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WHEN ENDOMORPHISMS OF G INDUCING
AUTOMORPHISMS OF G/V ARE AUTOMORPHISMS

by O. MACEDONSKA*

(Received 10th August 1985)

1. Introduction

Let G denote a relatively free group of a finite or countably infinite rank with a fixed
set of free generators x{,x2,...,G' the commutator subgroup, and V a verbal subgroup
belonging to G'. Following H. Neumann [6] we shall use the vector representation for
endomorphisms of G. Vector v = (u1,i;2,...) represents an endomorphism v such that
x,v = y, for all i. The identity map is represented by l=(x1)x2,...). We need also the
trivial endomorphism 0 = (e, e,...). The length of vectors is equal to the rank of G. We
shall consider the near-ring of vectors, with addition and multiplication given below
u + v—(ulv1,u2v2,---) where u.i;, is a product in G, and uv = (u1v,u2v,...) where u,v is
the image of M, under the endomorphism v. There is only one distributivity law (u + v)w =
uw + vw.

If we denote by (V) the set of all vectors with components from V, then the set of all
endomorphisms of G which induce the identity map in G/V must be denoted as \+(V).
The question we are concerned with is when the natural map <x:AutG->AutG/K is onto.
It is known [4,5] that if G is a nilpotent group then the map a is always onto, due to
the fact that any endomorphism of G inducing an automorphism of G/V, itself is an
automorphism. We shall call this property (A); it will be a subject of our interest since it
implies that a is onto.

For every two verbal subgroups V and V we define a subgroup U*(V), such that
[I/, K]c[/*(K)<=t/nK For U=V we get V* and define inductively V* and Vn1f so
that the series

• (1)

and

K2K,2K 2 ,2K 3 .= - (2)

give some information about the map a:AutG->AutG/K If either of the series ends in a
finite number of steps at e, then the property (A) holds. If (1) ends at e, then V and
Kera are soluble, and if (2) ends at e, then V and Kera are nilpotent. With the use of
(1) we can show that if G is residually nilpotent and G/V is a Hopf group then G also is
a Hopf group. In the case when V=G', (2) coincides with y22y32y42 • ••, where we
denote y2 = G', yn = lyn.t,Gl and also rl = G\ r - = [ r - 1 , r - - 1 ] .

•This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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2. Property (A)

Definition. The map a:Aut G->Aut G/V has property {A) if every endomorphism of G
which induces an automorphism of G/V, itself is an automorphism.

It is obvious that if a satisfies the property (A) then a is onto and Kera =
l + ( K ) s A u t G .

Lemma 1. The property (A) holds if and only if 1 +{V) £ Aut G.

Proof. We need to show only that if 1+ (V) £ Aut G then every endomorphism
ueEndG which induces an automorphism OeAutG/F belongs to AutG. Let u teEndG
induce u"1 eAutG/K, then iiu, = l + veAutG and uu^l + v ) " 1 ^ . Similarly, u is
invertible from the left side and hence u e Aut G.

Corollary. Let U £ V and Aut G-^Aut G/U&> Aut G/V, then:

1. If {A) holds for a and ft then it holds for a/?.

2. / / (A) holds for a/? then it holds for a.

Proof. (1) If UG Aut G/V is induced by ueEnd G, then u-^u^u. Because of (-4) for 0
we get "e Aut G/U and because of (A) for a u e Aut G. The statement (2) follows from
Lemma 1, since l + ( l / ) s l + (K)cAut G.

Lemma 2. //<x:AutG->AutG/F satisfies (A) and G/V is a Hopf group, then G is also
a Hopf group.

Proof. Let SurG be the semigroup of surjective endomorphisms of G. Then
<x:SurG->SurG/KcAutG/K, and because of (A), SurGsAutG.

3. Star subgroups

Definition. For every pair of verbal subgroups U and V in G we define U*(V) as the
verbal subgroup generated by all the elements M*(V) = M~1(X1,X2,...,xn) u(xivl,x2v2,
...,xnvn), or briefly U*(V) = M"1U(1 +V) for all we U, ve(K).

It follows from the definition that if U £ W, then U*(V) £ W*(V) and V*(U) £ V*(W).

Lemma 3. [[/, K] £ U*{V) £ Un V.

Proof. We take any [u, v\. If G has infinite rank then there exists x, (say x,)
which does not occur in u. Let v/=(xilvxl,e,e,...)e(V), then 1/*(K)3[M,X1]*(W) =

[*!,«] [u ,vx^^Xi 1 ^ , i / Jx j which gives [[/, K] £ t/*(K). For G finitely generated the
same follows because of [7,13.42]. The second inclusion holds since U and V are verbal
subgroups with the use of [7,22.34].

Lemma 4. [(/, M^*(K) £[[/*(K), W] [l

https://doi.org/10.1017/S0013091500018034 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500018034


ENDOMORPHISMS OF G 117

Proof. It is enough to check [u,w]*(v) = [w,u]u~l(l + v) uu~iw~l(l+v) ww~luu~l

u(l+v)ww"1w(l+v) = [w,u]u*~iu~lw*~1w~1uu*ww* = [w,w]u*~1w*~1[u,w]u*w* = e
modulo [C/*(K), W] [L/, W*(

Lemma 5. / / U = U,1/2, then U*(V) = U^

Proof. Let M = U1M2> then u*(v) = u~1 u(l+v) = uj1uf 1M1(l + v)u2(l+v) = uJ xuf(v)M2
u5(v)et/f(K)[/2*(K), which proves the statement.

Corollary. / / («,-) is a set o/ generators for U, then U*(V) is generated as a verbal
subgroup by the elements uf(y), ve(K).

As an example of star subgroup we compute it for the members of the lower central
series.

Lemma 6. yj(yk) = yJ+k-1.

Proof. To show the inclusion " 3 " we take M = [X 1 ,X 2 , . . . ,X J ] , I; = [ X J + 1 , X J + 2 ) . ..,xJ+k]
and v = (v,e,e,...). Then u*(v) = [x1,x2, . . . ,xj]~i[xlvl ,x2, . . . ,xj. By 5j we denote the
endomorphism such that xl8l=e,xid1=xi,i=fcl. Now yf(yk)e(u*(v))5i = lv,x2>x3,...,Xj]
and hence y*(yk)^.yj+u.-i- To prove the opposite inclusion we need to show, because
of the Corollary to Lemma 5, that u*{\)eyj+k^l only for u = [x,i,xI-2,...,x,J, for s^.j.
The commutator [Xfli;I-l,Xj2t;j2,...,x,jt;1-j] is a product of left-normed commutators with
the components equal to x, or vh where only one of the commutators has all the
components equal to x, and coincides with u. So, M*(v) = [xii,...,xl j]~1[xIii;j i ,...,x.^J
belongs to yj+k-l. If G is finitely generated, the result follows with the use of [7,13.42].

We denote V*(V) by V* or by V+, then inductively Kn*=(K"-1*)*(Kn"x*) and
K* = (K- i*)*(V)- Now because of Lemma 3, we get by induction the following:

Corollary. rn(K)<=Kn*.

Proof. r1(K) = [ K K ] s F * and PI(V) = |T ' 1-1
) r

1-1] c [K""1*, K ^ 1 * ^ V*.

From Lemma 6 follows by induction:

Corollary. (yk)"* = ys for s = 2\k - 1) +1, ( y ^ = y, for s = n(k -1) + k.

Theorem 1. Endomorphisms of G inducing the identity map in G/V commute if and
only if V* = e. The property (A) follows.

Proof. We note that the equality (l+u)(l+v) = (l+v)(l + u) is equivalent to l + v +
u + u*(v) = 1 + u + v + v*(u), where u*(v)= — u + u(l+v) has components equal to u*(v).
We conclude now that 1+(K) is abelian if and only if u*(v) —v*(u)= — u - v + u + v for
all ae{U),ve(V). While written in components it gives

uT(vW-\u) = [ubva. (3).
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Let now \+{V) be abelian. We take any ueV and ve(F). If G is infinitely generated
there exists x, (say x,) which does not occur in u = u(x2,x3,...,xn). We take u=(M,e ,e , . . . ) ,
v = (e,v2,v3 , . . . ) and consider the equality (3) for i = l , which is u*(v) = e. This implies
V* = e. Conversely, if V* = e, then by Lemma 3, [ K , K ] s K * = e and both sides of (3)
are trivially equal and hence 1 + (V) is abelian. If G is finitely generated we get the
statement with the use of [7, 13.42]. The property (A) holds because of Lemma 1,
since 1 — v is inverse to 1 + v modulo V*.

Corollary. For a:Aut G/F*-»Aut G/V the property (A) holds and Kera is abelian.

Theorem 2. The condition V* = e is sufficient for the property (A) to hold.

Proof. In the sequence of maps

Aut G-»Aut G/V- ^ - • A u t G/Vn~ 2*-» • • • Aut G/K*->Aut G/V

all the maps have, by the previous corollary, the property (A). The statement follows
now, since (A) is transitive by the Corollary to Lemma 1.

Problem. Does the property (A) imply V"* = e?

Corollary. Let G be residually nilpotent and G/V be a Hopf group, then G is a Hopf
group.

Proof. It follows from Theorem 2 that the map Aut G/F**->.AutG/F has the
property (A) and hence, by Lemma 2, every G/Vk* is a Hopf group. Let now ueSurG,
then Kerus f ) t K

k * = e.

Theorem 3. Let a:AutG-»AutG/V. If V"* = e, then Kera is soluble of length g n and
also V is soluble of length ^ n.

Proof. We consider the sequence of maps

Aut G->Aut G/V~ **-+ •• • Aut G/V*-*Aut G/V

and the series of kernels of the maps of Aut G onto Aut G/Vk* for fc^O

Following S. Bachmuth [1], we denote by A(G/Vk*,G/Vk-1*) the kernel of the map
AutG/F** onto AutG/K*"1*. Since (A) holds for each of the maps above we get by the
Isomorphism Theorems (1 +(Vk*))/(l+{V"-i*))^A(G/Vk*,G/Vk-1*) which is abelian
by the Corollary to Theorem 1. This imples [1 -h(Vk*),l+(Vk*)']ci+(vk-1*) and hence
l+(V) is soluble of length ^n. Since rn(V)s V* = e, V is also soluble of length ^n,
which completes the proof.
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Theorem 4. Let a:Aut G->AutG/F / / Vnif = e, then the property (A) holds and Kera
and V are nilpotent of class ^ n.

Proof. Since V* £ Vnif = e, by Theorem 2 the property (A) holds. The proof of the
nilpotency of Kera and V can be found in numerous papers by means of a different
terminology [2,3,8,9]. In fact, because of (A) Kera = l+(F) £ AutG is a subgroup in
the holomorph of G. It can be computed by the definition that [G, 1+(F)1 = F and
[Ft!|t,l+(F)] £ ^ + i*- We shall show now that yn+1(F) £ Vnit. By Lemma 3 y2(V) £ V^,
then by induction yn+1(F) = [yn, F] = [yn, [G, 1 + (F)]] £[G,yn,l+(F)][yn, 1 + (F),G] £
[Kn_li(!, 1+(F)] £ Fn<c. Thus we have proven the equality which gives the nilpotency of
V when Vntf = e. Similarly, by induction we can prove that [Ffcs|1,yj(l + (F))] £ F t + J >

and then, again by induction, [G, yB+i(l+(F))] £ Vnif, which implies the nilpotency of
1+(F) when Vnif — e. It should be noted here that if Fn+ = e, then Kera = l + (F) is a
stability group for the normal series G o F o F , . oF2s|t o--- o F n _ u o e of length « + l ,
which explains the nilpotency of F and Kera of class Sn=(n + 1) -1 .

5. Examples

Theorem 5. For any n the map a:AutG/(yn+1n F)->Aut G/F has the property (A) and
Kera is nilpotent of class ^\_n/(k— 1)], i /F£y t .

Proof. Since Vc.G', there exists c such that Fc +syn + 1, then by Theorem 4, the
property {A) holds. Now, from Vcif ^(yk)c* = yC(k-l)+k £)>n+i we compute c.

Theorem 6. The map tx:A\itG/[yk+i,yk]->AutG/[yk,yk'] has the property (A) for any i
and the Kera is abelian if and only if i^2k— 1.

Proof. By Lemmas 4 and 6 [yk,ykY £ [yt,yj*()'2it) £ Cy*^).}1*] £ fts*-1,?*] and the
statement follows from the Corollary to Theorem 1 and Theorem 2.

Theorem 7. The map a:AutG/yn(F)-»AutG/[F, F] has the property {A) and Kera is
nilpotent of class ^ n — 2.

Proof. The statement follows from Theorem 4 if we prove that [F, F] n _ 2 * S
We need first to show that (yn-i(F))*([F F]) £yn(F). For n = 2, F*([K FT) £y2(F)
because of Lemma 3. Now, by induction with the use of Lemma 4 we get

(yn-i(n)*([F, F]) = [yn_2(F), IT([K F])

£ [(y-2(»0)*([K Kl), K)[y.-2(»0, K*([K, F ] ) ]

S [ ? B - , ( n F][yn_2(F),[K F]] £yn(F).

At last, again by induction [F, F]B_2,=([F, F]n_3J*([F, F])£(yn_1(F))*([K FT) £yB(F),
which finishes the proof.
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