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Classification of Solutions for Harmonic
Functions With Neumann Boundary Value

Tao Zhang and Chunqin Zhou

Abstract. In this paper, we classify all solutions of
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−∆u = 0 in R2
+
,

∂u
∂t

= −c∣x∣β eu on ∂R2
+
/{0},

with the ûnite conditions
∫∂R2

+

∣x∣β eu ds < C, sup
R2
+

u(x) < C.

Here c is a positive number and β > −1.

1 Introduction

Motivated by the blow-up analysis for solutions to Neumann boundary value prob-
lems in the presence of singular sources, we want to study the following problem:

(1.1)
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆u = 0 in R2
+ ,

∂u
∂t

= −c∣x∣βeu on ∂R2
+/{0},

with the ûnite conditions

(1.2) ∫
∂R2
+

∣x∣βeu ds < C , sup
R2
+

u(x) < C ,

where c is a positive number and β > −1. _is problem is one of the blow-up limits
for the corresponding Neumann boundary value problem. In this paper, we give all
solutions for this problem.

Note that for −1 < β < 0, the solution to (1.1) and (1.2) can be considered in a weak
sense. Recall u ∈ H1

loc(R
2
+) is a weak solution to (1.1) and (1.2), if it satisûes

∫
R2
+

∇u∇φ dx − c∫
∂R2
+

∣x∣βeuφ ds = 0

for any smooth function φ on R
2
+ with compact support. Since u ∈ H1

loc(R
2
+) implies

eu ∈ Lp
loc(R

2
+) for all p > 0, then we conclude that any weak solution u of (1.1), (1.2) is
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a classical solutionwhen β ≥ 0. When β ∈ (−1, 0), since g = ∣x∣βeu ∈W 1,s
loc(R

2
+) for s ∈

(1, 2
1−β ), then byW

2+k ,q estimates for the Neumann boundary problem [ADN,KW]

∥u∥W2+k ,q(M) ≤ C(∥△ u∥W k ,q(M) + ∥
∂u
∂n
∥
W 1+k ,q(∂M)

+ ∥u∥W 1+k ,q(M)) ,

where M is a domain with smooth boundary, and the norm on the boundary is de-
ûned by

∥g∥W 1+k ,q(∂M) = inf {∥G∥W 1+k ,q(M) ∣ G ∈W 1+k ,q
(M),G∣∂M = g} ,

we conclude that u ∈ W2,s
loc (R

2
+) and therefore u is continuous at the origin. Without

loss of the generality, in the sequelwe assume that a solution u of (1.1) and (1.2) always
satisûes u ∈ C2(R2

+) ∩ C1(R
2
+/{0}) and u is continuous at the origin.

When β = 0, the problem reduces to
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆u = 0 in R2
+ ,

∂u
∂t

= −ceu on ∂R2
+ ,

with the energy conditions

∫
∂R2
+

eu , ds < C , sup
R2
+

u(x) < C .

All solutions are given by

u(s, t) = ln
2t1

(s − s1)2 + (t + t1)2
+ ln

1
c
,

where s1 is any real number and t1 is any positive number [Li]. Furthermore, under
integral ûniteness assumptions, ∫∂R2

+

eu ds < C and ∫R2
+

e2u ds < C, the result is also
valid [OB,ZL,LZ].

When β /= 0, the situation is diòerent. Note that (1.1) is no longer translation in-
variant when β /= 0. _e complex analysis method in [OB] and the moving sphere
method used in [LZ,ZL,PT] therefore cannot be directly utilized to classify all solu-
tions of (1.1) and (1.2). Our research is based on the surfaceswith singularities. To this
point, let us ûrst recall the deûnition of surfaces with singularities that was ûrst given
in [T1]. A conformal metric ds2 on a Riemann surface Σ (possibly with boundary)
has a conical singularity of order β (a real number with β > −1) at a point p ∈ Σ ∪ ∂Σ
if in some neighborhood of p, ds2 = e2u ∣z − z(p)∣2β ∣dz∣2, where z is a coordinate of
Σ deûned in this neighborhood and u is smooth away from p and continuous at p.
_e point p is then said to be a conical singularity of angle θ = 2π(β + 1) if p ∉ ∂Σ
and a corner of angle θ = π(β + 1) if p ∈ ∂Σ. For example, a football has two singu-
larities of equal angle, while a teardrop has only one singularity. Both these examples
correspond to the case −1 < β < 0; in case β > 0, the angle is larger than 2π, lead-
ing to a diòerent geometric picture. Such singularities also appear in orbifolds and
branched coverings. _ey can also describe the ends of complete Riemann surfaces
with ûnite total curvature. If (Σ, ds2) has conical singularities of order β1 , β2 , . . . , βn
at p1 , p2 , . . . , pn , then ds2 is said to represent the divisor A∶= ∑n

i=1 β i p i .
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Our main point is to consider surfaces with corners on their boundary. We will
investigate the existence problemof conformal metricswith constantGauss curvature
and constant geodesic curvature on their boundary. Geometrically, each solution of
(1.1) and (1.2) determines a metric ds2 = ∣x∣2βe2u ∣dx∣2 with Gaussian curvature 0 in
B1 andwith geodesic curvature c on ∂B1/{p1 , p2},where p1 = (−1, 0) and p2 = (1, 0).
And p1, p2 are called the conical singularities of ds2.

Our main theorem is the following.

_eorem 1.1 Assume that u ∈ C2(R2
+) ∩ C1(R

2
+/{0}) and u is continuous at the

origin. If u is a solution of (1.1) and (1.2), then u takes the form

u(s, t) = ln
√
8(β + 1)λβ+1

∣zβ+1 − z0∣2
.

Here z0 = (s0 , t0) with s0 ∈ R and t0 = −
√

2cλβ+1, when β = 2k, k = 0, 1, 2, . . . , while
z0 = (s0 , t0) with

s0 =
√

2cλβ+1(1 − cos(πβ))
sin(πβ)

and t0 = −
√

2cλβ+1 when β /= k, k = 0, 1, 2, . . . .

_emethod to prove_eorem 1.1 is completely diòerent from that in [Li,OB,ZL,
LZ]. Wewilluse the tricks in [JWZ], although there the authors consider the following
problem:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−∆u = ∣x∣2βeu in R2
+ ,

∂u
∂t

=

⎧⎪⎪
⎨
⎪⎪⎩

c1∣x∣βe
u
2 on ∂R2

+ ∩ {s > 0},
c2∣x∣βe

u
2 on ∂R2

+ ∩ {s < 0},

with the energy conditions

∫
∂R2
+

∣x∣2βeu ds < C , ∫
R2
+

∣x∣βe
u
2 dx < C .

Here c1, c2 are constants and β > −1. All solutions have this form. _e above problems
also have been treated in [JAP] under some weak conditions.

Remark 1.2 If, in_eorem 1.1,we change the ûnite conditions into the energy ûnite
conditions, i.e., we replace the energy conditions of (1.1) by

∫
∂R2
+

∣x∣βeu ds < C , ∫
R2
+

∣x∣2βe2u dx < C ,

then we can also get the same classiûcation results. _emost important observation
is that ifwe set ũ = u+ β ln ∣x∣, then ũ is bounded from above in the regionR2

+/B+є (0)
for each small є > 0. _e proof is similar to the proof of [JWZ, Proposition 3.1]. _en
we can establish Proposition 2.1 in the following section, and consequently we can get
the same classiûcation results by a similar argument.
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2 The Decay of Solutions at Infinity

In this section, we will show the decay of solutions at inûnity by using the standard
potential analysis.

Proposition 2.1 Let u be a solution of (1.1) and (1.2). Deûne

d = 1
π ∫∂R2

+

c∣x∣βeu ds.

_en we have d = − lim∣x ∣→∞
u(x)
ln ∣x ∣ . Furthermore, we have d = 2 + 2β.

Proof We use the standard potential analysis to establish this proposition. Similar
arguments can be found in [CL, JWZ]. We divide the proof into three steps.

Step 1. d = − lim∣x ∣→∞
u(x)
ln ∣x ∣ . Let

w(x) = c
2π ∫∂R2

+

(log ∣x − y∣ + log ∣x − y∣ − 2 log ∣y∣)∣y∣βeu(y) dy,

where x is the re�ection point of x about {t = 0}. It is easy to check thatw(x) satisûes

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆w = 0, in R2
+ ,

∂w
∂t

= c∣x∣βeu , on ∂R2
+ ∖ {0},

and lim∣x ∣→∞
w(x)
ln ∣x ∣ = d. Consider v(x) = u +w. _en v(x) satisûes

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆v = 0, in R2
+ ,

∂v
∂t

= 0, on ∂R2
+ ∖ {0}.

We extend v(x) to R2 by even re�ection such that v(x) is harmonic in R2/{0}.
Since u and w are continuous at the origin, the singularity of v at 0 is removable.
Hence from supR2

+

u(x) < C, we know v(x) ≤ C(1 + ln(∣x∣ + 1)) for some positive
constant C. _us v(x) is a constant. _is completes the step 1.

Step 2. d > 1 + β. First, from ∫∂R2
+

∣x∣βeudx < +∞, we obtain d ≥ 1 + β. Next we
assume by contradiction that d = 1 + β. Let v be the Kelvin transformation of u, i.e.,
v(x) = u( x

∣x ∣2 ) − (2β + 2) ln ∣x∣. _en v satisûes

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆v = 0, in R2
+ ,

∂v
∂t

= −c∣x∣βev , on ∂R2
+ ∖ {0},

with the energy condition ∫∂R2
+

∣x∣βev ds <∞.
Let D+ be a small positive half-disk centered at zero. Deûne w(x) by

w(x) = c
2π ∫∂D+∩{t=0}

(log ∣x − y∣ + log ∣x − y∣)∣y∣βev(y) dy,
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and deûne g(x) = v(x) +w(x). It is clear that
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∆g = 0, in D+ ,
∂g
∂t

= 0, on {∂D+ ∩ {t = 0}} ∖ {0}.

_erefore, by extending g(x) to D ∖ {0} evenly, we obtain a harmonic function g(x)
in D ∖ {0}.

On the other hand, we can check that lim∣x ∣→0
w

− log ∣x ∣ = 0, which implies

lim
∣x ∣→0

g(x)
− log ∣x∣

= lim
∣x ∣→0

v(x) +w(x)
− log ∣x∣

= 1 + β.

Since g(x) is harmonic in D/{0}, we have g(x) = −(β + 1) log ∣x∣ + g0(x) with a
smoothharmonic function g0 inD. Bydeûnition,wehavew(x) < 0 since c ispositive.
_us, we have

∫
∂D+∩{t=0}

∣x∣βev dx = ∫
∂D+∩{t=0}

∣x∣βe g−w dx ≥ ∫
∂D+∩{t=0}

∣x∣β ∣x∣−β−1e g0 dx =∞,

which is a contradictionwith ∫∂R2
+

∣x∣βev dx <∞. Hencewe have shown that d > 1+β.

Step 3. d = 2 + 2β. From d > 1 + β we can improve the estimates for eu to

(2.1) eu ≤ C∣x∣−1−β−ε1 , for ∣x∣ near∞.

for any small ε1 > 0. _en by using potential analysis, we obtain

−d ln ∣x∣ − C ≤ u(x) ≤ −d ln ∣x∣ + C

for some constant C > 0, see [CL].
Next we can get the derivation of gradient estimates. Similar arguments also can

be found in [CK,WZ]. First, we choose some ε with 0 < ε < ε1 and let (r, θ) be the
polar coordinate system on R2. From Step 1, we have

u(x) = − c
2π ∫∂R2

+

(log ∣x − y∣ + log ∣x − y∣ − 2 log ∣y∣)∣y∣βeu(y) dy + C .

_en we get

rur = x1ux1 + x2ux2

= −d − c
2π ∫∂R2

+

y(x − y)
∣x − y∣2

∣y∣βeu(y) dy − c
2π ∫∂R2

+

y(x − y)
∣x − y∣2

∣y∣βeu(y) dy,

and

uθ = −x2ux1 + x1ux2

=
c
2π ∫∂R2

+

ỹ(x − y)
∣x − y∣2

∣y∣βeu(y) dy + c
2π ∫∂R2

+

− ỹ(x − y)
∣x − y∣2

∣y∣βeu(y) dy,

where ỹ = (y2 ,−y1).
Now we set

∫
∂R2
+

∣y∣
∣x − y∣

∣y∣βeu(y) dy = I1 + I2 + I3 ,
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where I1 = ∫Ω1

∣y∣
∣x−y∣ ∣y∣

βeu(y) dy, with Ω1 = {y ∣ ∂R2
+ ∩ (∣y∣ <

∣x ∣
2 )}, and

I2 = ∫
Ω2

∣y∣
∣x − y∣

∣y∣βeu(y) dy,

with Ω2 = {y ∣ ∂R2
+ ∩ (

∣x ∣
2 ≤ ∣y∣ ≤ 2∣x∣)}, and

I3 = ∫
Ω3

∣y∣
∣x − y∣

∣y∣βeu(y) dy,

with Ω3 = {y ∣ ∂R2
+ ∩ (∣y∣ > 2∣x∣)}.

When ∣x∣ is large enough, we can estimate I1, I2, and I3 by using eu ≤ C∣x∣−1−β−ε1 ,
see (2.1). First we get

I1 = ∫
Ω1

∣y∣
∣x − y∣

∣y∣βeu(y) dy ≤ C
∣x∣ ∫Ω1

∣y∣ ∣y∣βeu(y) dy ≤ C∣x∣−ε1 ≤ C∣x∣−ε .

Again by using eu ≤ C∣x∣−1−β−ε1 , we get

I2 = ∫
Ω2

∣y∣
∣x − y∣

∣y∣βeu(y) dy ≤ C
x ε1 ∫∂R2

+⋂{∣y∣≤4∣x ∣}

dy
∣y∣

≤ C∣x∣−ε .

Similarly we can get

I3 = ∫
Ω3

∣y∣
∣x − y∣

∣y∣βeu(y) dy ≤ C ∫
Ω3

∣y∣βeu(y) dy ≤ C∣x∣−ε1 ≤ C∣x∣−ε .

So we get ∣⟨x ,∇u⟩ + d∣ ≤ C∣x∣−ε for ∣x∣ near∞. Consequently we have

(2.2) ∣ur +
d
r
∣ ≤ C∣x∣−1−ε for ∣x∣ near∞.

In a similar way, we can also get

(2.3) ∣uθ ∣ ≤ C∣x∣−ε for ∣x∣ near∞.

_erefore from (2.2) and (2.3) we can get by standard potential analysis that

(2.4) u(x) = −d ln ∣x∣ + C + O(∣x∣−1
) for ∣x∣ near∞,

where C is some positive constant.
Next let us establish the Pohozaev identity of (1.1) and (1.2). Multiply (1.1) by x ⋅∇u

and integrate over B+R to obtain − ∫B+R (x ⋅ ∇u)∆u dx = 0. Since

(x ⋅ ∇u)∆u = div((x ⋅ ∇u)∇u) − div( x∣∇u∣2

2
) ,

we obtain

∫
∂B+R∩{t>0}

x ⋅ ν ∣∇u∣2

2
− (ν ⋅ ∇u)(x ⋅ ∇u) ds

+ ∫
∂B+R∩{t=0}

x ⋅ ν ∣∇u∣2

2
− (ν ⋅ ∇u)(x ⋅ ∇u) ds = 0,

where ν is the outward unit normal vector to ∂B+R . Hence we have

R∫
∂B+R∩{t>0}

∣∇u∣2

2
− ∣

∂u
∂r
∣
2 ds + ∫

∂B+R∩{t=0}

∂u
∂t
(x ⋅ ∇u) ds = 0.
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Since

∫
∂B+R∩{t=0}

∂u
∂t
(x ⋅ ∇u) ds = −∫

R

−R
c∣s∣βeus∂suds = −∫

R

−R
c∣s∣βs∂seu ds

= −c∣s∣βseu ∣R−R + (1 + β)∫
R

−R
c∣s∣βeu ds,

we get the Pohozaev identity

R∫
∂B+R∩{t>0}

∣uθ ∣
2

2R2 −
∣ur ∣

2

2
ds = c∣s∣βseu ∣R−R − (1 + β)∫

R

−R
c∣s∣βeu ds.

By virtue of (2.1), (2.2), and (2.3) and letting R →∞ in the Pohozaev identity, we get
d = 2 + 2β.

3 Proof of Classification Results

In this section, let us prove _eorem 1.1. To this purpose, it is suõcient to investi-
gate the existence problem of conformal metrics with constant Gauss curvature and
constant geodesic curvature on their boundary. Since, geometrically, each solution of
(1.1) and (1.2) determines a metric ds2 = ∣x∣2βe2u ∣dx∣2 with Gaussian curvature 0 in
B1 andwith geodesic curvature c on ∂B1/{p1 , p2},where p1 = (−1, 0) and p2 = (1, 0),
where p1 and p2 are the conical singularities of ds2, it is suõcient to show the expres-
sion of ds2 formed from solutions of (1.1) and (1.2). _erefore, next we need to prove
the following theorem.

_eorem 3.1 Let u be a solution of (1.1) and (1.2). _en ds2 = e2u ∣z∣2β ∣dz∣2 comes
from a conformal metric with constant Gaussian curvature 0 on the unit disk B1 and
constant geodesic curvature c on ∂B1 admitting the divisor A = p1β + p2β. More pre-
cisely, there exists λ > 0 such that the following hold.
(i) When β = 2k, k = 0, 1, 2, . . . , then for any positive number c, themetric is

ds2 = 8(β + 1)2λ2β+2∣z∣2β ∣dz∣2

(∣zβ+1 − z0∣2)2

for some z0 = (s0 , t0) with s0 ∈ R and t0 = − 2cλβ+1
√

2
.

(ii) When β /= k, k = 0, 1, 2, . . . , then for any positive number c, themetric is

ds2 = 8(β + 1)2λ2β+2∣z∣2β ∣dz∣2

(∣zβ+1 − z0∣2)2

for some z0 = (s0 , t0) with s0 =
√

2cλβ+1(1−cos(πβ))
sin(πβ) and t0 = − 2cλβ+1

√
2

.

Proof We prove_eorem 3.1 by using the same argument from [JWZ]. Herewe just
give a sketch.
First, from Proposition 2.1, we can show that the solution u to (1.1) and (1.2) has a

removable singularity at z = ∞ by using the Kelvin transformation as in many con-
formal problems. Actually, we have the following claim.
Claim 1. Let u be a solution of (1.1) and (1.2). _en themetric ds2 = ∣x∣2βe2u(x)∣dx∣2
on R2

+ has two conical singularities at 0 and∞ with the same order β.
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Let v be the Kelvin transformation of u, i.e., v(x) = u(x/∣x∣2)− 2(β + 1) ln ∣x∣. If u
is a solution of (1.1) and (1.2), then v ∈ C2(R2

+) ∩ C1(R2
+ ∖ {0}) and

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−∆v = 0, in R2
+ ,

∂v
∂t

= −c∣x∣βev , on ∂R2
+ ∖ {0}.

To prove the result, we ûrst show that v is continuous at x = 0, i.e., the singularity
z = 0 of v is removable. Applying the asymptotic estimate (2.4), we have

v(x) = u( x
∣x∣2
) − 2(β + 1) ln ∣x∣ = (d − 2(β + 1)) ln ∣x∣ + O(1)

for ∣x∣ near 0. Since d = 2(1 + β), we get that v is bounded near 0. _us, by standard
elliptic regularity, we conclude that v is a C2(R2

+)∩C1(R2
+) solution of (1.1) and (1.2).

Next note that ds2 = e2ũ ∣dx∣2 for ũ = u(x) + β log ∣x∣, where u is a solution of
(1.1) and (1.2). So the metric ds2 has a conical singularity at z = 0 with order β. Let
ṽ(x) = ũ( x

∣x ∣2 )−2 log ∣x∣ be theKelvin transformation of ũ. _enwe obtain near z = 0

ṽ(x) = u( x
∣x∣2
) − β log ∣x∣ − 2 log ∣x∣ = β log ∣x∣ + v(x).

Since v(x) is a continuous function at z = 0, by the deûnition of a conical singularity
we get that themetric ds2 = e2ũdx2 has a conical singularity at z =∞ with the same
order as at z = 0.

Next we will introduce a kind of projective connection on S2 = C ∪∞ as deûned
in [T2]. We have the following claim.
Claim 2. Let u be a solution of (1.1) and (1.2), and ds2 = e2ũ ∣dz∣2,where ũ = u+β ln ∣z∣.
Deûne

η(z) = ( ∂2ũ
∂z2 − (

∂ũ
∂z
)

2
) ∣dz∣2 .

_en η(z) can be extended to a projective connection on S2 = C ∪∞, still denoted
by η(z), that is compatible with the divisor A= β ⋅ 0 + β ⋅ ∞.

In fact, from the assumption, we know that ũ satisûes

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∆ũ = 0, in R2
+ ,

∂ũ
∂t

= −ce ũ , on ∂R2
+ ∖ {0},

∫
∂R2
+

e ũds <∞.

Let f (z) = ∂2 ũ
∂z2 − (

∂ũ
∂z )

2
. _en from (3.1), f (z) is holomorphic on R2

+ and Im f =
1
2 (

∂ũ
∂s

∂ũ
∂t −

∂2 ũ
∂s∂t ). On the other hand, since on ∂R2

+ ∖ {0},
∂ũ
∂t = −ce

ũ , we have

∂2ũ
∂s∂t

= −ce ũ ∂ũ
∂s

=
∂ũ
∂s

∂ũ
∂t

.

_is implies that f (z) is real on ∂R2
+∖{0}, andwemay extend f (z) to a holomorphic

function on C ∖ {0} by f (z) = f (z) for z ∈ R2
−. _us we extend η to C such that η is

holomorphic on C ∖ {0}.
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Since
∂2ũ
∂z2 − (

∂ũ
∂z
)
2
=

∂2u
∂z2 − (

∂u
∂z
)
2
−
β
z
∂u
∂z

−
β(β + 2)

4z2 .

in R2
+ ∖ {0}, then similar to the argument in [JWZ], we can show by using Claim 1

that η(z) is a projective connection on S2 = C ∪ ∞ and has a regular singularity of
weight ρ = − 1

4 β(β + 2) at z = 0 and at z =∞.
In view of Claim 2, we can give the proof of_eorem 3.1. From Claim 2 we know

that η(z) is a projective connection on S2 = C ∪ {∞} with regular singularities at
z = 0 and z =∞. It follows from [T2, Proposition 2 ] that

η(z) = −β(β + 2)
4

⋅
∣dz∣2

z2

in the standard coordinate z.
Setting h = e−ũ , we have

(3.2)
∂2h
∂z2 =

β(β + 2)
4

⋅
h
z2 , for any z ∈ R2

+ ,

and the boundary condition is

(3.3)
∂h
∂z

−
∂h
∂z

= ic, on ∂R2
+ ∖ {0}.

All solutions of (3.2) are of the form h(z, z) = f (z)z−
β
2 + g(z)z1+

β
2 , for any z ∈ R2

+.
Since h is real and analytic, we have

h(z, z) = a(zz)−
β
2 + pz1+

β
2 z−

β
2 + pz1+

β
2 z−

β
2 + b(zz)1+

β
2 , for any z ∈ R2

+ .

Here, a, b ∈ R and p ∈ C. Since ũ = u + β ln ∣x∣ near 0 for some continuous function
u, it is clear that a /= 0. _en rewriting h(z, z), we have

h = a ⋅ ( ∣1 + µzβ+1
∣2 + ν∣z∣2β+2

∣z∣β
) ,

for some parameters µ =
p
a ∈ C and ν =

ab−pp
a2 ∈ R. _erefore, a conformal metric

should be

ds2 = ∣dz∣
2

h2 =
1
a2 ⋅

∣z∣2β ∣dz∣2

(∣1 + µzβ+1
∣2 + ν∣z∣2β+2)2

.

Setting w = 1
z , we have

ds2 = 1
a2 ⋅

∣w∣2β ∣dw∣2

(∣µ +wβ+1∣2 + ν)2
.

On the other hand, if we assume (r, θ) is the polar coordinate system in R2, then we
have h(r, θ) = ar−β + pre iθ(1+β) + pre−iθ(1+β) + br2+β . And its boundary condition
(3.3) can be rewritten as

−
∂h
∂θ
(e iθ + e−iθ

) + ir ∂h
∂r
(e iθ − e−iθ

) = −2rc,
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for θ = 0 and θ = π. _erefore, by using the partial derivative ∂h
∂θ at θ = 0 and θ = π,

respectively, we obtain 2(β + 1)(p − p) = 2ic, and 2(β + 1)(pe−iβπ − pe iβπ) = 2ic.
_en there are two cases.

Case 1. β is an integer. Since c is a positivenumber, onlywhen β = 2k, k = 0, 1, 2, . . . ,
can one determine Im{p}, namely Im{p} = − c

2(β+1) . Now we set Im{p}
a = − 2cλβ+1

√
2

.
_en we have

a =
√

2
4(β + 1)λβ+1

and consequently,

ds2 = 8(β + 1)2λ2(β+1)∣w∣2β ∣dw∣2

(∣wβ+1 −w0∣2 + ν)2
,

where w0 = (x0 , t0) for some real number x0 and t0 = − 2cλβ+1
√

2
. Set

u = log
2
√

2(β + 1)λβ+1

∣wβ+1 −w0∣2 + ν
.

_en it follows from the deûnition of the conformal metric that u is a solution of (1.1).
Hence, we have ν = 0. _is implies

ds2 = 8(β + 1)2λ2(β+1)∣w∣2β ∣dw∣2

(∣wβ+1 −w0∣2)2
.

Case 2. β /= k, k = 0, 1, 2, . . . . In this case, one can ûnd a unique complex number
p. If we set Im{p}

a = − 2cλβ+1
√

2
, then we have a =

√
2

4(β+1)λβ+1 , and consequently we have

ds2 = 8(β + 1)2λ2(β+1)∣w∣2β ∣dw∣2

(∣wβ+1 −w0∣2 + ν)2
,

where w0 = (x0 , t0) is a ûxed point for

x0 =
√

2cλβ+1(1 − cos(πβ))
sin(πβ)

and t0 = −
2cλβ+1
√

2
.

_en as in the ûrst case, we can get

ds2 = 8(β + 1)2λ2(β+1)∣w∣2β ∣dw∣2

(∣wβ+1 −w0∣2)2
.

We complete the proof.

Since the domain R
2
+/{0} is simply connected, we consider z1+β as a well-deûned

function, even for non-integer β. In polar coordinates, we have

u = ln
√
8(β + 1)λβ+1

(rβ+1 cos(1 + β)θ − s0)2 + (r1+β sin(1 + β)θ − t0)2
.
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