ON COUNTABILITY OF POINT-FINITE FAMILIES OF SETS

HEIKKI J. K. JUNNILA

1. Introduction. It is well known that in a separable topological space every point-finite family of open subsets is countable. In the following we are going to show that both in σ -finite measure-spaces and in topological spaces satisfying the countable chain condition, point-finite families consisting of "large" subsets are countable.

Notation and terminology. Let A be a set. The family consisting of all (finite) subsets of A is denoted by $\mathcal{P}(A)(\mathcal{F}(A))$. Let $\mathcal{L} \subset \mathcal{P}(A)$ be a family of subsets of A. The sets $\bigcup \{L \mid L \in \mathcal{L}\}$ and $\bigcap \{L \mid L \in \mathcal{L}\}$ are denoted by $\bigcup \mathcal{L}$ and $\bigcap \mathcal{L}$, respectively. We say that the family \mathcal{L} is *point-finite (disjoint)* if for each $a \in A$, the family $\{L \in \mathcal{L} \mid a \in L\}$ has at most finitely many members (at most one member).

Throughout the following, we let X denote some set (the "basic" set).

For the meaning of terminology and notation used without definition in this paper, see [7] and [3].

2. Countability of point-finite families. We start by making the notion of a "large" set explicit; this is best done by considering systems of "small" sets.

Definition 1. A family $\mathcal{N} \subset \mathscr{P}(X)$ is a σ -ideal if the following conditions are satisfied: (i) if $N \in \mathcal{N}$ and $K \subset N$, then $K \in \mathcal{N}$; (ii) if $N_n \in \mathcal{N}$ for each $n \in \mathbf{N}$, then $\bigcup_{n \in \mathbf{N}} N_n \in \mathcal{N}$.

Let (X, \mathscr{A}, μ) be a measure-space. Denote by \mathscr{N}_{μ} the family formed by all those sets which are contained in some $A \in \mathscr{A}$ with $\mu(A) = 0$. Then \mathscr{N}_{μ} is the σ -ideal of μ -negligible sets. In this case the "large" subsets of X are the sets with positive outer measure with respect to μ .

Let (X, τ) be a topological space. Denote by \mathcal{N}_{τ} the family formed by all those sets which are contained in some countable union of nowhere-dense subsets of the space (X, τ) . Then \mathcal{N}_{τ} is the σ -ideal of the subsets of 1. category and the "large" subsets of X are the sets of 2. category (with respect to τ).

To state our basic lemma, we need the concept of separability of a family of sets with respect to a σ -ideal.

Definition 2. Let $\mathcal{N} \subset \mathscr{P}(X)$ be a σ -ideal. We say that a family $\mathscr{L} \subset \mathscr{P}(X)$ is \mathcal{N} -separable if \mathscr{L} has a countable subfamily \mathscr{L}' such that $L \sim \bigcup \mathscr{L}' \in \mathcal{N}$

Received April 5, 1977.

for each $L \in \mathscr{L}$. If every subfamily of \mathscr{L} is \mathscr{N} -separable, then we say that \mathscr{L} is *hereditarily* \mathscr{N} -separable.

Countable families of sets are obviously hereditarily \mathcal{N} -separable with respect to any σ -ideal \mathcal{N} ; the following result shows that the converse is true for point-finite families consisting of "large" sets.

LEMMA. Let $\mathcal{N} \subset \mathcal{P}(X)$ be a σ -ideal. Then every hereditarily \mathcal{N} -separable and point-finite subfamily of $\mathcal{P}(X) \sim \mathcal{N}$ is countable.

Proof. Let \mathscr{L} be a hereditarily \mathscr{N} -separable and point-finite subfamily of $\mathscr{P}(X) \sim \mathscr{N}$. Let $\mathscr{L}_0 = \emptyset$ and define the subfamilies \mathscr{L}_n , $n \in \mathbb{N}$, of \mathscr{L} inductively as follows: if the families \mathscr{L}_k have been defined for k < n, then we take for \mathscr{L}_n some countable subfamily \mathscr{L}' of $\mathscr{L} \sim \bigcup_{k=0}^{n-1} \mathscr{L}_k$ such that $L \sim \bigcup \mathscr{L}' \in \mathscr{N}$ for each $L \in \mathscr{L} \sim \bigcup_{k=0}^{n-1} \mathscr{L}_k$; such countable subfamilies exist, since the family \mathscr{L} is hereditarily \mathscr{N} -separable.

To show that \mathscr{L} is countable, it is enough to show that $\mathscr{L} = \bigcup_{n \in \mathbb{N}} \mathscr{L}_n$. Assume on the contrary that the family $\mathscr{L} \sim \bigcup_{n \in \mathbb{N}} \mathscr{L}_n$ is non-empty and let L be a set of this family. For each $n \in \mathbb{N}$, we have $L \in \mathscr{L} \sim \bigcup_{k=0}^{n-1} \mathscr{L}_k$ and it follows from the definition of the family \mathscr{L}_n that the set $L_n = L \sim \bigcup \mathscr{L}_n$ belongs to the σ -ideal \mathscr{N} . We have $\bigcup_{n \in \mathbb{N}} L_n \in \mathscr{N}$ and it follows that we must have $L \sim \bigcup_{n \in \mathbb{N}} L_n \neq \emptyset$, since no set of \mathscr{L} belongs to \mathscr{N} . Let $x \in L \sim \bigcup_{n \in \mathbb{N}} L_n$. Then we have $x \in \bigcup \mathscr{L}_n$ for each $n \in \mathbb{N}$; this, however, is a contradiction as the family \mathscr{L} is point-finite and as $\mathscr{L}_n, n \in \mathbb{N}$, are mutually disjoint subfamilies of \mathscr{L} . It follows that $\mathscr{L} = \bigcup_{n \in \mathbb{N}} \mathscr{L}_n$; the family \mathscr{L} is thus countable.

By using this lemma, we can show that certain countability conditions are equivalent for subfamilies of σ -algebras. Besides hereditary \mathcal{N} -separability, we are going to consider the following condition.

Definition 3. A family $\mathscr{L} \subset \mathscr{P}(X)$ is chain-countable if every disjoint subfamily of \mathscr{L} is countable.

THEOREM 1. Let $\mathcal{N} \subset \mathcal{P}(X)$ be a σ -ideal and let $\mathcal{A} \subset \mathcal{P}(X)$ be a σ -algebra. Then the following are equivalent:

- (i) \mathscr{A} is hereditarily \mathscr{N} -separable.
- (ii) The family $\mathscr{A} \sim \mathscr{N}$ is chain-countable.
- (iii) Every point-finite subfamily of $\mathscr{A} \sim \mathscr{N}$ is countable.

Proof. (i) \Rightarrow (iii) follows from the lemma and (iii) \Rightarrow (ii) is trivially true. It remains to prove that (ii) \Rightarrow (i).

Assume that the family $\mathscr{A} \sim \mathscr{N}$ is chain-countable. To show that \mathscr{A} is hereditarily \mathscr{N} -separable, assume on the contrary that \mathscr{A} has a subfamily, say \mathscr{B} , which is not \mathscr{N} -separable. We use transfinite induction to construct a subfamily $\{B_{\alpha} \mid \alpha < \Omega\}$ of \mathscr{B} , where Ω is the smallest uncountable ordinal. As \mathscr{B} is not \mathscr{N} -separable, there exists $B_1 \in \mathscr{B}$ with $B_1 \notin \mathscr{N}$. Assume that for $\alpha < \Omega$, the sets $B_{\beta}, \beta < \alpha$, have been defined. The subfamily $\{B_{\beta} \mid \beta < \alpha\}$ is countable

675

and it follows, since \mathscr{B} is not \mathscr{N} -separable, that there exists $B_{\alpha} \in \mathscr{B}$ such that we have $B_{\alpha} \sim \bigcup_{\beta < \alpha} B_{\beta} \notin \mathscr{N}$. By the principle of transfinite induction, the foregoing defines the sets B_{α} , $\alpha < \Omega$. For each $\alpha < \Omega$, the set $C_{\alpha} = B_{\alpha} \sim$ $\bigcup_{\beta < \alpha} B_{\beta}$ belongs to the family $\mathscr{A} \sim \mathscr{N}$; this, however, contradicts our assumption, since $\{C_{\alpha} | \alpha < \Omega\}$ is an uncountable disjoint family. It follows that the family \mathscr{A} is hereditarily \mathscr{N} -separable.

Let (X, \mathscr{A}, μ) be a measure-space. A set $A \in \mathscr{A}$ is said to be of σ -finite μ -measure if we have $A \subset \bigcup_{n \in \mathbb{N}} A_n$ for some sets $A_n \in \mathscr{A}$ with finite μ -measure; if the basic set X is of σ -finite μ -measure, then we say that the measure-space (X, \mathscr{A}, μ) is σ -finite. σ -finiteness of the space (X, \mathscr{A}, μ) is closely related to chain-countability of the family $\mathscr{A} \sim \mathscr{N}_{\mu}$. On the one hand we see, by considering a maximal disjoint subfamily of \mathscr{A} consisting of sets of finite positive measure, that if $\mathscr{A} \sim \mathscr{N}_{\mu}$ is chain-countable, then there exists a set $A \in \mathscr{A}$ of σ -finite μ -measure such that for each $B \in \mathscr{A}$ with $B \cap A = \emptyset$, we have either $\mu(B) = 0$ or $\mu(B) = \infty$. On the other hand, it is well known and easily seen that if the measure-space (X, \mathscr{A}, μ) is σ -finite, then the family $\mathscr{A} \sim \mathscr{N}_{\mu}$ is chain-countable; hence we see that (X, \mathscr{A}, μ) is σ -finite if and only if $\mathscr{A} \sim \mathscr{N}_{\mu}$ is chain-countable and every set of infinite measure contains a set of positive finite measure.

The following is an immediate consequence of Theorem 1.

COROLLARY. In a σ -finite measure space, every point-finite family consisting of measurable sets of positive measure is countable.

For a related result, see [4], Lemma 3.

We now turn to consider countability of point-finite families of subsets of topological spaces. To be able to use the result of Theorem 1 in this setting, we have to consider some suitable σ -algebra of subsets of a topological space. Let (X, τ) be a topological space. For all $A \subset X$ and $B \subset X$, denote by $A\Delta B$ the symmetric difference $(A \sim B) \cup (B \sim A)$ of A and B. A subset A of X is said to have the Baire property if we have $A = O\Delta N$ for some $O \in \tau$ and $N \in \mathcal{N}_{\tau}$. The family consisting of all subsets of X with the Baire property is denoted by \mathcal{B}_{τ} . It is well-known that the family \mathcal{B}_{τ} is a σ -algebra (see e.g. [7]).

THEOREM 2. Let (X, τ) be a topological space such that the family $\tau \sim \mathcal{N}_{\tau}$ is chain-countable. Then every point-finite subfamily of $\mathcal{B}_{\tau} \sim \mathcal{N}_{\tau}$ is countable.

Proof. By Theorem 1, it is enough to show that the family $\mathscr{B}_{\tau} \sim \mathscr{N}_{\tau}$ is chaincountable. Assume on the contrary that there exists a disjoint family $\mathscr{B} \subset \mathscr{B}_{\tau} \sim \mathscr{N}_{\tau}$ such that \mathscr{B} is uncountable. We can represent some subfamily of \mathscr{B} in the form $\{B_{\alpha} \mid \alpha < \Omega\}$ so that $B_{\alpha} \neq B_{\beta}$ whenever $\alpha \neq \beta$. For each $\alpha < \Omega$, there are sets $O_{\alpha} \in \tau$ and $N_{\alpha} \in \mathscr{N}_{\tau}$ so that $B_{\alpha} = O_{\alpha} \Delta N_{\alpha}$. Let $U_{\alpha} = \bigcup_{\beta < \alpha} O_{\beta}$ and $V_{\alpha} = O_{\alpha} \sim \overline{U}_{\alpha}$ for each $\alpha < \Omega$. Then $\{V_{\alpha} \mid \alpha < \Omega\}$ is an uncountable disjoint subfamily of τ . We show that none of the sets $V_{\alpha}, \alpha < \Omega$, belong to the σ -ideal \mathcal{N}_{τ} . Let α be an ordinal, $\alpha < \Omega$. Then we have

(1)
$$B_{\alpha} \subset O_{\alpha} \cup N_{\alpha} = V_{\alpha} \cup (O_{\alpha} \cap \bar{U}_{\alpha}) \cup N_{\alpha} \subset V_{\alpha} \cup (O_{\alpha} \cap U_{\alpha}) \cup (\bar{U}_{\alpha} \sim U_{\alpha}) \cup N_{\alpha}$$

For each $\beta < \alpha$, we have

 $O_{\alpha} \cap O_{\beta} \subset (B_{\alpha} \cup N_{\alpha}) \cap (B_{\beta} \cup N_{\beta}) \subset N_{\alpha} \cup N_{\beta}.$

It follows that $O_{\alpha} \cap U_{\alpha} \subset \bigcup_{\beta \leq \alpha} N_{\beta}$. As there are at most countably many ordinals less than α , it follows from the foregoing that $O_{\alpha} \cap U_{\alpha} \in \mathcal{N}_{\tau}$. On the other hand, as U_{α} is an open set, the set $\overline{U}_{\alpha} \sim U_{\alpha}$ is closed and nowhere-dense so that we have $\overline{U}_{\alpha} \sim U_{\alpha} \in \mathcal{N}_{\tau}$. It now follows by using (1) that we have $B_{\alpha} \subset V_{\alpha} \cap N$ for some $N \in \mathcal{N}_{\tau}$; since $B_{\alpha} \notin \mathcal{N}_{\tau}$, it follows that $V_{\alpha} \notin \mathcal{N}_{\tau}$. We have shown that $V_{\alpha} \in \mathcal{N}_{\tau}$ for each $\alpha < \Omega$; this, however, is a contradiction since the family $\mathcal{T} \sim \mathcal{N}_{\tau}$ was assumed to be chain-countable. It follows that the family $\mathcal{B}_{\tau} \sim \mathcal{N}_{\tau}$ is chain-countable.

We say that a topological space (X, τ) satisfies the countable chain condition (ccc) if the family τ is chain-countable. Theorem 2 generalizes some results in [1] and [10] on countability of point-finite families of open subsets of spaces satisfying ccc.

3. Uncountability of point-finite families. In this section we give an example of a metacompact topological space which satisfies ccc but is not Lindelöf; such a space obviously has uncountable point-finite families of open subsets.

Example. A normal metacompact σ -space (X, τ) which satisfies ccc but is not Lindelöf.

(Metacompact spaces are called weakly paracompact in [3]. A topological space is a σ -space if it has a σ -discrete family of closed subsets such that every open set is the union of some sets of this family.)

Construction. Let A_1 be some uncountable set. Define the sets A_n , $n = 2, 3, \ldots$, inductively by the formula $A_{n+1} = \mathscr{F}(\mathscr{P}(A_n))$, $n \in \mathbb{N}$. Denote the set $\bigcup_{n \in \mathbb{N}} A_n$ by X. For every $x \in X$, denote by n(x) that number $n \in \mathbb{N}$ for which we have $x \in A_n$. For all $x \in X$ and $z \in A_{n(x)+1}$, let

 $z_x = \{a \in z \mid x \in a\}$

and let $P_z(x) = \{u \in A_{n(x)+1} | u \cap z = z_x\}$. It is not difficult to show that for each $n \in \mathbb{N}$ and for all $x, y \in A_n$ and $z, u \in A_{n+1}$, we have

- (1) $P_{\boldsymbol{z}}(\boldsymbol{x}) \cap P_{\boldsymbol{u}}(\boldsymbol{x}) = P_{\boldsymbol{z} \cup \boldsymbol{u}}(\boldsymbol{x});$
- (2) $P_z(x) \cap P_u(y) = \emptyset$ if and only if either $z_x \cap (u \sim u_y) \neq \emptyset$ or

 $u_y \cap (z \sim z_x) \neq \emptyset.$

We define a topology τ on X as follows: a set $O \subset X$ belongs to τ if and only

676

if for each $x \in O$, we have $P_z(x) \subset O$ for some $z \in A_{n(x)+1}$. Condition (1) above shows that the family τ is indeed a topology.

Verification of properties. (i) (X, τ) is normal. Let S and F be closed subsets of X such that $S \cap F = \emptyset$. For every $n \in \mathbb{N}$, let $S_n = S \cap A_n$ and $F_n = F \cap A_n$. We define inductively mutually disjoint subsets R_n and Q_n of A_n for $n \in \mathbb{N}$ as follows. We let $R_1 = S_1$ and $Q_1 = F_1$. If the sets R_{n-1} and Q_{n-1} have been defined, then we let $z = \{R_{n-1}, Q_{n-1}\}$,

$$R_{n'} = \bigcup \{P_{z}(x) \mid x \in R_{n-1}\},\$$

$$Q_n' = \bigcup \{P_z(x) \mid x \in Q_{n-1}\}$$
 and, finally, $R_n = (R_n' \sim F_n) \cup S_n$ and

$$Q_n = (Q_n' \sim S_n) \cup F_n.$$

To show that $R_n \cap Q_n = \emptyset$, let v be a point of R_n . If $v \in S_n$, then $v \notin Q_n$, since $S_n \cap F_n = \emptyset$. Assume that $v \in R'_n \sim F_n$. Then we have $v \in P_z(x)$ for some $x \in R_{n-1}$ and it follows that we have $R_{n-1} \in v$. As $R_{n-1} \cap Q_{n-1} = \emptyset$, we have $R_{n-1} \in \sim w$ for each $w \in Q'_n$; hence we have $v \notin Q'_n$ and thus, further, $v \notin Q_n$. We have shown that $R_n \cap Q_n = \emptyset$. When we let $O = \bigcup_{k \in \mathbb{N}} R_k$ and $U = \bigcup_{k \in \mathbb{N}} Q_k$, O and U are open sets containing S and F, respectively, and as we have $R_k \cap Q_k = \emptyset$ for each $k \in \mathbb{N}$, the sets O and U are disjoint.

(ii) (X, τ) is a metacompact σ -space. To show this, we construct a sequence $(V_n(x))_{n\in\mathbb{N}}$ of neighborhoods for each $x \in X$. Let $x \in X$. The set $A_{n(x)}$ is infinite and hence we can find a sequence $(B_n(x))_{n\in\mathbb{N}}$ of distinct subsets of $A_{n(x)}$ such that $B_1(x) = \{x\}$ and $x \in B_n(x)$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ let $z(x, n) = \{B_1(x), \ldots, B_n(x)\}$ and further, let $R_{n,1}(x) = \{x\} \cup P_{z(x,n)}(x)$. For all $y \in X$ and $n \in \mathbb{N}$, we now define the sets $R_{n,k}(y)$, for k > 1, inductively by the formula

$$R_{n,k}(y) = \bigcup \{R_{n,1}(x) \mid x \in R_{n,k-1}(y)\}$$

and, further, we denote by $V_n(y)$ the open neighborhood $\bigcup_{k \in \mathbb{N}} R_{n,k}(y)$ of y.

To show that (X, τ) is metacompact, we show first that for each $x \in X$, the set $C(x) = \{y \in X | x \in V_1(y)\}$ is finite. Let $n \in \mathbb{N}$ and assume that we have shown that the sets C(x), $x \in A_n$, are finite. Let $x \in A_{n+1}$ and let $C'(x) = \{r \in A_n | x \in R_{1,1}(r)\}$. For each $r \in C'(x)$, we have $\{r\} \in x$ and it follows, since x is a finite set, that the set C'(x) is finite. It is easily seen that we have $V_1(y) \cap C'(x) \neq \emptyset$ for each $y \in C(x) \sim \{x\}$; hence, we have $C(x) \sim$ $\{x\} \subset \bigcup \{C(r) | r \in C'(x)\}$. By the assumption that we have made, each of the sets C(r), $r \in C'(x)$, is finite; from this it follows by the finiteness of the set C'(x) that the set C(x) is finite. We have shown that if the sets C(x), $x \in A_n$, are finite, then so are the sets C(x), $x \in A_{n+1}$. As we have $C(x) = \{x\}$ for each $x \in A_1$, it follows that C(x) is a finite set for every $x \in X$. Now, if \mathscr{U} is an open cover of (X, τ) and for each $x \in X$, U(x) a set of \mathscr{U} containing x, then it follows from the foregoing that the open refinement

 $\{ U(x) \cap V_1(x) \mid x \in X \}$

of \mathscr{U} is point-finite; the space (X, τ) is thus metacompact.

To show that (X, τ) is a σ -space, it is clearly enough to show that X can be represented in the form $X = \bigcup_{n \in \mathbb{N}} F_n$ so that the sets F_n are closed and discrete in (X, τ) . Let $F_1 = A_1$ and for each n > 1, denote by F_n the set consisting of all those elements of $X \sim A_1$ which have less than n elements. As the elements of $X \sim A_1$ are finite sets, we see that $X = \bigcup_{n \in \mathbb{N}} F_n$. That the sets F_n are closed and discrete is seen by observing that for every $x \in X$, we have $V_n(x) \cap$ $F_n \subset \{x\}$ for each $n \in \mathbb{N}$; this is clear for n = 1, since

 $V_1(x) \cap \bigcup_{n \le n(x)} A_n = \{x\}$

and for n > 1, it is a consequence of the fact that we have

$$V_n(x) \sim \{x\} = \bigcup \{P_{z(y,n)}(y) \mid y \in V_n(x)\}$$

(note that for each $y \in X$, we have $P_{z(y,n)}(y) \cap F_n = \emptyset$, since every element of the set $P_{z(y,n)}(y)$ contains the *n*-element set z(y, n)). It follows from the foregoing that (X, τ) is a σ -space (and also a T_1 -space).

(iii) (X, τ) satisfies ccc. Assume on the contrary that there exists an uncountable disjoint family \mathscr{O} of open subsets of X. Choose a point from each set of the family \mathscr{O} and denote the set of these points by D. To every $x \in D$, there corresponds an element z(x) of the set $A_{n(x)+1}$ such that the set $P_{z(x)}(x)$ is contained in that set of the family \mathcal{O} to which x belongs. As the set D is uncountable, we see that there exist $n \in \mathbf{N}$, $k \in \mathbf{N}$ and an uncountable subset H of D such that $H \subset A_n$ and such that for each $x \in H$, the set z(x) has k elements. By using a result in [5] (vii, p. 235), we see that there exists $z \in A_{n+1}$ and an uncountable set $I \subset H$ such that for any two distinct elements x and y of I, we have $z(x)_x \cap z(y)_y = z$; further, by the same result, there exists $u \in A_{n+1}$ and an uncountable set $J \subset I$ such that we have $(z(x) \sim z(x)_x) \cap (z(y) \sim z(x)_y)$ $z(y)_y) = u$ for all $x \in J$ and $y \in J$, $x \neq y$. Now, let x be a point of J. We have $P_{z(y)}(y) \cap P_{z(x)}(x) = \emptyset$ for each $y \in J \sim \{x\}$ and it follows from condition (2) above, since the set z(x) is finite and the set J uncountable, that for some $B \in z(x)$ and for some uncountable $K \subset J$, we have either $B \in z(x)_x$ and $B \in \bigcap_{y \in K} (z(y) \sim z(y)_y)$ or $B \in z(x) \sim z(x)_x$ and $B \in \bigcap_{y \in K} z(y)_y$. The first case is impossible since $B \in z(x)_x$ would imply that $B \notin u$ and

 $B \in \bigcap_{y \in K} (z(y) \sim z(y)_y)$

would imply that $B \in u$. Similarly, we see that the second case is impossible. This contradiction shows that (X, τ) must satisfy ccc.

(iv) (X, τ) is not a Lindelöf-space. This is clear, since the uncountable subset A_1 of X is closed and discrete.

678

Remarks. (i) For some other examples of metacompact, non-Lindelöf spaces satisfying ccc, see [8] and [9].

(ii) In example G of [2], R. H. Bing constructed a normal, non-collectionwise normal space F, starting from an arbitrary uncountable set P. If we take $P = A_n$ for some $n \in \mathbb{N}$, then it is easily seen that the subspace $A_n \cup A_{n+1}$ of the space (X, τ) in the example above is homeomorphic with the subspace of F considered in Example 2 of [6].

(iii) By observing that we can consider $(A_1, \mathscr{P}(A_1))$ as a discrete topological space, we see that the construction of the above example can be modified so as to yield for each T_1 -space (Y, σ) an imbedding of (Y, σ) as a closed G_{δ} -subspace in a space (X, τ) satisfying ccc; this space (X, τ) can moreover be chosen so that the set $X \sim Y$ is a countable union of closed and discrete sets and so that if (Y, σ) is normal (metacompact), then (X, τ) is also normal (metacompact).

Acknowledgement. The author is indebted to W. Pfeffer, who reminded him of the category-measure duality when seeing the result of the Corollary to Theorem 1 and an earlier version of Theorem 2; professor Pfeffer's remark led the author to isolate the common part of these results (Theorem 1) and to reformulate the proofs in terms of σ -ideals.

References

- A. V. Arhangel'skii, The property of paracompactness in the class of perfectly normal, locally bicompact spaces, Soviet Math. Dokl. 12 (1971), 1253–1257.
- 2. R. H. Bing, Metrization of topological spaces, Can. J. Math. 3 (1951), 175-186.
- 3. R. Engelking, Outline of general topology (John Wiley & Sons, New York, 1968).
- 4. G. Gruenhage and W. F. Pfeffer, When inner regularity of Borel measures implies regularity, preprint.
- 5. S. Mazur, On continuous mappings on cartesian products, Fund. Math. 39 (1952), 229-238.
- 6. E. Michael, Point-finite and locally finite coverings, Can. J. Math. 7 (1955), 275-279.
- 7. J. C. Oxtoby, Measure and category (Springer-Verlag, New York Heidelberg Berlin, 1971).
- C. Pixley and P. Roy, Uncompletable Moore spaces, Proceedings of the Auburn Topology Conference, March 1969, Auburn, Alabama, 75–85.
- 9. T. Przymusiński and F. D. Tall, The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math. 85 (1974), 291–297.
- F. D. Tall, The countable chain condition versus separability-applications of Martin's axiom, Gen. Topology and Appl. 4 (1974), 315-339.

Virginia Polytechnic Institute and State University, Blacksburg, Virginia