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Classification of Solutions for Harmonic
Functions With Neumann Boundary Value

Tao Zhang and Chungin Zhou

Abstract. In this paper, we classify all solutions of

-Au=0 in Ri,
0
8—1: = —c|x[fe" onaR2\{0},

with the finite conditions
|x|fe ds < C, supu(x) < C.
Ry =
R+
Here c is a positive number and 8 > —1.

1 Introduction

Motivated by the blow-up analysis for solutions to Neumann boundary value prob-
lems in the presence of singular sources, we want to study the following problem:

-Au=0 in R?,
(11) 9
g —clx[Pe*  onaR?\{0},
ot
with the finite conditions
1.2 / Bet ds < C, <C,
12 [ Petds <C, supu(x)

Rz

where c is a positive number and 8 > —1. This problem is one of the blow-up limits
for the corresponding Neumann boundary value problem. In this paper, we give all
solutions for this problem.

Note that for -1 < 3 < 0, the solution to (1.1) and (1.2) can be considered in a weak

—2
sense. Recall u € H} (R} ) is a weak solution to (1.1) and (1.2), if it satisfies

dx f Petgds=0
fRiVuV(px c aR1|x|e¢S

—2 —2
for any smooth function ¢ on R, with compact support. Since u € H} (R, ) implies
eelf

loc

(@i) for all p > 0, then we conclude that any weak solution u of (1.1), (1.2) is
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Harmonic Functions With Neumann Boundary Value 439
a classical solution when > 0. When 8 € (-1,0), since g = |x[’e* € W,>* (@i) fors e
(1, ﬁ ), then by W54 estimates for the Neumann boundary problem [ADN, KW]

d
[ wresaqany < (1 & ulwraqany + | 52 + | wieracan)

Wl+k.q (aM)

where M is a domain with smooth boundary, and the norm on the boundary is de-
fined by

Igllwiekaanry = inf{ |G wrkacan | G e WRI(M), Glam = g},

—2
we conclude that u € W.>* (R, ) and therefore u is continuous at the origin. Without
loss of the generality, in the sequel we assume that a solution u of (1.1) and (1.2) always

satisfies u € C*(R%) n C! (@i\{o}) and u is continuous at the origin.
When f5 = 0, the problem reduces to

~Au=0 in R?,
du u 2
— =-ce” onodRy,
ot "
with the energy conditions
e",ds<C, supu(x)<C.
S upu(x)
All solutions are given by
2t 1

)

=1 1
u(s,t) Tty e

where s; is any real number and ¢, is any positive number [Li]. Furthermore, under
integral finiteness assumptions, fam e*ds < Cand fRi e** ds < C, the result is also
valid [OB,ZL,LZ].

When B # 0, the situation is different. Note that (1.1) is no longer translation in-
variant when 8 # 0. The complex analysis method in [OB] and the moving sphere
method used in [LZ, ZL, PT] therefore cannot be directly utilized to classify all solu-
tions of (1.1) and (1.2). Our research is based on the surfaces with singularities. To this
point, let us first recall the definition of surfaces with singularities that was first given
in [T1]. A conformal metric ds* on a Riemann surface ¥ (possibly with boundary)
has a conical singularity of order f3 (a real number with > —1) at a point p € £ U 9%
if in some neighborhood of p, ds? = e*|z — z(p)|*#|dz|?, where z is a coordinate of
¥ defined in this neighborhood and u is smooth away from p and continuous at p.
The point p is then said to be a conical singularity of angle 0 = 2r( +1) if p ¢ 0%
and a corner of angle 8 = (f + 1) if p € 0X. For example, a football has two singu-
larities of equal angle, while a teardrop has only one singularity. Both these examples
correspond to the case -1 < § < 0; in case 8 > 0, the angle is larger than 27, lead-
ing to a different geometric picture. Such singularities also appear in orbifolds and
branched coverings. They can also describe the ends of complete Riemann surfaces
with finite total curvature. If (2, ds?) has conical singularities of order f;, B2, . . ., Bu
at py, P2, ..., pn, then ds? is said to represent the divisor A:= Y7, B;p;.
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Our main point is to consider surfaces with corners on their boundary. We will
investigate the existence problem of conformal metrics with constant Gauss curvature
and constant geodesic curvature on their boundary. Geometrically, each solution of
(1.1) and (1.2) determines a metric ds? = |x|*#e?*|dx|?* with Gaussian curvature 0 in
B, and with geodesic curvature ¢ on 0B;\{p1, p2 }, where p; = (-1,0) and p, = (1,0).

And py, p, are called the conical singularities of ds?.
Our main theorem is the following.

Theorem 1.1  Assume that u € C*(R2) n Cl(@i\{O}) and u is continuous at the
origin. If u is a solution of (1.1) and (1.2), then u takes the form

VB(B + DA

u(s,t) =In |2B+1 — zo2

Here zg = (so, to) with so € R and ty = —/2cAP*!, when B =2k, k=0,1,2,..., while

Zy = (So, to) with

V2P (1= cos(nB))
- sin(7f3)
and to = —/2cAP* when B # k, k = 0,1,2,....

So

The method to prove Theorem 1.1 is completely different from that in [Li, OB, ZL,
LZ]. We will use the tricks in [JWZ], although there the authors consider the following

problem:

—Au = |x[*Pe" in R?,

i

with the energy conditions

ou |alxffez  onodR2n{s>0},
clx|Per ondR2 N {s <0},

fanw |x|*e* ds < C, fRZ Ix|Pe? dx < C.

Here ¢y, ¢, are constants and 3 > —1. All solutions have this form. The above problems
also have been treated in [JAP] under some weak conditions.

Remark 1.2 If, in Theorem 1.1, we change the finite conditions into the energy finite
conditions, i.e., we replace the energy conditions of (1.1) by

f |x|Pe* ds < C, f |x|*e* dx < C,
aR2 R2

then we can also get the same classification results. The most important observation
is that if we set & = u + $1n |x|, then # is bounded from above in the region R2\B (0)
for each small € > 0. The proof is similar to the proof of [[WZ, Proposition 3.1]. Then
we can establish Proposition 2.1 in the following section, and consequently we can get

the same classification results by a similar argument.
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2 The Decay of Solutions at Infinity

In this section, we will show the decay of solutions at infinity by using the standard
potential analysis.

Proposition 2.1 Let u be a solution of (1.1) and (1.2). Define

1
d:ff clx|Pe* ds.
m Jorz

Then we have d = — lim|x|_,°o rn(iltc)l Furthermore, we have d = 2 + 23.

Proof We use the standard potential analysis to establish this proposition. Similar
arguments can be found in [CL, JWZ]. We divide the proof into three steps.

Step 1. d = —lim|y| 00 r(—l’;)‘ Let

C
= — log|x — y| +log|x — y| - 21 Fen() dy,
w(x) oy faRi(ong y| +loglx — y| - 2log|y|)[y["e*" dy

where X is the reflection point of x about {f = 0}. It is easy to check that w(x) satisfies

Aw =0, in Ri,
2]
S c|x|Pe”, onoR? ~ {0},
ot
and lim,|, o0 %Ifc)l = d. Consider v(x) = u + w. Then v(x) satisfies
Av = 0, in Ris
ov

i 0, ondR2 \ {0}.

We extend v(x) to R* by even reflection such that v(x) is harmonic in R?\{0}.
Since u and w are continuous at the origin, the singularity of v at 0 is removable.
Hence from supz; u(x) < C, we know v(x) < C(1 + In(|x| + 1)) for some positive

?
constant C. Thus v(x) is a constant. This completes the step 1.

Step 2. d > 1+ B. First, from [og, [x[Pe“dx < +oo, we obtain d > 1 + . Next we
assume by contradiction that d = 1+ 8. Let v be the Kelvin transformation of , i.e.,
v(x) = u(ﬁ) — (28 +2)In|x|. Then v satisfies
~Av =0, inRR?,
ov

i —c|x[Pe’, onoR2 \ {0},

with the energy condition /. aR2 |x|Pe¥ ds < oo.
Let D" be a small positive half-disk centered at zero. Define w(x) by

c
= 1 _ log [x — Bev( dy,
w(x) = faDm{t:o}(Oglx yl+loglx = y)lyl e dy
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and define g(x) = v(x) + w(x). It is clear that

Ag=0, inD",

o

a% =0, on{aD"n{t=0}}~ {0
Therefore, by extending g(x) to D \ {0} evenly, we obtain a harmonic function g(x)
in D\ {0}.

On the other hand, we can check that limy,|_,o %glxl = 0, which implies
8 @)
lx|-0 —log|x| |x[-0 —log|x|

Since g(x) is harmonic in D\{0}, we have g(x) = —(f + 1) log|x| + go(x) with a
smooth harmonic function g in D. By definition, we have w(x) < 0 since ¢ is positive.
Thus, we have

f |x|Pe” dx = f |x|Pes™ dx > f |x|P|x| P ef dx = oo,
oD+n{t=0} oD+n{t=0} oD+n{t=0}

which is a contradiction with [,z, |x[fe” dx < oo. Hence we have shown thatd > 1+p.
T

Step 3. d =2+ 2f5. From d > 1 + 3 we can improve the estimates for e* to

(2.1) e* <Clx[7P=", for |x| near oo.

for any small &; > 0. Then by using potential analysis, we obtain
—dln|x|-C<u(x)<-dn|x|+C

for some constant C > 0, see [CL].

Next we can get the derivation of gradient estimates. Similar arguments also can
be found in [CK, WZ]. First, we choose some ¢ with 0 < ¢ < & and let (7, 0) be the
polar coordinate system on R*. From Step 1, we have

[ —
u(x) =-— f _(log|x - y| +log [x - y| - 21og y])|y# ") dy + C.
n Jor2
Then we get
Ty = XUy, + XUy,

c x = u c X - u
——d- = X y)|y|ﬁe SO — uMﬁe O gy,

21 Jamz |x — y|? 21 Jorz |x - y|?

and

Ug = —XalUy, + X1Ux,
¢ y(x_)’) B u(y)d ¢ f _)N/(f_)’) B u(y)
- [ Nxmy) b [ NxY) dy,
27 fam |x = y? e I om arz  |x - y|? e Y

where J = (y2,-y1).
Now we set

8 utn
— dy=1,+1,+1;,
fam |x_y|ly\ e dy =L+ +1s
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where I, = [, ‘yl‘\y|ﬁe”(y)dy,w1th(21 {y|oR2 n (|y] < |x|)} and

s )
I —f e* dy,
with Q; = {y | 9R2 n (B <[y < 2[x])}, and
bl
I _f Bt gy,

with Q3 = {y | 0R n (|y| > 2|x])}.
When || is large enough, we can estimate I;, I, and I3 by using e* < C|x|1=F~#,
see (2.1). First we get

. C . . .
b= [ Plpe ay s S it dy < i < clal
o |x—y| |x| QO

Again by using e* < C|x|™17F~#1, we get

C d
L= [ Plppeay S f 9 < .
lx — y] aR2 N{lyl<alxl} ||

Similarly we can get

e [ e dy < [ e dy< Claf < Claf
s x -
So we get [(x, Vu) + d| < C|x|~¢ for |x| near co. Consequently we have
d
(2.2) |uy + =| < Clx["™*  for |x| near oco.
r
In a similar way, we can also get
(2.3) lug| < C|x|™® for |x| near oco.
Therefore from (2.2) and (2.3) we can get by standard potential analysis that
(2.4) u(x) = -dIn|x|+ C+O(Jx|™) for |x| near co,

where C is some positive constant.
Next let us establish the Pohozaev identity of (1.1) and (1.2). Multiply (1.1) by x- Vu
and integrate over By to obtain — [, (x - Vi) Audx = 0. Since

(x- Vu)Au = div( (x- Vu)Vu) - le( x|V2u|2 ) ,

we obtain

[Vl
. —(v- . d
fas;m{»o}x v 5 (v-Vu)(x-Vu)ds

|Vul*
W A B _ ds=0
+/aB;m{t:0}x v 2 (v-Vu)(x-Vu)ds

where v is the outward unit normal vector to 0B}. Hence we have

0
Rf |Vul? _| U2 5+f A Gwyds=o.
oBin{t>0} 2 aB}n{t=0} at
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Since

9 R R
f P (x- Vu)ds=- / c|s|Pe*sdsuds = - [ cls|Psase” ds
oB}n{t=0} Ot -R -R

R
= —cls|Pse"[Rz + (1+ ) f c|s|Pe* ds,
-R

we get the Pohozaev identity
E

2 R
R [ ol Wl” s~ cpppser e - 1) [ clsfet s
P -R

Bin{r>0} 2R? 2

By virtue of (2.1), (2.2), and (2.3) and letting R — oo in the Pohozaev identity, we get
d=2+2p. ]

3 Proof of Classification Results

In this section, let us prove Theorem 1.1. To this purpose, it is sufficient to investi-
gate the existence problem of conformal metrics with constant Gauss curvature and
constant geodesic curvature on their boundary. Since, geometrically, each solution of
(1.1) and (1.2) determines a metric ds? = |x|*#e?*|dx|* with Gaussian curvature 0 in
B, and with geodesic curvature c on dB;\{p1, p»}, where p; = (-1,0) and p, = (1,0),
where p; and p; are the conical singularities of ds?, it is sufficient to show the expres-
sion of ds* formed from solutions of (1.1) and (1.2). Therefore, next we need to prove
the following theorem.

Theorem 3.1  Let u be a solution of (11) and (1.2). Then ds* = e**|z|*#|dz|* comes
from a conformal metric with constant Gaussian curvature 0 on the unit disk By and
constant geodesic curvature ¢ on 0B, admitting the divisor A = p15 + p2f5. More pre-
cisely, there exists A > 0 such that the following hold.

(i) Whenf =2k, k=0,1,2,..., then for any positive number c, the metric is
2 _ 8(B+ 122 dz

ds” =
(|2P*1 = zo]?)?
. B+1
for some zy = (sg, to) with sg € Rand ty = —%.

(i) Whenf#k,k=0,1,2,..., then for any positive number c, the metric is
Lt 8B DA
(|2P+1 = zo2)2

V2eAPH (1—cos(nB))
sin(nf)

2cAPH

andtoz—ﬂ.

for some zy = (so, to) with s =

Proof We prove Theorem 3.1 by using the same argument from [JWZ]. Here we just
give a sketch.

First, from Proposition 2.1, we can show that the solution u to (1.1) and (1.2) has a
removable singularity at z = co by using the Kelvin transformation as in many con-
formal problems. Actually, we have the following claim.

Claim 1. Let u be a solution of (1.1) and (1.2). Then the metric ds® = |x|*#e?*()|dx|?
on R? has two conical singularities at 0 and co with the same order j3.
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Let v be the Kelvin transformation of u, i.e., v(x) = u(x/|x[*) —2(f +1)In|x|. If u
is a solution of (1.1) and (1.2), then v € C*(R?) n C'(R2 \ {0}) and
-Av =0, in R,
v

P —clx[Pe”, on oR? \ {0}.

To prove the result, we first show that v is continuous at x = 0, i.e., the singularity
z = 0 of v is removable. Applying the asymptotic estimate (2.4), we have
x

) = ul

for |x| near 0. Since d = 2(1 + f8), we get that v is bounded near 0. Thus, by standard

elliptic regularity, we conclude that v is a C*(IR?) n C'(R2) solution of (1.1) and (1.2).

Next note that ds? = e*|dx|? for & = u(x) + Blog|x|, where u is a solution of

(L1) and (1.2). So the metric ds* has a conical singularity at z = 0 with order 3. Let

v(x) =1u( ﬁ) —2log|x| be the Kelvin transformation of . Then we obtain near z = 0
x

v(x) = u( e

Since v(x) is a continuous function at z = 0, by the definition of a conical singularity
we get that the metric ds? = ¢?"dx? has a conical singularity at z = co with the same
order asatz = 0.

Next we will introduce a kind of projective connection on S? = C U oo as defined
in [T2]. We have the following claim.

Claim 2. Let ubeasolution of (1.1) and (1.2), and ds? = e**|dz|?, where & = u+S1n|z|.
Define

)=2(f+DIn|x|=(d-2(f+1))In|x| + O(1)

) - Blog|x| - 2log|x| = Blog|x| + v(x).

*u  (ou\2 2
1= (55 -(5;) )=l
Then 7(z) can be extended to a projective connection on S* = C U oo, still denoted
by #(z), that is compatible with the divisor A= -0+ f§ - co.

In fact, from the assumption, we know that u satisfies

-Au =0, in R,
o _
o T o)

f etds < oo.
aR2

Let f(2) = 3%? —( 3—2)2. Then from (3.1), f(z) is holomorphic on R? and Im f =
: %% - %). On the other hand, since on 9R? \ {0}, % = —ce”, we have
0’u _ Fou _Judu
dsot

© % asor
This implies that f(z) is real on 9R2 ~ {0}, and we may extend f(z) to a holomorphic

function on C ~ {0} by f(2) = f(z) for z € R2. Thus we extend 7 to C such that 7 is
holomorphic on C \ {0}.
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Since
P g P u, Bou_pE2)
022 9z’ 922 0z z 0z 4z2

in R2 \ {0}, then similar to the argument in [JWZ], we can show by using Claim 1
that 7(z) is a projective connection on S* = C U oo and has a regular singularity of
weight p = —1B(B+2)atz=0andatz = co.

In view of Claim 2, we can give the proof of Theorem 3.1. From Claim 2 we know
that #(z) is a projective connection on S? = C U {oco} with regular singularities at
z =0 and z = oco. It follows from [T2, Proposition 2 ] that

B(B+2) |dzf

n(z) = T4 2

in the standard coordinate z.
Setting h = e™*, we have
2
2

(3.2) % = @g, foranyzeRi,
and the boundary condition is
(3.3) % - % =ic, onoR?\ {0}.

All solutions of (3.2) are of the form h(z,z) = f(E)z’g + g(E)z”g, for any z € R2.
Since h is real and analytic, we have

Bk _
h(zZ) = a(z2) T + p2* 27 F + 2 227 % + b(22)" ", foranyz e R2.

Here, a,b € Rand p € C. Since & = u + f1n |x| near 0 for some continuous function
u, it is clear that a # 0. Then rewriting h(z,z), we have

(R v
h = a'( 12| )

for some parameters ¢ = £ ¢ Cand v = “ba_# € R. Therefore, a conformal metric
should be

2 2 2
L Mz 1 [2#1dz)

ds . .
Wa? (L 2R+ vjef2he2)?

Setting w = 1, we have
z

L wPFawp

S a2 (g whr2 )2
On the other hand, if we assume (7, 6) is the polar coordinate system in R?, then we
have h(r, 0) = ar P + pre!®0+B) 4 pre=100+A) 4 py2*B  And its boundary condition
(3.3) can be rewritten as

oh

—£(€i9 +e0) 4+ ir?(eie —e %) = —2rc,
r
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for 8 = 0 and 0 = m. Therefore, by using the partial derivative % atf =0and 0 =,
respectively, we obtain 2(8 +1)(p — p) = 2ic, and 2(B + 1)(pe™ ™ — pe'P™) = 2ic.
Then there are two cases.

Casel. B isaninteger.  Since cisa positive number, only when § = 2k, k =0,1,2,...,

can one determine Im{p}, namely Im{p} = ~305 - Now we set @ = —ﬂ\/l;l.
Then we have
V2
g — Y=
4(B+1)AB+1
and consequently,
2 _ 8(B+1)2A2FD |y P |dw]?
ds® = ,
(P —wol? + )2
where wq = (xg, to) for some real number x; and ¢y = —ch;. Set
20/2(B +1)APH
u =log —\/_(ﬂ +DA

W+ —wo|2 + v

Then it follows from the definition of the conformal metric that u is a solution of (1.1).
Hence, we have v = 0. This implies

2 _ 8(B+ 1)K wFdw]?

ds” =
(jwh+ = wg2)2
Case 2. $# k,k =0,1,2,.... Inthis case, one can find a unique complex number
p. If we set Imip S 2‘\)}?1 , then we have a = W‘/)EMM, and consequently we have

g2 = B DAV A
(R

where wy = (x, to) is a fixed point for

_ V2eAP (1= cos(nB))

- sin(78)

Then as in the first case, we can get

Lo BB DD A
- (|wh+1 — wo[2)?

We complete the proof. ]

2cAB+1

and to =
V2

Xo

—2
Since the domain R’ \{0} is simply connected, we consider z'*# as a well-defined
function, even for non-integer 3. In polar coordinates, we have

V8(B +1)APH

=In (rB+1cos(1+ )6 —s0)% + (r'*Fsin(1+ )6 — t9)2"

u
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