationary)
‘Kelvin wave’ mass source/sink (the first eigensolution of the free RSWEs). For small
dissipation rates, the resulting surface elevation consists of equatorially symmetric ridges
and troughs that straddle the equator, and were described by Matsuno as the ‘petals’ of a
flower (figure 9 in Matsuno (1966), rendition in figure 1 of the present work). Inspired by
Matsuno’s imagery, and considering the prevalence of this pattern in tropical meteorology,
we refer to it as the ‘fleur-de-lis’ after the iconic emblem (see § 7 of the supplementary
material available at https://doi.org/10.1017/jfm.2023.369). By this, we mean to emphasize
the essential features of the Matsuno–Gill pattern: an eastward tongue on the equator (the
stem) and two off-equatorial ‘petals’ extending westward, symmetric across the equator.
Physically, the resulting flow pattern can be explained in terms of geostrophic adjustment
to a mass source introduced into a quiescent state.

Likewise, while studying the heat-induced tropical circulation, Gill used the
forced-dissipated RSWEs on the infinite equatorial β-plane (under the long-wave
approximation) to study the stationary circulation patterns in response to a zonally
localized heat source (with respect to an infinite zonal domain) with a geopotential
forcing corresponding to Kelvin and mixed Rossby gravity (MRG) waves (the first and
second eigensolutions of the free RSWEs, respectively; Gill 1980). A key feature of
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Matsuno–Gill model on the sphere

Gill’s analysis is the description of the steady circulation in terms of the constituent
waves. For small dissipation rates, the response to symmetric heating about the equator
consists of a westward-propagating Rossby wave and an eastward-propagating Kelvin
wave. The former manifests as off-equatorial pressure cells corresponding to the petals
of the fleur-de-lis, while the latter manifests as an elongated equatorial pressure cell
corresponding to the stem. The response to antisymmetric heating about the equator
consists of a westward-propagating MRG wave and an eastward-propagating inertia
gravity (IG) wave. The combination of the two is manifested by an off-equatorial pressure
dipole centred to the west of the forcing and elongated westwards. Gill then studied more
general forcings as a combination of these former two cases.

Since its formulation, the Matsuno–Gill model has proven useful for understanding
most major tropical phenomena. In the context of the Madden–Julian oscillation, the
same analysis used by Gill for finding the steady-state responses was used to find the
transient response to an easterly moving heat source mimicking a moving convective
region, but for a frame of reference that travels with the heat source (Chao 1987; Biello
& Majda 2005; Majda & Stechmann 2009; Sobel & Maloney 2012; Adames & Kim 2016;
Kacimi & Khouider 2018). In the context of the Intertropical Convergence Zone (ITCZ),
the Matsuno–Gill model with a Bjerknes feedback was used to study the double ITCZ
(Adam 2018), and the model was also used to study the effects of the eastern Pacific
El Niño and central Pacific El Niño on the ITCZ (Zhu et al. 2018). In the context of
equatorial super-rotation, it was shown that the Matsuno–Gill model does not exhibit
equatorial super-rotation due to an inconsistent parametrization of vertical momentum
transfer in the model (Showman & Polvani 2010). The model was also used to interpret
momentum flux patterns in the transition to strong equatorial super-rotation (Arnold,
Tziperman & Farrell 2012). Lutsko (2018) studied the response to diabatic heating in
an idealized, dry general circulation model, and found that equatorial super-rotation is
associated with the breakdown of the linear regime where the Matsuno–Gill solutions
apply. The Matsuno–Gill model was also used as a prototype model for studying the weak
temperature gradient approximation, where it was shown that under this approximation,
the Rossby wave part of the response is not trapped equatorially, and the model has a
far-field response to a localized tropical heating (Bretherton & Sobel 2003). Finally, the
Matsuno–Gill model has been applied recently in the study of stratospheric chemistry
(Wilka et al. 2021).

Physically, for the Matsuno–Gill model to be relevant, the temporal variations of
the forcing need to be slow compared to the relaxation time of the atmosphere, such
that the steady-state solutions are applicable. In addition, the meridional extent of the
forcing needs to be sufficiently small so that the response may be described using the
β-plane approximation. In Matsuno’s words (paraphrasing to remove equation numbers
and nomenclature):

It may be plausible to assume that external forces or inhomogeneous terms are not zero only in
the finite distance from the equator.

(Matsuno 1966)

However, one can think of long-term forcing on Earth with global-scale meridional
extents. For example, atmospheric stationary waves forced by asymmetries in the lower
boundary, such as topography, ocean heat fluxes and land–sea contrast. Certainly, the
meridional extent of all three forcings is global, and their temporal variations are slow
compared to the relaxation time of the atmosphere. One can also consider the response
to long-term radiative forcing at the top of the atmosphere. For example, the annually
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averaged net radiative forcing varies in the meridional direction as a cosine of the latitude
from approximately +75 W m−2 (heating) at the equator to −100 W m−2 (cooling) at the
poles. A final example is the steady-state response to aerosol-induced stratospheric heating
(surface cooling) following volcanic eruptions. The typical lifespan of aerosols in the
stratosphere is approximately a year, which is long compared to the relaxation time of
their induced radiative forcing, and their spatial coverage in some major events can be
substantial. For example, the meridional extent of the aerosol-induced heating following
the 1991 Mount Pinatubo eruption extended from approximately −45◦S to 45◦N (Toohey
et al. 2014; DallaSanta, Gerber & Toohey 2019). The global dynamical response to these
external forcings cannot be described fully by a theory limited to the equatorial β-plane.

Mathematically, the analyses by Matsuno (1966) and Gill (1980) were greatly simplified
by the fact that the free non-dimensional RSWEs on the infinite equatorial β-plane can be
made parameter-free. In contrast, the free RSWEs on the sphere can be reduced to only
a single non-dimensional parameter, referred to as the Lamb number and denoted here
by ε = (2Ωa)2/gH (where a, g and Ω denote the mean radius, gravitational acceleration
and angular frequency of the celestial body in question, and H denotes the mean layer
thickness of the layer of fluid in question). In addition, the analyses by Matsuno (1966)
and Gill (1980) were also simplified by the availability of exact analytic solutions for
the free RSWEs on the infinite equatorial β-plane. However, on the sphere, there are
only approximate solutions for small and large ε. Specifically, as discussed in Garfinkel
et al. (2017), the free RSWEs on the infinite equatorial β-plane approximate the free
RSWEs on the sphere in the limit ε → ∞, but only to zero order in ε−1/4. More accurate
approximations in this limit were obtained by De-Leon & Paldor (2011). Like the infinite
equatorial β-plane, the meridional part of the solutions obtained by De-Leon & Paldor
(2011) corresponds to the Hermite functions, but of a scaled latitude. (Similar results
were obtained by Longuet-Higgins (1968), albeit only for zonal wavenumbers of order
1.) In the opposite limit, as ε → 0, the free RSWEs on the sphere can be approximated
to zero order in ε1/2 by the non-rotating shallow-water equations, where the meridional
part of the solutions is described by the associated Legendre polynomials. Higher-order
approximations were obtained by Hough (1897, 1898) and Longuet-Higgins (1968). In
fact, the problem of forced oscillations of infinitely long period (i.e. stationary solutions)
in the RSWEs on the sphere is also studied in Hough (1897), but without dissipation.
In addition, Paldor, De-Leon & Shamir (2013) obtained a simpler expression using
Gegenbauer functions to approximate the meridional part of the solutions in this limit.

The value of the Lamb number on Earth varies by four orders of magnitude from ε =
10, corresponding to gravity wave speed 300 m s−1 associated with the barotropic mode
in the atmosphere (Fritts & Alexander 2003), to ε = 105, corresponding to gravity wave
speed 3 m s−1 associated with the first baroclinic mode in the oceans (Chelton et al. 1998).
Hence it is not clear whether the asymptotic solutions (either ε → 0 or ε → ∞) from these
earlier works are relevant for the response to a Matsuno–Gill-like forcing on the sphere. In
addition, Gill studied the response to a dissipation rate, denoted here by γ , corresponding
to a relaxation time of approximately two days. However, the typical relaxation time of
the atmosphere varies by at least one order of magnitude, from O(1) to O(10) days, and is
difficult to constrain by observations. Finally, on celestial bodies that rotate more slowly
than Earth, for example, Venus and Titan, erstwhile equatorial wave modes are observed
to extend well into mid-latitudes (Svedhem et al. 2007; Mitchell et al. 2011; Yamamoto
2019; Peralta et al. 2020), limiting the relevance the β-plane solutions.
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Matsuno–Gill model on the sphere

The ubiquity of the Matsuno–Gill model in the study of the tropics, the existence of
large-scale, long-term, forcing on Earth, and the dependence of the β-plane approximation
on the Lamb number, all motivate study of the Matsuno–Gill model on the sphere.
Specifically, a key feature of the present work is the analysis of the Matsuno–Gill model
on the sphere in the (γ, ε1/2) plane.

The paper is organized as follows. In § 2, we introduce the governing equations, and
provide some general considerations employed in the subsequent sections. In § 3, we
describe the suitable choice of the applied forcing in order to extend the original works of
Matsuno and Gill. In § 4, we describe numerically obtained solutions of the Matsuno–Gill
model on the sphere in representative cases. In § 5, we describe some ‘simple solutions of
the heat induced circulation’ (paraphrasing Gill), and discuss their applicability to Earth,
Venus and Titan in § 6. In § 7, we examine the wave composition of the response in
the Matsuno–Gill model on the sphere. In § 8, we examine the response to a localized
forcing (both zonally and meridionally) akin to that used by Gill. Finally, the results are
summarized and discussed in § 9.

2. Governing equations and preliminary considerations

The Matsuno–Gill model describes steady-state wave solutions of the forced-dissipated
RSWEs. In their original works, Matsuno (1966) and Gill (1980) obtained exact analytic
solutions of the linearized version of these equations on the infinite equatorial β-plane for
particular forms of forcing and dissipation terms. We extend the Matsuno–Gill model to
the surface of the sphere, using the same forms of forcing and dissipation. In particular,
following Matsuno and Gill, we assume the following.

(i) There is no momentum forcing, only a prescribed ‘heat/mass’ source added to the
continuity equation. The extension of the forcing used by Matsuno and Gill to the
sphere is described in more detail in § 3.

(ii) We let the dissipative terms in the momentum equations and the continuity equation
take the forms of Rayleigh friction and Newtonian cooling, respectively, and assume
that they can all be characterized by the same time scale. While such forms of
dissipation are likely not the most suitable ones for any particular application, as
noted by Gill (1980), they are the simplest.

Let a, g and Ω denote the mean radius, gravitational acceleration and angular frequency
of the celestial body in question, and let H denote the mean thickness of the layer of fluid
in question. Then, using a as the horizontal length scale, and

√
a2/gH as the time scale

(which implies that
√

gH is the horizontal velocity scale), the linearized forced-dissipated
(time-dependent) RSWEs in spherical coordinates can be written in non-dimensional form
as

∂u
∂t

− ε1/2v sin φ + 1
cos φ

∂Φ

∂λ
= −γ u, (2.1a)

∂v

∂t
+ ε1/2u sin φ + ∂Φ

∂φ
= −γ v, (2.1b)

∂Φ

∂t
+ 1

cos φ

[
∂u
∂λ

+ ∂

∂φ
(v cos φ)

]
= −γΦ + Q, (2.1c)

where t denotes time, 0 ≤ λ < 2π and −π/2 ≤ φ ≤ π/2 denote the longitudinal and
latitudinal angles, u and v denote the zonal and meridional velocity components,
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Φ denotes the geopotential height anomaly (where the non-dimensional mean geopotential
equals 1), γ > 0 denotes the damping/cooling coefficient, Q = Q(λ, φ) is a prescribed
forcing (meaning that Q is a known function of the longitude and latitude), and ε is the
Lamb number, defined by

ε = (2Ωa)2/gH. (2.2)

Based solely on the different ways of grouping its constituent parameters, the Lamb
number can be interpreted in a number of ways. Depending on the appropriate length and
time scale in a particular application, ε1/2 may play the role of the (inverse) Rossby number
or the Froude number. Instead, the Lamb number is more consistently interpreted based
on its location in the equations, and not based on its constituent parameters. Thus, under
the preset scaling, where ε1/2 appears in front of the Coriolis terms in the momentum
equations, it plays the role of the non-dimensional rate of rotation (measured relative to
the time over which a gravity wave can appreciably propagate around the sphere).

The validity of the linearization depends on both the amplitude and the spatial
variability of the forcing. For highly oscillating Q, the resulting u, v, Φ fields can also
be highly oscillating, and the advection terms can be non-negligible even for small forcing
amplitude. In the present work, we take the term ‘the Matsuno–Gill model’ to mean the
linearized equations, so only low Fourier modes should be considered. In practice, the
forcing can often be treated as slowly varying, e.g. for the purpose of providing simple
descriptions of the Hadley and Walker circulations. Yet the validity of the linearization
should be confirmed on a per-case basis, and the problem of nonlinear adjustment of the
forced-dissipated RSWEs merits additional study.

The stationary system is obtained by setting ∂/∂t equal to zero in system (2.1a–c),
yielding

−ε1/2v sin φ + 1
cos φ

∂Φ

∂λ
= −γ u, (2.3a)

ε1/2u sin φ + ∂Φ

∂φ
= −γ v, (2.3b)

1
cos φ

[
∂u
∂λ

+ ∂

∂φ
(v cos φ)

]
= −γΦ + Q, (2.3c)

which we shall refer to as the Matsuno–Gill model on the sphere. Aside from some
trivial changes associated with the choice of scaling and the spherical geometry, this is
precisely the fundamental system studied in the planar versions of the model, i.e. system
(30) of Matsuno (1966), and equations (2.6)–(2.8) of Gill (1980). Note, however, that Gill
subsequently imposed the long-wave approximation, which is tantamount to neglecting
−γ v on the right-hand side of (2.3b). The way in which this spherical model degenerates
to the planar Matsuno–Gill problem when ε → ∞ is examined in § 5.1.

Before continuing, we introduce one further simplification. Observe that the coefficients
of the Matsuno–Gill model (2.3a–c) are λ-independent. Thus we may replace each
λ-dependent quantity with a Fourier series in λ, and consider each Fourier mode separately.
Specifically, we assume that the forcing Q and the unknowns u, v, Φ all have the form

ζ(λ, φ) =
∞∑

m=−∞
ζm(φ) exp(imλ), (2.4)
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where ζ is any of the {u, v, Φ, Q} variables, and ζm(φ) is the corresponding
latitude-dependent coefficient. The resulting system for each individual Fourier mode m is
then

−ε1/2vm sin φ + im
cos φ

Φm = −γ um, (2.5a)

ε1/2um sin φ + dΦm

dφ
= −γ vm, (2.5b)

1
cos φ

[
imum + d

dφ
(vm cos φ)

]
= −γΦm + Qm. (2.5c)

Similarly, Matsuno assumed a zonally periodic forcing and studied the latitude-dependent
boundary value problem remaining after a Fourier decomposition in the zonal direction.
In contrast, Gill assumed a zonally localized (aperiodic) forcing and studied the
longitude-dependent problem remaining after expanding the latitudinal part in terms of
the eigensolutions of the free problem. In § 8, we show how the solutions of (2.5a–c)
combine to yield the response to a localized forcing akin to the one used by Gill.

A key property of the free RSWEs on the sphere is the existence of two qualitatively
different solution regimes: an equatorial regime, in which the solutions are non-negligible
only in the vicinity of the equator (i.e. equatorially trapped solutions), and a global regime,
in which the solutions are non-negligible at all latitudes. Generally speaking, the former is
realized in the limit of large Lamb number, while the latter is realized in the limit of small
Lamb number. More accurately, as noted in Boyd (1985, 2018) and Boyd & Zhou (2008),
for a given Lamb number, the equatorial regime is also realized in the limit of large zonal
wavenumber. However, as discussed above, the linearization may no longer be applicable
if the solutions have appreciable power at high Fourier modes.

Finally, the free problem consists of finding the dispersion relations and
latitude-dependent amplitudes of zonally propagating waves, i.e. solutions of the form

{u(t, λ, φ), v(t, λ, φ), Φ(t, λ, φ)} = {um(φ), vm(φ), Φm(φ)} exp [i(mλ− ωt)], (2.6)

where ω is the wave frequency. Setting γ = 0 and Q = 0 in (2.1a–c) and substituting (2.6)
yields the following eigenvalue problem for each Fourier mode m of the free waves:

LX = iωX , (2.7)

where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −ε1/2 sin φ
im

cos φ

ε1/2 sin φ 0
d

dφ

im
cos φ

(
d

dφ
− tan φ

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, X =
⎡
⎣ um

vm

Φm

⎤
⎦ . (2.8a,b)

Formally, the above equation is equivalent to the Matsuno–Gill model (2.5a–c) with ω =
iγ (and Q = 0). However, the two problems are different in essence. The free problem
consists of an eigenvalue problem for the unknown eigenvalue(s) ω, while the dissipated
problem consists of a boundary value problem for given (i.e. known) values of γ .
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3. The prescribed forcing

Before comparing solutions of the Matsuno–Gill model on the equatorial β-plane with
those on the sphere, we first ensure that the two converge in the appropriate limit. As was
shown in Garfinkel et al. (2017), for any fixed zonal wavenumber, free RSWEs on the
equatorial β-plane approximate free RSWEs on the sphere in the limit ε → ∞. Consider
the relation ω = iγ between the frequency ω in solutions of the free system and the
dissipation γ in the steady-state system. For the two systems to converge, the prescribed
forcings must also be identical, which guides the following choices.

Starting with the latitudinal dependence, the forcing used by Matsuno and Gill (the
latter only in response to a symmetric forcing) in the continuity equation corresponds to
the geopotential height field of a Kelvin wave on the equatorial β-plane. Hence a natural
extension of the forcing is the geopotential height field corresponding to the ‘Kelvin’
wave on the sphere. The existence of a (nearly) non-dispersive wave that converges to the
equatorial Kelvin wave on the β-plane for ε → ∞ was verified in Garfinkel et al. (2017).
From the point of view of the eigenvalue problem associated with the free RSWEs on
the sphere, however, this wave is more accurately classified as the lowest mode eastward
IG wave. Likewise, the forcing used by Gill in the continuity equation in response to
a meridionally antisymmetric heating corresponds to the geopotential height field of an
equatorial MRG wave. Hence a natural extension to the present work is the geopotential
height field corresponding to the MRG wave on the sphere, whose existence was verified
in Paldor et al. (2018).

Next, with regard to the longitudinal dependence, as discussed in § 2, we may consider
each Fourier mode separately. Hence, without loss of generality, we assume that the
forcing consists of a single Fourier mode, and study the response to the representative
case m = 5. This value is chosen specifically in order to reproduce Matsuno’s solutions for
large values of ε (fast rotation). Specifically, the results presented in figure 9 of Matsuno
(1966) (figure 1 of the present work) were obtained using a planar (non-dimensional)
wavenumber k = 0.5. The spherical wavenumber of the present work is related to the
latter by m = ε1/4k. Hence k = 0.5 corresponds to m = 5 for ε = 104, which is used
throughout this work as a representative value of large ε. Due to the periodicity of the
spherical coordinate system, m takes only integer values, hence particular values of k
correspond to acceptable values of m only for certain values of ε. The response to a
wavenumber 1 forcing is qualitatively different from all other wavenumbers m > 1 in
that the regular solutions of (2.5a–c) have non-vanishing velocities at the poles, and is
left for the supplementary material. The case m = 0 requires special treatment and is of
lesser interest in the context of the Matsuno–Gill model, which is concerned with zonally
asymmetric forcing.

4. Representative solutions

In the absence of exact analytic solutions for the Matsuno–Gill model on the sphere
for arbitrary values of γ and ε1/2, numerical approximations can be obtained readily.
In the present work, we use a Chebyshev collocation method (e.g. Trefethen 2000) to
solve (2.5a–c) as follows. For each wavenumber m, we first solve the eigenvalue problem
associated with zonally propagating wave solutions of the free RSWEs to obtain the
latitude-dependent amplitudes of the Kelvin and MRG waves. For any value of ε1/2,
the Kelvin wave can be identified as the first wave with ω > m (assuming m > 0 by
convention; Garfinkel et al. 2017). In contrast, the identification of the MRG wave depends
on the value of ε1/2. The point where the MRG transitions from an IG wave at small
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Matsuno–Gill model on the sphere

Light damping Moderate damping Heavy damping

Fast rotation LF MF HF
(10−2, 102) (1, 102) (102, 102)

Moderate rotation LM MM HM
(10−2, 1) (1, 1) (102, 1)

Slow rotation LS MS HS
(10−2, 10−2) (1, 10−2) (102, 10−2)

Table 1. Particular values of the (γ, ε1/2) plane used throughout the study. For the sake of brevity, we denote
the different combinations using a two-letter acronym, where the first letter corresponds to one of the three
rates of damping, and the second letter corresponds to one of the three rates of rotation, e.g. LF denotes the
case of light damping and fast rotation.

wavenumbers to a Rossby wave at large wavenumbers is m� = ε1/4/
√

2 (Paldor et al.
2018). For m < m�, the MRG is identified as the first wave with −ω > m, while for
m > m�, it is identified as the first wave with −ω < m (assuming m > 0 by convention).
Having solved for the Kelvin and MRG waves, we then substitute the resulting geopotential
height for Qm and solve the boundary value problem associated with the Matsuno–Gill
model (2.5a–c). For the sake of simplicity, we normalize the prescribed forcing by its
global absolute maximum, i.e. maxφ |Qm|. In general, this choice could be inconsistent
with the linearization, but it has no implications in the present work, where the system of
equations is linearized from the outset.

We provide an overview of the numeric approximations in representative cases. As
detailed in § 3, we choose wavenumber m = 5 as a representative wavenumber, which
corresponds to the value used by Matsuno for the planar wavenumber k = 0.5 at ε1/4 = 10.
The results were verified qualitatively for wavenumbers 2, 8 and 1 (see figures 1–6 in
the supplementary material). The case m = 1 is qualitatively different from all other
wavenumbers m > 1 in that the regular solutions of (2.5a–c) have non-vanishing velocities
at the poles (see §§ 2 and 3 in the supplementary material).

To sample the (γ, ε1/2) plane, we examine the nine combinations of light/moderate/
heavy damping and slow/moderate/fast rotation. The particular values of γ and ε1/2 used
throughout this study to represent these regimes are summarized in table 1. Recall that
our time scale is

√
a2/gH. Thus under the present scaling, the damping and rotation rates

are measured relative to the time taken for a gravity wave with speed
√

gH to propagate
distance a. For example, ‘fast rotation’ implies that the celestial body revolves around
itself well before a gravity wave can travel a radial distance. Similarly, ‘light damping’
implies that a gravity wave will propagate around the sphere before being appreciably
damped. This differs from Matsuno’s scaling, where time is scaled on the equatorial
Rossby deformation time, and ‘light’ damping implies that a gravity wave will propagate
‘far enough’ to feel the effects of rotation before being appreciably damped.

As detailed in § 5.1, the conversion between the damping in Matsuno’s scaling (denoted
here by α) and the present scaling is α = ε−1/4γ . Thus for ε1/4 = 10 (where the equatorial
β-plane is found to be accurate), γ = 10−2 (our light damping) corresponds to α = 10−3,
and γ = 102 (our heavy damping) corresponds to α = 101. Equivalently, for the same
value of ε, Matsuno’s damping rate α = 0.2 corresponds to γ = 2, i.e. moderate damping
in the present scaling.

964 A32-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.369


O. Shamir, C.I. Garfinkel, E.P. Gerber and N. Paldor

Figures 2 and 3 provide representative solutions of the Matsuno–Gill model on the
sphere in response to a (symmetric) Kelvin and an (antisymmetric) MRG wave-5 forcing,
respectively. The columns show different variables, the rows different combinations of γ

and ε1/2. The meridional domain in each of these figures extends from the south pole to
the north pole. For optimal presentation, the longitudinal domain corresponds to one zonal
period (2π/5). In addition, each panel is normalized on its global absolute maximum,
indicated within the white text box at the bottom of each panel.

Our first observation from the representative solutions in figures 2 and 3 is that both
equatorial and global solution regimes are found across the (γ, ε1/2) plane. The solutions
transition from equatorial at fast rotation rates to global at moderate or slow rotation
rates, regardless of the damping rate. Accordingly, for the Matsuno–Gill model on the
equatorial β-plane to approximate solutions on the sphere, the celestial body in question
must be rotating rapidly. Indeed, looking at the response to a Kelvin wave-5 forcing in
figure 2, we identify the fleur-de-lis in the geopotential height field in figure 2(b)(ii) with
moderate damping (red square). Figure 4 zooms in on the prescribed forcing (figure 4a)
and geopotential height (figure 4b) obtained numerically (shadings), compared to the
analytic solutions obtained by Matsuno (contours): our forcing yields solutions that
converge to Matsuno’s, confirming it as a natural extension of the latter. Likewise, figure 5
zooms in on the zonal (figure 5a) and meridional (figure 5b) winds obtained numerically
(shadings), compared to Matsuno’s solutions (contours). Clearly, the fleur-de-lis on the
sphere converges to the fleur-de-lis on the β-plane, but only when the gravity wave
propagation time scale is small relative to rotation and comparable to the damping. In
all other cases, we obtain substantially different solution patterns.

Our second key take-away from the representative solutions concerns the balance of
the forcing. For light damping (regardless of rotation rate), the divergence is identical to
the applied forcing. From (2.5a–c), for light damping, the dissipation term is negligible
compared to the forcing in the continuity equation, leaving only the divergence to balance
the forcing. As the damping increases, the divergence remains spatially similar to the
forcing (except for moderate-to-heavy damping and fast rotation), but it is orders of
magnitude smaller. From (2.5a–c), with heavy damping, the forcing in the continuity
equation is now balanced by the dissipation term. This is confirmed in figures 2(c, f ,i)
and 3(c, f ,i) (our heavy damping rate is γ = 102; table 1). Note that the weak divergence
with heavy damping follows from the low amplitudes of the winds. While negligible, it is
never identically zero. This is in contrast to purely two-dimensional flows, where the zonal
divergence and meridional divergence compensate each other, so the total divergence is
identically zero.

Our third observation from the representative solutions is the emergence of a geostrophic
balance between the geopotential height field and the zonal and meridional wind fields at
light damping and fast-to-moderate rotation rates (figures 2a,d and 3a,d). From (2.5a–c),
the dissipation term becomes negligible for light damping, leaving the Coriolis and
pressure gradient terms to balance. Global-scale geostrophic balance is attainable by
maintaining a vanishing geopotential height gradient at the equator (for m > 0 this implies
that Φ = 0 along the equator). For slow rotation rates, the Coriolis term is also small, and
the dissipation term cannot be neglected, explaining the lack of geostrophic balance. To a
lesser extent (only outside the equator), the response at moderate damping and fast rotation
rate (figures 2b and 3b) is also in near geostrophic balance, consistent with Matsuno’s
observation. In all other combinations of γ and ε1/2, the solutions are qualitatively far
from geostrophic.
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1.00 × 100 3.23 × 10–2 1.61 × 10–1 4.62 × 10–2 9.68 × 10–1 4.17 × 101

1.00 × 100 3.44 × 10–4 1.72 × 10–1 5.82 × 10–2 1.00 × 100 5.86 × 102

1.00 × 100 9.97 × 10–3 4.98 × 10–4 1.44 × 10–4 3.00 × 10–3 2.17 × 100

1.00 × 100 3.32 × 10–2 1.66 × 10–1 5.61 × 10–2 9.67 × 10–1 1.92 × 102

1.00 × 100 2.42 × 10–2 3.99 × 10–1 2.82 × 10–1 1.00 × 100 9.36 × 102

1.00 × 100 9.88 × 10–3 4.94 × 10–4 5.86 × 10–4
1.21 × 10–2 1.22 × 101

1.00 × 100 1.31 × 10–1 3.30 × 10–1 5.19 × 10–2 9.38 × 10–1 8.23 × 102

1.00 × 100 1.46 × 10–1 4.00 × 10–1 6.08 × 10–2 1.00 × 100 2.50 × 104

(e)
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(h)

(i)

(b)

(a) (i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(c)

(d )

( f )

Figure 2. Steady response to a symmetric Kelvin wave-5 forcing. From (i) to (vi): the forcing, geopotential
height, zonal wind, meridional wind, divergence and vorticity. Panels (a–i) correspond to the different samples
of the (γ, ε1/2) plane summarized in table 1. The damping and rotation rates for each case (row) are labelled
on the left and right edges, respectively. The meridional domain in each panel extends from pole to pole. The
longitudinal domain corresponds to one zonal period. Contours range from −1 (deep blue) to 1 (strong red)
every 0.25. Each panel is normalized on its global absolute maximum, given in white text boxes. The red square
around the geopotential in (b)(ii) identifies the fleur-de-lis on the sphere (figure 4b).
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1.00 × 100 2.82 × 10–4 1.32 × 10–1 9.65 × 10–2 1.00 × 100 4.74 × 102

1.00 × 100 9.96 × 10–3 5.50 × 10–4 3.87 × 10–4 4.19 × 10–3 1.72 × 101

1.00 × 100 2.74 × 10–2 1.28 × 10–1 9.43 × 10–2 9.73 × 10–1 6.18 × 101

1.00 × 100 5.40 × 10–2 4.35 × 10–1 5.65 × 10–1 1.00 × 100 1.61 × 103

1.00 × 100 9.78 × 10–3 4.87 × 10–4 1.60 × 10–3
2.39 × 10–2 5.45 × 101

1.00 × 100 2.66 × 10–1 3.09 × 10–1 8.58 × 10–2 9.10 × 10–1 3.43 × 103
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(e)
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(h)
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(b)

(c)

(a) (i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)

(i) (ii) (iii) (iv) (v) (vi)
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(d )

( f )

Figure 3. Steady response to a symmetric MRG wave-5 forcing. From (i) to (vi): the forcing, geopotential
height, zonal wind, meridional wind, divergence and vorticity. Panels (a–i) correspond to the different samples
of the (γ, ε1/2) plane summarized in table 1. The damping and rotation rates for each case (row) are labelled
on the left and right edges, respectively. The meridional domain in each panel extends from pole to pole. The
longitudinal domain corresponds to one zonal period. Contours range from −1 (deep blue) to 1 (strong red)
every 0.25. Each panel is normalized on its global absolute maximum, given in white text boxes.
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Matsuno–Gill model on the sphere

(a)

(b)

Figure 4. The fleur-de-lis on the sphere: height fields of (a) the prescribed Kelvin wave-5 forcing, and (b) the
steady-state geopotential response, for moderate damping and fast rotation (figure 2b). The meridional domain
extends from −18◦ to 18◦. Colour shading: numeric solutions obtained as detailed in § 4. Black contours: the
β-plane approximation. Contours range from −1 (deep blue) to 1 (strong red) every 0.25.

(a)

(b)

Figure 5. The steady-state (a) zonal and (b) meridional winds for moderate damping and fast rotation
(figure 2b). The meridional domain extends from −18◦ to 18◦. Colour shading: numeric solutions obtained
as detailed in § 4. Black contours: the β-plane approximation. Contours range from −1 (deep blue) to 1 (strong
red) every 0.25.

5. ‘Some simple solutions for heat-induced circulation’ (paraphrasing Gill)

In the spirit of Gill (1980), we obtain approximate solutions of the ‘heat-induced’
circulation of the Matsuno–Gill model on the sphere in special cases, including
the β-plane, radiative relaxation, geostrophic, non-rotating, weak temperature gradient
and long-wave approximations. Together, the regimes covered by these approximate
solutions include most of the (γ, ε1/2) plane. We start with the β-plane approximation
due to its correspondence with the original works of Matsuno and Gill. However,
in terms of complexity, the simplest approximations are the radiative relaxation and
geostrophic approximations, in which the unknowns u, v, Φ can be written in terms of the
prescribed forcing Q using only simple algebraic operations. The β-plane and non-rotating
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approximations are more complex since the Matsuno–Gill model can only be reduced to a
(different) boundary value problem with known solutions. The weak temperature gradient
and long-wave approximations provide no tangible simplification and are included for
comparison.

To quantify the validity of each approximation, we use the following ‘metric’ of relative
difference:

‖Xm
r − Xm

a ‖
‖Xm

r ‖ =
√

(Xm
r − Xm

a , Xm
r − Xm

a )√
(Xm

r , Xm
r )

, (5.1)

where X m = [um, vm, Φm]T represents the solution vector of the Matsuno–Gill model
(2.5a–c), the subscript r denotes the reference solutions (the numeric solutions obtained as
described in § 4), the subscript a denotes one of the approximate solutions derived below,
and (X , X̄ ) denotes the inner product

(X , X̄ ) =
∫ π/2

−π/2
X TX̄ cos φ dφ. (5.2)

We choose the difference metric in (5.1) for two reasons. First, it assigns equal weights
to all three unknowns, and hence provides an estimate of the approximation as a whole.
Second, we use it for the sake of uniformity with § 7, where we will use the inner product
in (5.2) to find the projections of the Matsuno–Gill model solutions on the free wave
solutions of the RSWEs. We find that a value 0.1 is a convenient indicator of ‘visual’
convergence in the sense that the solutions overlap, and values lower than 0.1 lead to no
visible improvements. For the sake of brevity, we refer to this metric simply as the ‘relative
difference’.

5.1. The β-plane approximation
As mentioned in § 2, for any fixed zonal wavenumber, the free RSWEs on the equatorial
β-plane approximate the RSWEs on the sphere for large values of the Lamb number. We
now show that this is also the case for the Matsuno–Gill model: the solutions obtained
by Matsuno (1966) approximate the solutions on the sphere for sufficiently large values
of ε. To this end, we first re-scale system (2.3a–c) to conform with Matsuno’s scaling
(Gill’s scaling differs from Matsuno’s by a factor of

√
2), where the horizontal length

scale corresponds to the equatorial Rossby deformation radius (
√

gH/β)1/2, with β =
2Ω/a, and the time scale corresponds to the Rossby deformation time (

√
gHβ)−1/2. Under

Matsuno’s scaling, (2.3a–c) becomes

−ε1/4ṽ sin φ + ε−1/4

cos φ

∂Φ̃

∂λ
= −αũ, (5.3a)

ε1/4ũ sin φ + ε−1/4 ∂Φ̃

∂φ
= −αṽ, (5.3b)

ε−1/4

cos φ

[
∂ ũ
∂λ

+ ∂

∂φ
(ṽ cos φ)

]
= −αΦ̃ + Q̃, (5.3c)

where tildes are used to distinguished the quantities in Matsuno’s scaling from their
counterparts in (2.3a–c), and α is used to denote the damping coefficient to match
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Matsuno’s notation as well. The transformation between systems (2.3a–c) and (5.3a–c)
is

(ũ, ṽ) = (u, v), Φ̃ = Φ, α = ε−1/4γ, Q̃ = ε−1/4Q. (5.4a–d)

As the horizontal wind components and the geopotential remain unchanged under the
above transformation, we drop the tildes above those three variables. Note that the Lamb
number appears (with different powers) in front of the Coriolis term, the pressure gradient
term and the divergence terms in (5.3a–c). It therefore has no unique interpretation under
Matsuno’s scaling.

Next, in order to obtain the β-plane approximation, we must also change to local
Cartesian coordinates. Using the equatorial Rossby deformation radius as the horizontal
length scale, the longitude and latitude transformations are (λ, φ) = ε−1/4(x, y). Recall
that system (2.3a–c) was simplified further by considering its Fourier decomposition in
λ. The corresponding transformation of the zonal wavenumber is m = ε1/4k, where k is
the planner wavenumber. Upon introducing the Fourier decomposition, system (5.3a–c)
becomes

−ε1/4vk sin(ε−1/4y) + ik
cos(ε−1/4y)

Φk = −αuk, (5.5a)

ε1/4uk sin(ε−1/4y) + dΦk

dy
= −αvk, (5.5b)

1
cos(ε−1/4y)

[
ikuk + d

dy
(vk cos(ε−1/4y))

]
= −αΦk + Q̃k. (5.5c)

Assuming that uk, vk, Φk and Q̃k can all be expanded in power series of ε−1/4, expanding
also the trigonometric functions in Taylor series in ε−1/4y, and retaining only zero-order
terms, yields

−vky + ikΦk = −αuk, (5.6a)

uky + dΦk

dy
= −αvk, (5.6b)

ikuk + dvk

dy
= −αΦk + Q̃k, (5.6c)

which is identical to system (30) of Matsuno (1966) with Fx = Fy ≡ 0.
Matsuno outlines a general procedure for obtaining the solutions for arbitrary values of

k and α by expanding both the solution and forcing in series of the free wave solutions
(the eigenfunctions of the free RSWEs on the equatorial β-plane). This procedure is
symbolically convenient, but is less convenient when writing the analytic solutions
explicitly. At least one reason is the fact that Matsuno’s expressions involve the free wave
frequencies, which are given by a cubic equation. A more convenient way to derive the
(exact) solutions of (5.6a–c), which was taken by Gill, is to expand the solutions and
forcing in series of Hermite functions, which are the eigenfunctions of the subspace
spanned by the meridional velocity. In addition, Matsuno carries out the analysis only
for k = 0.5 and α = 0.2. Thus, for the sake of completeness, we re-derive the solutions
below for arbitrary values of k and α. To this end, we first rewrite system (5.6a–c) as a
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single equation in vk. Using (5.6a) to eliminate uk from (5.6b) and (5.6c) yields

d
dy

[
vk

Φk

]
= − 1

α

[
iky α2 + k2

α2 + y2 −iky

] [
vk

Φk

]
+

[
Q̃k

0

]
. (5.7)

Differentiating the first row with respect to y, and using the first and second rows to
eliminate Φk and dΦk/dy, respectively, yields

d2vk

dy2 − [α2 + k2 + y2 − ikα−1]vk = dQ̃k

dy
− ikyα−1Q̃k. (5.8)

Equation (5.8) can be solved by expanding both vk and Q̃k in series of Hermite functions,
i.e.

vk( y) =
∞∑

n=0

vk
n Ψn( y) =

∞∑
n=0

vk
n Hn( y) exp(−1

2 y2), (5.9)

where vk
n are the expansion coefficients, Hn( y) are the (non-normalized) Hermite

polynomials of degree n, and Ψn( y) are the Hermite functions (i.e. the Hermite
polynomials multiplied by a Gaussian envelope). The latter satisfy the recurrence relations

x Ψn(x) = +1
2 Ψn+1(x) + n Ψn−1(x), (5.10a)

dΨn(x)
dx

= −1
2

Ψn+1(x) + n Ψn−1(x), (5.10b)

and the differential equation

d2Ψn(x)

dx2 + (2n + 1 − y2) Ψn(x) = 0. (5.11)

In general, Q̃k is expanded similarly to vk in (5.9). Fortunately, for large ε, the geopotential
height of the Kelvin and MRG waves, used here as the prescribed forcing, is proportional
to a single Hermite function

Q̃k( y) = Q0 ΨN( y) := Q0 HN( y) exp(−1
2 y2), (5.12)

where Q0 is a constant amplitude, and N = 0, 1 for Kelvin, MRG waves, respectively. The
convergence of the wave forcing of the present work to the above expression was confirmed
in figure 4(a) for a Kelvin wave-5 forcing at ε1/2 = 102, and is also confirmed below for
an MRG wave-5 forcing.

Substituting (5.9) and (5.12) in (5.8), and using the recurrence relations (5.10a,b) and
differential equation (5.11), yields

∞∑
n=0

−[2n + 1 + α2 + k2 − ikα−1]vk
nΨn = Q0[− 1

2 (1 + ikα−1)ΨN+1 + N(1 − ikα−1)ΨN−1].

(5.13)
Equating the coefficients of Ψn, the solution is

vk( y) = vN+1ΨN+1 + vN−1ΨN−1, (5.14)
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where

vN+1 = 1
2

Q0
1 + ikα−1

2N + 3 + k2 + α2 − ikα−1 , (5.15a)

vN−1 = −NQ0
1 − ikα−1

2N − 1 + k2 + α2 − ikα−1 . (5.15b)

Using the first row of (5.7), the solution for Φk is

Φk = 1
2 R−vN+1ΨN+2 + [−(N + 1)R+vN+1 + R0Q0 + 1

2 R−vN−1]ΨN

− (N − 1)R+vN−1ΨN−2, (5.16)

for N = 0, 1, where Ψ−2 = Ψ−1 ≡ 0, and

R0 = α

α2 + k2 , R± = α ± ik
α2 + k2 . (5.17a,b)

Recall that α is real, so the denominators in the above expressions do not vanish. Finally,
using (5.6a), the solution for uk is

uk = 1
2

R−vN+1ΨN+2 +
[
(N + 1)R+vN+1 − ik

α
R0Q0 + 1

2
R−vN−1

]
ΨN

+ (N − 1)R+vN−1ΨN−2. (5.18)

Substituting (5.12), (5.14), (5.18) and (5.16) into (5.6a–c) confirms that they are indeed the
sought solutions for any values of k and α.

The convergence of the Matsuno–Gill model on the sphere to the Matsuno–Gill model
on the β-plane was shown in figures 4 and 5, for ε1/2 = 102, N = 0, m = 5 (k = 0.5)
and γ = 1 (α = 0.1, not 0.2 as in Matsuno 1966). We can now quantify the convergence
in the rest of the (γ, ε1/2) plane. Figure 6 shows the relative differences between the
analytic approximations in (5.14), (5.16) and (5.18), and the numeric solutions as functions
of γ and ε1/2. The differences were calculated as in (5.1) and are shown in logarithmic
scale. Darker shades (smaller values) indicate better agreement between the analytic
and numeric approximations. For the sake of comparison with the other approximations
obtained in § 5, the error scales in all subsections are identical (hence the colours in
this figure are under-saturated). For example, the (−1) contour, corresponding to value
0.1, is emphasized in the figure by the white dashed lines. It can be seen that the
β-plane approximation improves gradually with increasing ε1/2, and becomes accurate
for fast rotation rates. As we have seen in § 4, these cases correspond to the equatorial
solution regime. Hence, generally speaking (and unsurprisingly), the equatorial β-plane
approximation is valid for the equatorial solution regime.

The β-plane approximation for moderate damping and fast-to-slow rotation is shown in
figure 7 (black contours), compared to the numeric solutions of the Matsuno–Gill model
(shadings). The comparison is shown for the MRG wave-5 response: the black contours in
the leftmost column correspond to the forcing in (5.12), confirming that the geopotential
height of the MRG wave-5 under fast rotation can be approximated by a single Hermite
function (the same was confirmed for the Kelvin wave-5 forcing in figure 4(a) and is also
true for wave-1 forcing). The approximation breaks down, however, for moderate or slow
rotation, as expected (figures 7b,c).
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Figure 6. The relative difference defined in (5.1) between the β-plane approximation in (5.14), (5.16) and
(5.18), and the numeric solutions obtained as described in § 4. The differences are shown in logarithmic
scale. Smaller values (darker shades) indicate better agreement. For example, the −1 contour, corresponding to
value 0.1, is emphasized by the white dashed lines. For the sake of comparison with the other approximations
obtained in § 5, the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane
defined in table 1 are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.
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Figure 7. The β-plane approximation in (5.14)–(5.18) (black contours) superimposed on the steady response
to an MRG wave-5 forcing (shadings). The comparison is shown for a subset of figure 3 including (a) moderate
damping and fast rotation (MF), (b) moderate damping and moderate rotation (MM), and (c) moderate damping
and slow rotation (MS). For the sake of clarity, the meridional domain of the equatorial regime in (a) zooms in
on [−20◦, 20◦].

5.2. The radiative relaxation approximation
In § 4, we observed that for heavy damping, the forcing in the continuity equation is nearly
balanced by the dissipation term, with only a negligible contribution of the divergence.
For γ /= 0, we can rewrite the forcing as Q = γ Φ̃, in which case the combination of the
dissipation and forcing terms on the right-hand side of the continuity equation plays the
role of a relaxation term −γ (Φ − Φ̃), with relaxation time 1/γ . Hence this approximation
can be thought of as a case where the geopotential height is relaxed towards the applied
forcing. This is in contrast to light damping, where the forcing in the continuity equation
is nearly balanced by the divergence term, and the geopotential height is far from the
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Figure 8. The relative difference defined in (5.1) between the radiative approximation in (5.19) and (5.21), and
the numeric solutions obtained as described in § 4. The differences are shown in logarithmic scale. Smaller
values (darker shades) indicate better agreement. For example, the −1 contour, corresponding to value 0.1, is
emphasized by the white dashed lines. For the sake of comparison with the other approximations obtained in
§ 5, the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane defined in
table 1 are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.

applied forcing. We proceed by setting the dissipation term in the continuity equation
(2.5c) equal to the forcing. The resulting approximation for the geopotential height is

Φ = γ −1Q. (5.19)

Substituting (5.19) into (2.5a) and (2.5b) yields the following second-order algebraic
system for the horizontal velocity components:

[
γ −ε1/2 sin φ

ε1/2 sin φ γ

][
um

vm

]
= − 1

γ

⎡
⎢⎢⎣

im
cos φ

Qm

dQm

dφ

⎤
⎥⎥⎦ . (5.20)

For real γ, ε /= 0, this system has a non-vanishing determinant. Its unique solution is

um = − 1

γ 2 + ε sin2 φ

[
im

cos φ
Qm + ε1/2

γ
sin φ

dQm

dφ

]
, (5.21a)

vm = 1

γ 2 + ε sin2 φ

[
imε1/2

γ
tan φ Qm − dQm

dφ

]
. (5.21b)

Figure 8 shows the relative difference between the radiative relaxation approximation in
(5.19) and (5.21a,b), and the numeric solutions as a function of γ and ε1/2. Indeed, the
radiative relaxation approximation converges to the solutions of the Matsuno–Gill model
on the sphere for heavy damping (albeit less so with fast rotation). The radiative relaxation
approximation for the MRG wave-5 response with light-to-heavy damping and moderate
rotation is shown in figure 9 (black contours), compared to the numeric solutions of the
Matsuno–Gill model (shadings). As expected, the approximate solution and the exact
solution match for heavy damping and diverge for light damping. For moderate damping,
the spatial distributions of the solutions agree, but their magnitudes differ.
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Figure 9. The radiative relaxation approximation in (5.19)–(5.21) (black contours) superimposed on the steady
response to an MRG wave-5 forcing (shadings). The comparison is shown for a subset of figure 3 including (a)
light damping and moderate rotation (LM), (b) moderate damping and moderate rotation (MM), and (c) heavy
damping and moderate rotation (HM).

5.3. The geostrophic approximation
In § 4, we observed that the solutions of the Matsuno–Gill model with light damping and
fast-to-moderate rotation rates are in geostrophic balance. We use this result to obtain
additional simple solutions of the Matsuno–Gill model on the sphere. To this end, we
set γ = 0 in (2.5a–c), which yields a balance between the Coriolis and pressure gradient
terms in the momentum equations, and between the divergence and applied forcing in the
continuity equation. The resulting equations correspond to the zero-order approximation
of the Matsuno–Gill model in powers of γ , and are given by

−ε1/2vm sin φ + im
cos φ

Φm = 0, (5.22a)

ε1/2um sin φ + dΦm

dφ
= 0, (5.22b)

1
cos φ

[
imum + d

dφ
(vm cos φ)

]
= Qm. (5.22c)

Using (5.22b) and (5.22a) to substitute um and vm in (5.22c), the derivative terms
containing dΦm/dφ cancel out, leaving the following algebraic relation between the
geopotential and the prescribed forcing:

Φm = ε1/2 i
m

sin2 φ Qm. (5.23)

Substituting (5.23) back into (5.22b) and (5.22a) yields the corresponding horizontal
velocity components

um = −2
i
m

cos φ Qm − i
m

sin φ
dQm

dφ
(5.24)

and
vm = − tan φ Qm. (5.25)
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Figure 10. The relative difference defined in (5.1) between the geostrophic approximation in (5.23)–(5.25),
and the numeric solutions obtained as described in § 4. The differences are shown in logarithmic scale. Smaller
values (darker shades) indicate better agreement. For example, the −1 contour, corresponding to value 0.1, is
emphasized by the white dashed lines. For the sake of comparison with the other approximations obtained in
§ 5, the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane defined in
table 1 are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.
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Figure 11. The geostrophic approximation in (5.23)–(5.25) (black contours) superimposed on the steady
response to an MRG wave-5 forcing (shadings). The comparison is shown for a subset of figure 3 including
(a) light damping and fast rotation (LF), (b) light damping and moderate rotation (LM), and (c) light damping
and slow rotation (LS). For the sake of clarity, the meridional domain of the equatorial regime in (a) zooms in
on [−20◦, 20◦].

Figure 10 shows the relative difference between the geostrophic approximation in
(5.23)–(5.25), and the numeric solutions as a function of γ and ε1/2. Indeed, the
geostrophic approximation converges to the solutions of the Matsuno–Gill model on the
sphere for light damping and moderate-to-fast rotation (LM and LF). The geostrophic
approximation of the MRG wave-5 response in these two cases, as well as for light damping
and slow rotation (LS), is shown in figure 11 (black contours), compared to the numeric
solutions of the Matsuno–Gill model (shadings).

The geostrophic approximation in (5.23)–(5.25) corresponds to the zero-order
approximation of the Matsuno–Gill model on the sphere in powers of γ (see § 4.2 in
the supplementary material). Adding the first-order terms improves the accuracy within
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the identified region in figure 10, but barely expands this region. The reason is that the
solutions outside the LM and LF regions are highly a-geostrophic (as we observed in § 4).

5.4. The non-rotating approximation
The non-rotating approximation reduces the order of the RSWEs from third order to
second order in time (i.e. no Rossby waves) by setting the non-dimensional rate of rotation
equal to zero, yielding the canonical wave equation. Similarly, setting ε1/2 = 0 in the
Matsuno–Gill model (2.5a–c) yields

im
cos φ

Φm = −γ um, (5.26a)

dΦm

dφ
= −γ vm, (5.26b)

1
cos φ

[
imum + d

dφ
(vm cos φ)

]
= −γΦm + Qm. (5.26c)

Using (5.26b) and (5.26a) to substitute um and vm in (5.26c) yields the following boundary
value problem for the geopotential in terms of the specified forcing:

ΔmΦm = γ 2Φm − γ Qm, (5.27)

where Δm is the m-restricted Laplacian defined as

Δm = 1
cos φ

[
d

dφ

(
cos φ

d
dφ

)
− m2

cos φ

]
. (5.28)

Equation (5.27) can be solved by expanding both Φm and Qm in series of associated
Legendre polynomials (ALPs), which are the eigenfunctions of the m-restricted Laplacian
in (5.28). Specifically, let Pm

l denote the ALP of degree l and order m; then

ΔmPm
l (sin φ) = −l(l + 1)Pm

l (sin φ). (5.29)

Fortunately, for ε1/2 → 0, the geopotential height field associated with the Kelvin and
MRG waves can be approximated accurately by a single ALP. Thus we proceed to find
non-rotating solutions of the Matsuno–Gill model in response to the following prescribed
forcing:

Qm(φ) = Qm
f Pm

l (sin φ), (5.30)

where Qm
f is a constant amplitude, and l = m or l = m + 1 for Kelvin or MRG waves,

respectively. Substituting (5.30) into (5.27) and using (5.29), the solution for Φm in the
non-rotating approximation is

Φm = γ

γ 2 + l(l + 1)
Qm

f Pm
l (sin φ). (5.31)

Using (5.26a) and (5.26b), the corresponding solutions for um and vm in the non-rotating
approximation are

um = − im
γ 2 + l(l + 1)

Qm
f

cos φ
Pm

l (sin φ) (5.32)

and

vm = − 1
γ 2 + l(l + 1)

Qm
f

dPm
l (sin φ)

dφ
. (5.33)

964 A32-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.369


Matsuno–Gill model on the sphere

–3.5 –3.0 –2.5 –2.0 –1.5 –1.0 0–0.5

γ γ γ γ

10–2

10–2

100

100

ε1/2

102

10–2

100

102

10–2

100

102

10–2

100

102

102 10–2 100 102 10–2 100 102 10–2 100 102

(a) (b) (c) (d)

LF MF HF

LM MM HM

LS MS HS

LF MF HF

LM MM HM

LS MS HS

LF MF HF

LM MM HM

LS MS HS

LF MF HF

LM MM HM

LS MS HS

Figure 12. The relative difference defined in (5.1) between the non-rotating approximation in (5.31)–(5.33),
and the numeric solutions obtained as described in § 4. The differences are shown in logarithmic scale. Smaller
values (darker shades) indicate better agreement. For example, the −1 contour, corresponding to value 0.1, is
emphasized by the white dashed lines. For the sake of comparison with the other approximations obtained in
§ 5, the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane defined in
table 1 are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.

Figure 12 shows the relative difference between the non-rotating approximation in
(5.31)–(5.33), and the numeric solutions as a function of γ and ε1/2. As expected, the
non-rotating approximation converges to the solutions of the Matsuno–Gill model on the
sphere for moderate-to-heavy damping and slow rotation (MS and HS). In addition, the
non-rotating approximation can also approximate the solution for heavy damping and
moderate rotation (HM). The non-rotating approximation for the MRG wave-5 response
with slow rotation (and all damping rates) is shown in figure 13 (black contours), compared
to the numeric solutions of the Matsuno–Gill model (shadings). Importantly, the black
contours in the leftmost column correspond to forcing in (5.30), confirming the assumption
that the geopotential height of the MRG wave can be approximated by a single ALP
(the same is also true for the Kelvin wave). Finally, the vorticity in this approximation
is identically zero, while the vorticity at moderate damping and slow rotation (MS) is far
from small.

The non-rotating approximation in (5.31)–(5.33) corresponds to the zero-order
approximation of the Matsuno–Gill model on the sphere in powers of ε1/2 (see § 4.3 in
the supplementary material). Adding the first-order terms improves the accuracy within
the identified region in figure 12, but barely expands this region. As we will see in § 7, the
solutions outside the HM and HS regions are qualitatively different from non-rotating in
terms of the excited waves.

5.5. The weak temperature gradient approximation
The accuracy of the geostrophic and non-rotating approximations is reduced at light
damping and slow rotation. The reason is that, as established by Neelin (1988) and
Bretherton & Sobel (2003), the Matsuno–Gill model becomes underdetermined when
γ = ε1/2 = 0. Specifically, the momentum equations mandate that Φm ≡ 0 in that case,
but the continuity equation mandates only that δm = Qm. Any combination of um and vm

that satisfies the last condition will therefore be a solution. As an alternative, Bretherton
& Sobel (2003) studied the weak temperature gradient (WTG) approximation, where
the dissipation term in the continuity equation is negligible compared to the divergence
and forcing terms. Bretherton & Sobel (2003) studied the WTG approximation for the
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Figure 13. The non-rotating approximation in (5.31)–(5.33) (black contours) superimposed on the steady
response to an MRG wave-5 forcing (shadings). The comparison is shown for a subset of figure 3 including
(a) light damping and slow rotation (LS), (b) moderate damping and slow rotation (MS), and (c) heavy damping
and slow rotation (HS).

Matsuno–Gill model on the equatorial β-plane. Our observations in § 4 show that this
idea is also relevant here; as we have seen, with light damping, the forcing in the continuity
equation is balanced by the divergence term, while the contribution of the dissipation term
is negligible. Thus we now examine the WTG approximation for the Matsuno–Gill model
on the sphere. This approximation yields no analytic simplification; we can only examine
it numerically.

Figure 14 shows the relative difference between the WTG approximation and full model
solutions as a function of γ and ε1/2. Indeed, the WTG approximation matches the full
model with light damping and slow rotation (LS), and is also ‘visually accurate’ for light
damping and fast rotation (LF), light damping and moderate rotation (LM), moderate
damping and slow rotation (MS), and, most notably, moderate damping and moderate
rotation (MM).

The WTG approximation for the MRG wave-5 response in the HF, MM and LS
cases is shown in figure 15 (black contours), compared to the numeric solutions of the
Matsuno–Gill model (shadings). As observed in figures 2 and 3, the solutions for the LS
and MM cases are similar, but not identical (in terms of the magnitudes of the fields).
Finally, Bretherton & Sobel (2003) found that the Matsuno–Gill model under the WTG
approximation has a far-field response, in the sense that the steady-state geopotential in
response to an equatorially trapped forcing is not itself equatorially trapped. The situation
for the Matsuno–Gill model on the sphere is somewhat different. With light damping and
slow rotation, where the WTG approximation is most accurate, the extension of the forcing
is no longer equatorially trapped. The WTG also provides an accurate approximation for
light damping and fast rotation, where both the forcing and the response are equatorially
trapped.

5.6. The long-wave approximation
For the sake of comparison with Gill (1980), we now examine the long-wave
approximation where the dissipation term in the v-momentum equation is negligible,
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Figure 14. The relative difference defined in (5.1) between the WTG approximation and Matsuno–Gill model
solutions obtained as described in § 4. The differences are shown in logarithmic scale. Smaller values (darker
shades) indicate better agreement. For example, the −1 contour, corresponding to value 0.1, is emphasized in
the figure by the white dashed lines. For the sake of comparison with the other approximations obtained in § 5,
the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane defined in table 1
are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.
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Figure 15. The WTG approximation (black contours) superimposed on the steady response to an MRG wave-5
forcing (shadings). The comparison is shown for a subset of figure 3 including (a) heavy damping and fast
rotation (HF), (b) moderate damping and moderate rotation (MM), and (c) light damping and slow rotation
(LS). For the sake of clarity, the meridional domain of the equatorial regime in (a) zooms in on [−20◦, 20◦].

compared to the Coriolis and pressure gradient terms. This approximation is not motivated
by any of our observations in § 4, suggesting that additional assumptions are necessary for
this approximation to hold on the sphere, in addition to the ones imposed by Gill (1980)
on the equatorial β-plane. Yet, as we will see in § 6, it does improve on the geostrophic
approximation for light damping and fast rotation, consistent with the fact that it is a less
constrained version of the geostrophic approximation, where only the zonal wind is in
geostrophic balance. Like the WTG approximation, this approximation yields no analytic
simplification; we can only examine it numerically.

Figure 16 shows the relative difference between the long-wave approximation and
Matsuno–Gill model solutions as a function of γ and ε1/2. The long-wave approximation
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Figure 16. The relative difference defined in (5.1) between the long-wave approximation and Matsuno–Gill
model solutions obtained as described in § 4. The differences are shown in logarithmic scale. Smaller values
(darker shades) indicate better agreement. For example, the −1 contour, corresponding to value 0.1, is
emphasized in the figure by the white dashed lines. For the sake of comparison with the other approximations
obtained in § 5, the error scales in all subsections are identical. The particular samples of the (γ, ε1/2) plane
defined in table 1 are also marked on the figure. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.
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Figure 17. The long-wave approximation (black contours) superimposed on the steady response to an MRG
wave-5 forcing (shadings). The comparison is shown for a subset of figure 3 including (a) light damping and
fast rotation (LF), (b) moderate damping and fast rotation (MF), and (c) light damping and moderate rotation
(LM). For the sake of clarity, the meridional domain of the equatorial regime in (a,b) zooms in on [−20◦, 20◦].

converges to the full model at light damping and fast rotation. It is also ‘visually accurate’
for moderate damping and fast rotation, and to a lesser degree (only for the wave-5
response) for light damping and moderate rotation. The long-wave approximation for
the MRG wave-5 response in these three cases is shown in figure 17 (black contours),
compared to the numeric solutions of the Matsuno–Gill model (shadings). Indeed, it is
less accurate for light damping and moderate rotation, in the sense that Φ and u (and δ)
are approximated accurately, but v and ξ are not.
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6. Applicability to Earth, Venus and Titan

We now consider our results in the context of the atmospheres and oceans of Earth
and other planets, in particular with regard to the simple solutions obtained above. For
example, steady motion on Earth is generally believed to be near geostrophic balance,
but, as we have seen in § 5.3, the steady solutions of the forced-dissipated RSWEs are in
geostrophic balance only in a small subset of the (γ, ε1/2) plane. In general, the β-plane,
radiative relaxation, geostrophic and WTG approximations are all believed to be relevant
to Earth, but capture the solutions of the forced-dissipated RSWEs only in subsets of the
(γ, ε1/2) plane.

Figure 18 shows the most accurate approximation, compared to the numeric solutions,
as a function of γ and ε1/2. At each point in the (γ, ε1/2) plane, we check for which of
the six approximations the relative difference defined in (5.1) is smallest, and whether its
value is smaller than or equal to 0.1. The latter condition is added to ensure that the best
approximation is a good one. There are important caveats to this figure. First, the value
0.1 is subjective; it is possible to extend the regions of validity of each approximation
by considering e.g. value 0.2, but only to a small extent since the solutions soon become
qualitatively different. Second, as is evident from figures 6, 8, 10, 12, 14 and 16, there
are overlaps between different approximations. For example, the radiative relaxation
and non-rotating approximations both capture the solutions at heavy damping and slow
rotation. Third, the most accurate approximation may not be the most appropriate one.
For example, the WTG and long-wave approximations are not analytic. Depending on
the desired accuracy, it may be preferable to use the simpler (analytic), but less accurate,
geostrophic approximation in the regions of light damping and moderate-to-fast rotation.
Note that the geostrophic approximation is included in the figure, but its accuracy is less
than that of either the WTG or the long-wave approximation at every point in the (γ, ε1/2)
plane. Considering these caveats, the purpose of this figure is to provide a qualitative
overview. Perhaps the key observation is that most of the points in the (γ, ε1/2) plane can
be treated with some simplified version of the Matsuno–Gill model.

The dashed rectangles in figures 18(a–c) indicate the estimated regions of relevance
to Earth’s troposphere, stratosphere and ocean, respectively. Using the mean radius,
gravitational acceleration, and angular frequency of the Earth, the remaining unknown
in the Lamb number ε = (2Ωa)2/gH is the mean layer thickness H of the shallow-water
model. The rectangles shown in figure 18 correspond to values of H between the barotropic
mode and first baroclinic mode in each case. The values of H in the atmosphere are based
on the results of De-Leon, Paldor & Garfinkel (2020), who estimated the ‘equivalent
depth’ for different background temperature profiles and boundary conditions. For the
troposphere, we take H to be between 10 km and 100 m. For the stratosphere, we take H to
be between 9 km and 3.5 km. For the ocean, we take H to be between 4 km and 0.5 m. The
first number is based on the mean ocean depth, and the second number on the estimations
of Chelton et al. (1998). For the damping coefficient, we use values between 0.1 day−1 and
1 day−1. Since the time scale introduced in § 2 involves H, the non-dimensional damping
coefficients γ (the rectangles’ widths) in figures 18(a–c) are different, even though the
dimensional values are the same in all cases. Due to the logarithmic scale on both axes,
slightly different estimations of the parameter lead to only small changes in the rectangle.
Hence we argue that they are fairly representative of the troposphere, stratosphere and
ocean.

Approximately half of the troposphere-relevant region is well approximated by the
β-plane approximation, where it is also close to the region of the plane corresponding
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Figure 18. A comparison between the β-plane, radiative relaxation, geostrophic, non-rotating, WTG and
long-wave approximations. At each point of the (γ, ε1/2) plane, the comparison is made by checking for which
of the four approximations the relative difference defined in (5.1) is smallest, and whether its value is smaller
than or equal to 0.1. The particular samples of the (γ, ε1/2) plane defined in table 1 are also marked on the
figure. Dashed rectangles in (a–c) indicate the regions relevant to Earth’s troposphere, stratosphere and ocean,
respectively, while the dashed and solid rectangles in (d) indicate the regions relevant to the tropospheres of
Venus and Titan, respectively. (a) Kelvin 5, (b) MRG 5, (c) Kelvin 1, (d) MRG 1.

to the original results obtained by Matsuno and Gill (the MF region). On the other
hand, approximately half of the troposphere relevant region is also qualitatively different
from the β-plane approximation, and is more accurately approximated by the WTG
approximation. The stratosphere-relevant region is also qualitatively different from the
β-plane approximation, and is more accurately approximated by the WTG approximation.
Finally, the ocean-relevant region is, for all practical matters, covered by the original
results of Matsuno and Gill, with or without the long-wave approximation.

In addition to our own planet Earth, the Matsuno–Gill model may also be of interest
for the atmospheres of Venus and Titan, which are characterized by global-scale Hadley
circulations and strong equatorial waves that flux westerly momentum towards the equator
(Svedhem et al. 2007; Mitchell et al. 2011; Yamamoto 2019; Peralta et al. 2020). The
dashed and solid rectangles in figure 18(d) indicate the estimated region of relevance to
the tropospheres of Venus and Titan, respectively. For Venus, the range of ε used here
is taken from Yamamoto (2019) to be ε1/2 = 11–160, which in turn is based on different
estimations of the speed of gravity waves in Venus’ troposphere. For Titan, the upper
limit of ε used here is taken from Yamamoto (2019) to be ε1/2 = 5.5, corresponding to
H = 75 m. For the lower limit, we take H = 25 km, corresponding to ε1/2 = 0.016. This
choice is based on the observation that the ‘equivalent depth’ of the barotropic mode tends
to be of the same order of magnitude as the scale height, which is H = 15–50 km for Titan
(Müller-Wodarg et al. 2014). For the damping coefficient, we use values between 0.1 and
1 of the planet’s period of rotation, as we did for Earth: specifically, 4.12 × 10−4–4.12 ×
10−3 day−1 for Venus, and 6.25 × 10−3–6.25 × 10−2 day−1 for Titan.

The Venusian atmosphere is poorly characterized by most of these approximations.
Specifically, it falls within the region poorly described by all approximations for
wavenumber 1 for either the mixed Rossby–gravity mode or the Kelvin mode. For
higher wavenumbers, the WTG approximation is somewhat better. However, the degree
of success is sensitive to the precise value of damping used (which is poorly constrained
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by observations). The relative lack of success for Venus is consistent with observations
showing a substantial meridional velocity for wavenumber 1 Kelvin waves in Venus’
atmosphere (Belton et al. 1976; Covey & Schubert 1982; Del Genio & Rossow 1990;
Smith, Gierasch & Schinder 1992; Yamamoto 2019; Peralta et al. 2020) that cannot be
described by the Matsuno–Gill β-plane model of a fast rotating atmosphere.

Titan’s atmosphere is well represented by the WTG approximation. The geostrophic
approximation also works in the region of relevance to Titan, and while it is less
accurate than the WTG, it is analytic. A non-zero meridional component of an equatorial
Kelvin(-like) wave is seen in a Titan general circulation model as well (Mitchell et al.
2011). This Kelvin wave part of the solution can be described by the ad hoc solution
of Garfinkel et al. (2017), which has a functional form different to the solutions of
Longuet-Higgins (1968) and Matsuno (1966); however, this solution applies only to the
Kelvin wave and not to other wave modes.

7. Wave spectrum

A key feature of the analysis of Gill (1980) is the description of the steady circulation in
terms of the constituent waves. In the absence of analytic solutions of the Matsuno–Gill
model on the sphere for arbitrary values of γ and ε, we proceed to find the constituent
waves numerically by projecting the solutions on the spectrum of the free RSWEs. Let
Xω = [um, vm, Φm]T denote the eigensolution of the free RSWEs corresponding to the
eigenvalue (frequency) ω, obtained by solving (2.7) using the Chebyshev collocation
method. Similarly, let Xγ = [um, vm, Φm]T denote the solution vector of the Matsuno–Gill
model with damping rate γ , obtained by solving (2.5a–c) using the Chebyshev collocation
method. The projection of the latter on the former is

projectionω = (Xω, Xγ )

(Xω, Xω)
, (7.1)

where (X , X̄ ) is the inner product defined in (5.2). Note that the linear operator of the
free RSWEs, L on the left-hand side of (2.7), is skew-Hermitian with respect to the
inner product in (5.2), i.e. (LX , X̄ ) = −(X , L∗X̄ ), which guarantees that eigensolutions
corresponding to different frequencies are orthogonal. Having found the projections of Xγ

on each of the resolved Xω, we calculate the fractional spectral power associated with each
one:

powerω = |projectionω|2∑
ω |projectionω|2 . (7.2)

The resulting projections of the Kelvin wave-5 forcing on the free EIG2, EIG1, EIG0,
Kelvin, Rossby2, Rossby1, MRG, WIG1 and WIG2 wave modes are given in table 2(a).
For the sake of comparison with the Matsuno–Gill model on the equatorial β-plane, we
follow the classification of the free wave modes used by Matsuno. However, as noted by
Garfinkel et al. (2017), from the point of view of the eigenvalue problem associated with
the free RSWEs on the sphere, the Kelvin wave is more accurately classified as the lowest
mode EIG wave.

Starting with the MF case (second row from the top), the response consists solely of
the free Kelvin and Rossby1 waves, with the Kelvin wave contributing 3 % of the total
power, and the Rossby1 wave contributing 97 %. The excitation of these two waves is
consistent with the symmetric forcing case studied by Gill. The particular distribution is
consistent with the fact that the petals of the fleur-de-lis in Matsuno’s solution are more
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(a) Kelvin wave-5 response

EIG2 EIG1 EIG0 Kelvin Rossby2 Rossby1 MRG WIG1 WIG2 Sum

LF — 44 % — — — 9 % — 47 % — 100 %
MF — — — 3 % — 97 % — — — 100 %
HF — 2 % — 50 % — 28 % — 20 % — 100 %
LM — 3 % — 3 % — 79 % — 5 % — 90 %
MM — 15 % — 2 % — 23 % — 43 % — 83 %
HM — — — 50 % — — — 49 % — 99 %
LS — 13 % — 10 % — 36 % — 11 % — 70 %
MS — 3 % — 3 % — 57 % — 29 % — 92 %
HS — — — 49 % — — — 50 % — 99 %

(b) MRG wave-5 response

EIG2 EIG1 EIG0 Kelvin Rossby2 Rossby1 MRG WIG1 WIG2 Sum

LF 30 % — 12 % — 5 % — 21 % — 32 % 100 %
MF — — 2 % — 93 % — 5 % — — 100 %
HF 2 % — 27 % — 27 % — 24 % — 20 % 100 %
LM 2 % — 1 % — 53 % — 32 % — 2 % 90 %
MM 14 % — — — 12 % — 23 % — 31 % 80 %
HM 1 % — 48 % — — — — — 49 % 98 %
LS 10 % — 11 % — 15 % — 24 % — 11 % 71 %
MS 3 % — 1 % — 40 % — 16 % — 29 % 89 %
HS 1 % — 48 % — — — — — 50 % 99 %

Table 2. Projections of the Matsuno–Gill model solutions on the free RSWEs wave modes: (a) in response
to a Kelvin wave-5 forcing; (b) in response to an MRG wave-5 forcing. Reported values correspond to the
percent fraction (accurate to 1 %) of the total power projected on the (columns from left to right) EIG2, EIG1,
EIG0, Kelvin, Rossby2, Rossby1, MRG, WIG1 and WIG2 wave modes. The classification of the modes follows
the classification used in Matsuno (1966). The combined contribution of the eight modes is given in the final
column. The different rows correspond to the nine samples of the (γ, ε1/2) plane given in table 1. To improve
readability, 0 % projections, to the retained accuracy, are replaced by dashes.

pronounced than its stem (figure 9 in Matsuno (1966), figure 1 of the present work). As
the forcing wavenumber decreases, the Kelvin wave contribution increases, becoming the
main contribution only when the forcing wavenumber is smaller than 1, which is possible
only on the plane (see § 4 in the supplementary material). This is consistent with the more
pronounced Kelvin wave in Gill’s version of the fleur-de-lis (figure 1(b) in Gill 1980),
where the localized forcing projects on smaller wavenumbers.

Continuing with the equatorial solutions regime, the LF and HF spectra are appreciably
different from the MF spectrum in terms of the excited waves and their ratios, due to
the different damping rates. The Kelvin wave forcing in the β-plane approximation is
proportional to the lowest Hermite function Ψ0 = exp(−y2/2). Besides the Kelvin wave,
Ψ0 appears only in the geopotential height of the EIG1, Rossby1 and WIG1 waves. Hence
only these four waves can be excited, and their ratios depend on the damping rate. Indeed,
the contributions of these four waves in the equatorial solution regime sum to 100 %.
However, in contrast to the MF response, the LF response has no Kelvin wave contribution
at all, and its main contributions come from the EIG1 (44 %) and WIG1 (47 %) waves,
while the main contribution to the HF response is the Kelvin wave (50 %), with substantial
contributions from the Rossby1 (28 %) and WIG1 (20 %) waves.

The reason why the ‘Kelvin’ and ‘MRG’ wave forcings excite other waves besides the
Kelvin and MRG waves themselves is that the forcing consists of only the geopotential part
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of those waves. A true Kelvin or MRG wave (or any other wave mode) forcing consists of
the unique X = [um, vm, Φm]T triplet associated with that wave, and the response of the
linear Matsuno–Gill model to such a forcing would consist solely of that wave as well.

Moving on to the global solution regime, the HM and HS responses consist solely of the
free Kelvin and WIG1 waves, with each contributing 50 % (within the retained accuracy)
of the total power. As observed in §§ 4 and 5.2, the forcing in the HM and HS responses is
nearly balanced by the dissipation term (i.e. −γΦ), with the contribution of the divergence
in the continuity equation being negligible. In addition, as observed in § 5.4, these two
cases are approximated accurately by the non-rotating approximation, which consists of
identical pairs of oppositely propagating gravity waves (no Rossby or MRG waves). Thus
the time-independent forcing projects equally on the first eastward and westward gravity
waves, manifested as the Kelvin and WIG1 waves in this limit. In contrast to the HM
and HS responses, the main contributions to the MS response are the Rossby1 (57 %)
and WIG1 (29 %) waves, with the Kelvin and EIG1 waves contributing only little (3 %
each). However, the dissipation term in the continuity equation in that case is an order of
magnitude smaller than the divergence term, and the forcing projects on the Rossby1 wave
as well.

The main contribution to the LM response is the Rossby1 wave (79 %), with the Kelvin
(3 %), EIG1 (3 %) and WIG1 (5 %) waves contributing only little. As we have seen in
§ 5.3, this case is approximated accurately by the geostrophic approximation, explaining
the preferential Rossby wave excitation. Typically, the IG and Kelvin waves propagate
away during geostrophic adjustment (the transient part of the solution), leaving only the
Rossby waves in the long-term solution.

Our main observation regarding the MM and LS responses is the fact that the total power
contained in the first nine wave modes reported in table 2 account for only 83 % and 70 %,
respectively. Examining the subsequent wave modes, we find that the EIG3 and WIG3
waves account for an additional 7 % of the total power in the MM response (bringing the
contribution of the first 11 waves modes up to 90 %), and 14 % of the total power in LS
responses (bringing the contribution of the first 11 waves modes up to 84 %). In other
words, the expansion of the response in terms of the free wave modes converges more
slowly in these two cases compared to all other cases. This observation is likely a different
manifestation of the difficulty associated with finding simple (analytic) approximations
(excluding WTG) in these two cases.

Finally, the resulting projections of the MRG wave-5 forcing on the free EIG2, EIG1,
EIG0, Kelvin, Rossby2, Rossby1, MRG, WIG1 and WIG2 wave modes are given in
table 2(b). In general, the above discussion with appropriate substitutions describes this
case as well. In particular, the MRG wave forcing in the β-plane approximation is
proportional to the second-lowest Hermite function Ψ1 = 2y exp(−y2/2). Besides the
MRG wave, Ψ1 appears only in the geopotential height of the EIG2, EIG0, Rossby2 and
WIG2 waves. Hence only these five waves can be exited, and indeed their contributions in
the equatorial solutions regime sum to 100 %. The main contribution to the MF response
is the Rossby2 wave (93 %), with the EIG0 (2 %) and MRG (5 %) waves contributing only
little.

The main difference between the Kelvin and MRG wave responses is in the meridional
symmetry of the spectrum. The free RSWEs have a definite meridional symmetry, such
that consecutive wave modes have opposite symmetries (e.g. in terms of Φm). If the
forcing has a definite symmetry, then the solutions of the Matsuno–Gill model would
have a definite symmetry as well. Considering that the forcing is applied via the continuity
equation, it can excite only waves having the same symmetry in terms of Φm(φ). In the
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nonlinear case, however, this is not true: a purely antisymmetric forcing preferentially
excites symmetric modes due to triad interactions, as discussed in detail in Garfinkel
et al. (2021) and Shamir et al. (2021a,b). Garfinkel et al. (2021) also give theoretical
justifications for the observed red background. This, in turn, might explain the prevalence
of the solution identified by Matsuno and Gill, since the Kelvin and Rossby1 waves are
(some of) the lowest modes.

Aside from the exploration of the (γ, ε1/2) plane, the wave spectrum is the key
distinction between the Matsuno–Gill model on the β-plane and its counterpart on the
sphere. The effect of the Lamb number is to alter the eigenmodes of the free RSWEs, and
therefore the waves that can be excited by a given forcing.

8. The response to a local forcing

As discussed in § 3, the forcing used by Matsuno (1966) and Gill (1980) corresponds to the
geopotential height of the Kelvin and MRG waves. Hence a natural extension of the forcing
to the sphere is the geopotential height corresponding to these two waves. A limitation of
this choice, however, is the fact that the resulting forcing in the equatorial solutions regime
is trapped equatorially, while the resulting forcing in the global solutions regime is global.
One is often interested in the global response to a local forcing, which is the focus of this
section. In addition to making the forcing meridionally localized, we also demonstrate the
applicability of our results to a zonally localized forcing akin to that used by Gill (1980).
Specifically, we study the response to the forcing

Q(λ, φ) =
{

cos(3λ) exp[−(24φ/π)2/2], for |λ| ≤ π/6,

0, for |λ| > π/6.
(8.1)

As discussed in § 2, due to the linearity of the Matsuno–Gill model and the λ-independence
of the coefficients, we may study each Fourier mode separately. The Fourier series of the
above forcing can be obtained analytically as

Q(λ, φ) =
∞∑

m=−∞
Qm

0 exp(imλ) exp[−(24φ/π)2/2], (8.2)

where

Qm
0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
12

, for m = ±3,

1
2π

⎡
⎢⎣sin

[
(3 + m)

π

6

]
3 + m

+
sin

[
(3 − m)

π

6

]
3 − m

⎤
⎥⎦ , otherwise.

(8.3)

Thus we solve (2.5a–c) for each Fourier mode numerically as described in § 4, substituting
exp[−(24φ/π)2/2] for Qm, and then sum the solutions according to (8.2) and (8.3).

The results are presented in figure 19 for truncation order 50, i.e. m = −50, . . . , 50.
The convergence of the Fourier series in (8.2) to the forcing (8.1) is shown in figure 13
of the supplementary material. With the chosen truncation order 50, the two are nearly
indistinguishable, whereas for truncation order 25, there are still noticeable differences.
As noted by Bretherton & Sobel (2003), if the damping term in the continuity equation is
zero, then the Matsuno–Gill model does not admit a non-zero zonal mean. Thus to avoid
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complications when the damping term in the continuity equation is small, we remove the
m = 0 Fourier mode from the results in this figure. As in figure 2, the leftmost column
corresponds to the applied forcing, which is identical in all cases in this figure. Unlike
figure 2 (and all other previous figures), the longitudinal domain corresponds to [−π, π]
(not one zonal period). The meridional domain still extends from the south pole to the
north pole.

In the response to moderate damping and fast rotation (figure 19b), we identify Gill’s
version of the fleur-de-lis in the geopotential height field (red square). In the response to
light damping and fast rotation (first row), we identify the Sverdrup balance approximation
shown in Bretherton & Sobel (2003) for the Matsuno–Gill model on the equatorial β-plane
in the limit of no damping (also discussed in Neelin 1988).

The key observation from figure 19 relates to the far-field response. In the response to
light damping and moderate rotation (figure 19d), we identify the WTG approximation
obtained in Bretherton & Sobel (2003) for the Matsuno–Gill model on the equatorial
β-plane. While the solutions in this case resemble those of Bretherton & Sobel (2003),
they correspond to different regimes in terms of the Rossby deformation radius. In
Bretherton & Sobel (2003), the e-folding of the forcing is

√
2Req, where Req is the

equatorial Rossby deformation radius, and the resulting geopotential under the WTG
approximation decays over several Req. The equatorial Rossby radius of deformation in
the scaling of the present work is Req = (gHa2/4Ω2)1/4 = aε−1/4. For moderate rotation,
where ε1/2 = 1, Req = a = 6371 km, or approximately 57◦ latitude. Thus, in contrast to
the WTG on the equatorial β-plane, the e-folding of the forcing in (8.1) corresponds to
approximately 0.13Req, and the geopotential decays within one Req. Considering the wave
spectra in table 2, we see that the cases exhibiting far-field response are also the ones
whose response is dominated by the Rossby waves (except for the moderate damping and
moderate rotation case).

The results of this section demonstrate the generality and applicability of the results
of the previous sections to the case of localized forcing. This is particularly important
for applications such as quasi-stationary Rossby waves forced by the Madden–Julian
oscillation (MJO) or El Niño, where the forcing is indeed localized.

9. Summary and discussion

In its essence, the Matsuno–Gill model is a driven harmonic oscillator in the atmosphere
and oceans. An external force (a heat source or topography) provides potential energy,
some of which is transferred to kinetic energy, some dissipated by a linear drag, and the
long-term response consists solely of those eigenmodes (equatorial waves) that are closest
to being in resonance with the forcing. It is this essence that makes the Matsuno–Gill
model instrumental in the study of the atmosphere and oceans. Yet in its original
formulation, the model employs the β-plane approximation, which, depending on the
celestial body in question and the external forcing, may limit its applicability to the
equatorial region. In the present work, we have extended the Matsuno–Gill model to the
sphere.

The key difference between the model on the β-plane and its counterpart on the sphere
lies in their parameter spaces. When applied to the equator, the β-plane approximation
greatly simplifies the analysis by coupling the planetary rate of rotation and mean radius,
thereby reducing the parameter space. In fact, on the equatorial β-plane, the Matsuno–Gill
model can be reduced to a one-dimensional parameter space, consisting solely of the
non-dimensional rate of damping (γ ), whereas on the sphere, it can be reduced only to
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8.93 × 10–1 3.53 × 10–1 5.64 × 10–1 7.05 × 10–2 8.93 × 10–1 4.50 × 100

8.93 × 10–1 2.73 × 10–1 3.71 × 10–1 4.59 × 10–2 7.03 × 10–1 3.61 × 100

8.93 × 10–1 8.87 × 10–3 3.11 × 10–4 4.05 × 10–4 6.26 × 10–3 6.22 × 10–4

8.93 × 10–1 6.14 × 10–3 5.62 × 10–1 5.46 × 10–2 8.93 × 10–1 4.20 × 100

8.93 × 10–1 4.87 × 10–2 8.54 × 10–2 6.85 × 10–2 8.45 × 10–1 1.24 × 10–1

8.93 × 10–1 8.87 × 10–3 3.11 × 10–4 4.11 × 10–4 6.21 × 10–3 6.25 × 10–6

8.93 × 10–1 6.03 × 10–4 1.01 × 10–1 7.33 × 10–2 8.93 × 10–1 1.34 × 10–1

8.93 × 10–1 4.64 × 10–2 7.56 × 10–2 6.93 × 10–2 8.47 × 10–1 1.25 × 10–3

8.93 × 10–1 8.87 × 10–3 3.11 × 10–4 4.11 × 10–4 6.21 × 10–3 6.25 × 10–8
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(c)

(d )

( f )

Figure 19. Steady-state response to the local forcing in (8.1). In order from (i) to (vi): the prescribed forcing,
geopotential height, zonal wind, meridional wind, divergence and vorticity. The rows correspond to the different
samples of the (γ, ε1/2) plane summarized in table 1. The damping and rotation rates for each case (row) are
labelled on the left and right edges, respectively. The meridional domain in each panel extends from the south
pole to the north pole. The longitudinal domain corresponds [−π, π]. Contours range from −1 (deep blue) to 1
(strong red) every 0.2, excluding 0. For the sake of presentation, each panel is normalized on its global absolute
maximum, given in white text boxes.
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a two-dimensional parameter space (γ, ε1/2). Depending on the choice of scaling, the
additional parameter may play the role of the non-dimensional rate of rotation (the present
choice), the non-dimensional gravitational acceleration or the non-dimensional speed of
gravity waves. Regardless of its interpretation, its effect is to alter the eigenmodes of
the free system (the ‘natural frequencies’ of the harmonic oscillator). Thus, unlike the
solutions obtained by Matsuno (1966) and Gill (1980), where the long-term response
to a symmetric forcing consists solely of Kelvin and Rossby waves, the response of the
Matsuno–Gill model on the sphere consists of other waves as well, depending on γ and
ε1/2.

By considering the different combinations of damping and rotation, relative to the time
scale in which a gravity wave can propagate appreciably around the sphere, we are able
to effectively span the (γ, ε1/2) plane. We find that the β-plane approximation is accurate
only with fast rotation, ε1/2 
 1, while the particular solution studied by Matsuno (1966)
and Gill (1980) is accurate only in the case of moderate damping (i.e. waves are damped
on the same time scale as they propagate). The remaining regions of the parameter space
can be described by appropriately simplified approximations.

With moderate rotation, ε1/2 ≈ 1, the most appropriate approximation depends on
the damping. With light damping, γ � 1, the weak temperature gradient approximation
(WTG), where the forcing is balanced by the flow divergence, is the most accurate. Less
accurate, but analytic, solutions can be obtained with the geostrophic approximation,
where the Coriolis and pressure gradient forces are also in balance. With heavy damping,
γ 
 1, accurate solutions can be found with a radiative relaxation approximation, where
the forcing is balanced by the thermal dissipation.

With slow rotation, ε1/2 � 1, and light damping, γ � 1, the WTG approximation is,
again, the most accurate. With stronger damping, γ ≈ 1 or γ 
 1, the solutions can
be captured with the non-rotating approximation, where the Coriolis force is neglected.
Finally, cases with moderate rotation and damping, ε1/2 ≈ γ ≈ 1, are the most difficult,
and do not fall into any limit. To some extent, however, they may be captured with the WTG
approximation. Interestingly, the results of the present work suggest that in the context of
the Matsuno–Gill model, the WTG approximation is more accurate on a global scale.

In terms of application to real geophysical fluids, we estimate that the majority of the
Earth’s oceans fall within the region of the (γ, ε1/2) plane corresponding to moderate
damping and fast rotation, where the particular solutions obtained by Matsuno and Gill
are applicable. Earth’s troposphere falls between the regions of light-to-moderate damping
and fast-to-moderate rotation, half of which can be described by the β-plane approximation
(fast rotation), and the other half by the WTG approximation (for sufficiently high forcing
wavenumber). Earth’s stratosphere falls roughly between the regions of light-to-moderate
damping and moderate rotation, which can be described by either the WTG approximation
or the geostrophic approximation, but not the β-plane approximation. Likewise for Titan’s
troposphere, which falls near the region of light damping and moderate rotation. Finally,
Venus’ troposphere falls close to the moderate damping and moderate rotation region,
where no approximation is satisfactory.

One caveat of the Matsuno–Gill model is the linearization. Both the present work and
the original studies by Matsuno (1966) and Gill (1980) employ the linearized rotating
shallow-water equations (RSWEs). However, the assumptions that justify the linearization
involve both the amplitude and spatial distribution of the forcing. For highly oscillatory
forcing, even small-amplitude perturbations can drive localized, non-negligible advection
of momentum and/or mass. Moreover, the linearization is about a resting basic state with
no mean flow. The results derived above will likely be altered significantly by the addition
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of a mean flow, as such westerly flows enable Rossby wave propagation in the mid-latitudes
(Hoskins & Karoly 1981) and act as a waveguide (Hoskins & Ambrizzi 1993). In particular,
we expect a spherical model linearized about a basic state with non-zero zonal flow to
exhibit a canonical poleward arching Rossby wavetrain. This wavetrain will reach latitudes
in which the equatorial β-plane assumption is grossly violated, necessitating the spherical
formulation.

In formulating the Matsuno–Gill model, we have conceptualized the prescribed forcing
as being due to time-independent external forces, e.g. topography or solar radiation. One
can also consider the quasi-steady-state response to internal variability on larger time
scales, e.g. the quasi-stationary Rossby wave response to convective forcing by the MJO
or El Niño. The Matsuno–Gill model turns out to be a useful theoretical framework
for understanding the subsequent responses even for such quasi-stationary heat sources
(Adames & Wallace 2014; Zhang et al. 2020). Specifically, the subtropical highs forced
by the El Niño–Southern Oscillation (ENSO) and the MJO can be accounted for, albeit
in a conceptual sense, by the Matsuno–Gill model. These subtropical highs, and more
generally the entirety of the spherical solutions considered here, particularly those in § 8,
will change if a mean flow is added (Monteiro et al. 2014). Future work should consider
coupling the solutions of the present work with a mean flow to better understand the remote
response to the tropical convective forcing associated with the MJO and El Niño. The
classical papers on how the mid-latitude lows come about (e.g. Hoskins & Karoly 1981)
assume or impose a given subtropical convergence anomaly as a starting point. To date,
there is no single overarching theory that can account for both the near-field (i.e. within the
tropics) and far-field (i.e. mid-latitude) responses to the MJO or El Niño. Solutions of the
Matsuno–Gill problem on the sphere linearized about an appropriate background wind,
however, may be able to account for the entirety of the Rossby wavetrain forced from the
tropics.

Another caveat of the Matsuno–Gill model is the source of the linear damping. The
physical justification for the use of linear damping in the atmosphere has been examined
by several authors throughout the years. By analysing the steady-state vorticity budget,
Holton & Colton (1972) found it necessary to have ostensibly heavy damping in order
to obtain comparable results to the observed 200 hPa vorticity field during June–August
1967. They conjectured that the required heavy damping effectively plays the role of
upward eddy momentum flux associated with subgrid-scale convection. By comparing the
same observational data with general circulation model simulations, Sardeshmukh & Held
(1984) suggested that the required heavy damping can also be explained by the resolved
advection. Lin, Mapes & Han (2008) further examined the contributions of these two
mechanisms to the effective linear damping in the context of the Walker circulation. By
examining the linearized zonal momentum budget in reanalysis data, they found that the
two mechanisms have different contributions in different regions of the circulation. Finally,
Romps (2014) found that convective momentum transport can explain the heavy damping
of the large-scale circulation depending on the vertical wavenumbers. Regardless of the
particular mechanism, these authors agree that heavy linear damping acts as a surrogate
for missing nonlinearities. In the spirit of the present work, one may conclude that when
it comes to the fleur-de-lis, ‘vive la résistance’.

An additional caveat relating to the linear damping in the Matsuno–Gill model, not
considered by the above authors, is the use of identical rates of ‘mechanical’ damping in
the momentum equations and ‘thermal’ damping in the continuity equation. The former
can only remove energy, whereas the latter plays the role of both dissipation and relaxation
and thus can also add energy. As a result, the rate of energy intake in the Matsuno–Gill
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model is identical to the rate of energy loss, which is an unlikely scenario, especially
if the linear damping is to be considered as a surrogate for the missing nonlinearities.
Future work should consider the Matsuno–Gill model in the presence of different
mechanical and thermal damping rates (ideally, the continuity equation should include
separate damping and relaxation terms), and the observational justification for doing so.

In some sense, the approach employed by Matsuno and Gill follows the ‘maximum
simplification’ approach of Lorenz (1960, 1963), where the problem is discretized using
the most drastic truncation that yields sensible dynamics. Matsuno and Gill use only the
lowest wave modes in the forcing, namely the Kelvin and MRG waves. However, since
they use only the geopotential associated with these modes, the forcing projects on other
modes as well.

These caveats said, we have shown that extending the Matsuno–Gill model from the
β-plane to the sphere opens up a much richer space of solutions and applications. Not
only does it allow us to capture solutions that extend sufficiently poleward for spherical
geometry to play a role, but the addition of a second parameter to capture the relative
effects of rotation and damping allows one to explore additional regimes outside the scope
of the original model. As we have shown, the original model is appropriate only when
the rotation is fast relative to the time scale in which waves can appreciably propagate
about the sphere. This is the most appropriate regime for Earth’s oceans, and to a lesser
extent the tropical troposphere – Matsuno and Gill knew what they were doing – but other
regimes, both on Earth (e.g. our stratosphere) and beyond (e.g. Venus and Titan) become
accessible with a formulation on the sphere.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.369.
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