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We introduce a new test for a two-sided hypothesis involving a subset of the structural
parameter vector in the linear instrumental variables (IVs) model. Guggenberger,
Kleibergen, and Mavroeidis (2019, Quantitative Economics, 10, 487–526; hereafter
GKM19) introduce a subvector Anderson–Rubin (AR) test with data-dependent crit-
ical values that has asymptotic size equal to nominal size for a parameter space that
allows for arbitrary strength or weakness of the IVs and has uniformly nonsmaller
power than the projected AR test studied in Guggenberger et al. (2012, Economet-
rica, 80(6), 2649–2666). However, GKM19 imposes the restrictive assumption of
conditional homoskedasticity (CHOM). The main contribution here is to robustify
the procedure in GKM19 to arbitrary forms of conditional heteroskedasticity. We
first adapt the method in GKM19 to a setup where a certain covariance matrix has an
approximate Kronecker product (AKP) structure which nests CHOM. The new test
equals this adaptation when the data are consistent with AKP structure as decided by
a model selection procedure. Otherwise, the test equals the AR/AR test in Andrews
(2017, Identification-Robust Subvector Inference, Cowles Foundation Discussion
Papers 3005, Yale University) that is fully robust to conditional heteroskedasticity but
less powerful than the adapted method. We show theoretically that the new test has
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asymptotic size bounded by the nominal size and document improved power relative
to the AR/AR test in a wide array of Monte Carlo simulations when the covariance
matrix is not too far from AKP.

1. INTRODUCTION

Robust and powerful subvector inference constitutes an important problem in
Econometrics. For instance, it is standard practice to report confidence intervals
on each of the coefficients in a linear regression model. By robust, we mean a
testing procedure for a hypothesis of (or a confidence region for) a subset of
the structural parameter vector such that the asymptotic size is bounded by the
nominal size for a parameter space that allows for weak or partial identification.
Recent contributions to robust subvector inference have been made in the context
of the linear instrumental variables (IVs) model (see, for example, Dufour and
Taamouti, 2005; Guggenberger et al., 2012; hereafter Guggenberger, Kleibergen,
and Mavroeidis, 2019; hereafter GKM19; Kleibergen, 2021), GMM models (see,
for example, Chaudhuri and Zivot, 2011; Andrews and Cheng, 2014; Andrews
and Mikusheva, 2016; Andrews, 2017; Han and McCloskey, 2019), and also
models defined by moment (in)equalities (see, for example, Bugni, Canay, and
Shi, 2017; Gafarov, 2019; Kaido, Molinari, and Stoye, 2019). GKM19 introduce a
new subvector test that compares the AR subvector statistic to conditional critical
values that adapt to the strength or weakness of identification and verify that
the resulting test has correct asymptotic size for a parameter space that imposes
conditional homoskedasticity (CHOM) and uniformly improves on the power of
the projected AR test studied in Dufour and Taamouti (2005).

The contribution of the current paper is to provide a robust subvector test that
improves the power of another robust subvector test by combining it with a more
powerful test that is robust for only a smaller parameter space. More specifically, in
the context of the linear IV model, we first provide a modification of the subvector
AR test of GKM19, called the ARAKP,α test, where α denotes the nominal size. We
verify that it has correct asymptotic size for a parameter space that nests the setup
with CHOM and also allows for particular cases of conditional heteroskedasticity
(CHET), namely setups where a particular covariance matrix has a Kronecker
product (KP) structure. For example, the data generating process (DGP) has a KP
structure if the vector of structural and reduced-form errors equals a random vector
independent of the IVs times a scalar function of the IVs. In particular then, the
variances of all the errors depend on the IVs by the same multiplicative constant
given as a scalar function of the IVs. In the companion paper Guggenberger,
Kleibergen, and Mavroeidis (2023; hereafter GKM23) we find that KP structure
is not rejected at the 5% nominal size in more than 63% of empirical datasets
we studied of several recently published empirical papers (namely, 38 of 60
specifications are not rejected; and, including cases with clustering, 56 out of 118
are not rejected). For comparison, CHOM is rejected for 57 of the 60 specifications
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considered at the 5% nominal size, using the test in Kelejian (1982). Of course,
these findings do not prove that empirical datasets do have KP structure as the
low number of rejections of KP structure may be due to type II errors of the test.
However, coupled with the quite favorable finite sample power results of the test
of KP structure reported in GKM23 (for sample sizes of n = 200), we believe that
KP structure might be compatible with a sizable subset of empirical datasets.

Second, depending on a model selection mechanism that determines whether the
data are compatible with KP, the recommended test then equals the ARAKP,α test
or the AR/AR test in Andrews (2017) that is robust to arbitrary forms of CHET.
We show that the recommended test has correct asymptotic size. An important
ingredient in establishing that is showing that the ARAKP,α test does not reject less
often under the null hypothesis than the AR/AR test when the data are close to KP
structure.

We propose two different model selection methods. One is based on the KPST
test statistic introduced in GKM23 for testing the null hypothesis that a covariance
matrix has KP structure. The other one is based on the standardized norm of the
distance between the covariance matrix estimator and its closest KP approxima-
tion. As in the model selection method proposed in Andrews and Soares (2010),
we compare the test statistic to a user chosen threshold that, in the asymptotics,
is let go to infinity. The thresholds can be chosen differently depending on the
number of IVs k and parameters not under test. Based on comprehensive finite
sample simulations, we provide choices for the thresholds for several values of k
that lead to good control of the finite sample size.

As the main contribution of the paper, we verify that the resulting test, called
ϕMS−AKP,α test, has asymptotic size bounded by the nominal size α under certain
conditions on the selection mechanism and implementation of the AR/AR test at
nominal size α − δ for some arbitrarily small δ > 0.

In a Monte Carlo study, we compare the suggested new test ϕMS−AKP,α with
several alternatives given in Andrews (2017), in particular, the AR/AR and the
AR/QLR1 tests. Andrews (2017) fills a very important gap in the literature on sub-
vector inference by providing two-step Bonferroni-like methods1 for a rich class of
models that nests GMM, that (i) control the asymptotic size under relatively mild
high-level conditions that allow for CHET, (ii) are asymptotically nonconservative
(in contrast to standard Bonferroni methods), and (iii) for the case of AR/QLR1 is
asymptotically efficient under strong identification (while the AR/AR test is not
asymptotically efficient under strong identification in overidentified situations). In
contrast, the test considered here, ϕMS−AKP,α , can only be used in the linear IV
model and is not asymptotically efficient under strong identification. The Monte
Carlo study finds that ϕMS−AKP,α has uniformly higher rejection probabilities than
the AR/AR test for all the DGPs considered. That includes the null rejection
probabilities (NRPs) with the ϕMS−AKP,α test having finite sample size of 6%
versus the 5.4% of the AR/AR test at nominal size 5%. Based on the Monte Carlo

1See McCloskey (2017) for a general reference on Bonferroni methods in nonstandard testing setups.
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study, we conclude that relative to the AR/QLR1 test, ϕMS−AKP,α can be a useful
alternative in terms of power in situations of weak or mixed identification strengths
when the degree of overidentification is small and the covariance matrix of the
data are not too far from KP structure. Whenever the data are compatible with KP
structure, it also offers an important computational advantage because the ARAKP,α

test is given in closed form. In contrast, implementation of the two-step Bonferroni-
like methods require minimization of a statistic over a set that has dimension
equal to the number of parameters not under test. The computation time should
grow exponentially in the dimension of that set which constitutes a computational
challenge especially when an applied researcher uses the proposed methods for the
construction of a confidence region by test inversion. This being said, an applied
researcher who uses the ϕMS−AKP,α test has to be ready to implement the AR/AR
test in case it is determined that KP structure is not compatible with the data. Given
the construction of the ARAKP,α test it is not surprising to find the relative best
performance of the ϕMS−AKP,α test to occur under weak identification. Namely,
the critical values of the former test adapt to the strength of identification and
can be substantially lower than the corresponding chi-square critical values when
identification is deemed to be weak.

The rest of the paper is organized as follows. In Section 2, we introduce a
version of a subvector Anderson and Rubin (1949) test that has correct asymptotic
size for a parameter space that imposes an approximate Kronecker product (AKP)
structure for the covariance matrix. In Section 3, we introduce the new test that has
correct asymptotic size for a parameter space that does not impose any structure
on the covariance matrix and therefore, in particular, allows for arbitrary forms
of conditional heteroskedasticity. Finally, in Section 4, we study the finite sample
properties of the test. Proofs are given in the Appendix at the end.

Notation: Throughout the paper, we denote by “⊗” the KP of two matrices, by
vec(·) the column vectorization of a matrix, and by || · || the Frobenius norm.2 We
use the notation MA := In − PA and PA := A(A′A)−1A′ for any full rank matrix
A ∈ �n×k.

2. SUBVECTOR AR TEST UNDER APPROXIMATE KRONECKER
PRODUCT STRUCTURE

Assume the linear IV model is given by the equations:

y = Yβ +Wγ + ε,

Y = Z�Y +VY,

W = Z�W +VW, (2.1)

2Recall the Frobenius norm for a matrix A = (aij) ∈ �m×n is defined as ||A||2 :=∑m
i=1
∑n

j=1a2
ij. When A is a vector

the Frobenius and the Euclidean norm are numerically equivalent.
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where y ∈ �n,Y ∈ �n×mY ,W ∈ �n×mW, and Z ∈ �n×k. Here, W contains endoge-
nous regressors, while the regressors Y may be endogenous or exogenous. We
assume that k −mW ≥ 1 and mW ≥ 1. The reduced form can be written as(
y Y W

)= Z
(
�Y �W

)(β ImY 0mY ×mW

γ 0mW×mY ImW

)
+ (vy VY VW

)︸ ︷︷ ︸
V

, (2.2)

where vy := VYβ + VWγ + ε (which depends on the true β and γ ),V ′
W =

(VW,1, . . . ,VW,n), V ′
Y = (VY,1, . . . ,VY,n),Z

′ = (Z1, . . . ,Zn). By Vi, for i = 1, . . . ,n,
we denote the ith row of V written as a column vector and similarly for other
matrices.

The objective is to test the subvector hypothesis

H0 : β = β0 against H1 : β �= β0, (2.3)

using tests whose size, i.e., the highest NRP over a large class of distributions
for (εi,Z

′
i,V

′
Y,i,V

′
W,i) and the unrestricted nuisance parameters �Y, �W, and γ ,

equals the nominal size α, at least asymptotically. In particular, weak identification
and non-identification of β and γ are allowed for. The setup allows testing
the coefficients of exogenous or endogenous regressors Y in the presence of
endogenous regressors W. We impose the following assumption as in GKM19
(from where the name of the assumption is inherited).

Assumption B. The random vectors (εi,Z
′
i,V

′
Y,i,V

′
W,i) for i = 1, . . . ,n in (2.1)

are i.i.d. with distribution F.

For a given sequence an = o(1) in �≥0, we define a sequence of parameter
spaces FAKP,an for (γ,�W,�Y,F) under the null hypothesis H0 : β = β0 that is
larger than the corresponding ones in GKMC and GKM19 in that general forms
of AKP structures for the variance matrix

RF := EF(vec(ZiU
′
i)(vec(ZiU

′
i))

′) ∈ �kp×kp (2.4)

are allowed for.3 Namely, for Ui := (εi + V ′
W,iγ,V ′

W,i)
′ (which equals (vyi −

V ′
Y,iβ,V ′

W,i)
′), p := 1+mW, and m := mY +mW , let

FAKP,an = {(γ,�W,�Y,F) : γ ∈ �mW,�W ∈ �k×mW,�Y ∈ �k×mY ,

EF(||Ti||2+δ1) ≤ B, for Ti ∈ {vec(ZiU
′
i),||Zi||2},

EF(ZiV
′
i ) = 0k×(m+1), RF = GF ⊗HF +ϒn,

κmin(A) ≥ δ2 for A ∈ {EF(Z
′
iZi),GF,HF}} (2.5)

for symmetric matrices ϒn ∈ �kp×kp such that

||ϒn|| ≤ an, (2.6)

3Regarding the notation (γ,�W,�Y,F) and elsewhere, note that we allow as components of a vector column vectors,
matrices (of different dimensions), and distributions.
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positive definite (pd) symmetric matrices GF ∈ �p×p (whose upper left element
is normalized to 1) and HF ∈ �k×k,δ1,δ2 > 0,B < ∞. Note that the factors in
the KP GF ⊗ HF are not uniquely defined due to the summand ϒn. Note that
no restriction is imposed on the variance matrix of vec(ZiV ′

Y,i) and, in particular,
EF(vec(ZiV ′

Y,i)(vec(ZiV ′
Y,i))

′) does not need to factor into a KP.
The factorization of the covariance matrix into an AKP in line three of (2.5) is

a weaker assumption than CHOM. Under CHOM, we have GF = EF
(
UiU′

i

)
and

HF = EF(Z
′
iZi) (prior to the normalization of the upper left element of GF) and

ϒn = 0kp×kp. The AKP structure allowed for here (but not in GKMC and GKM19)
also covers some important cases of CHET involving vec(ZiU′

i).

Examples. (i) Consider the case in (2.1) where (̃εi,Ṽ ′
W,i)

′ ∈ �p are i.i.d.
zero mean with a pd variance matrix, independent of Zi, and (εi,V ′

W,i)
′ :=

f (Zi)(̃εi,Ṽ ′
W,i)

′ for some scalar valued function f of Zi.4 In that case, the covariance
matrix RF can be written as

EF(vec(ZiU
′
i)(vec(ZiU

′
i))

′)

= EF

(
UiU

′
i ⊗ZiZ

′
i

)
= EF

(
(εi +V ′

W,iγ,V ′
W,i)

′(εi +V ′
W,iγ,V ′

W,i)⊗ZiZ
′
i

)
= EF

(
(̃εi + Ṽ ′

W,iγ,Ṽ ′
W,i)

′(̃εi + Ṽ ′
W,iγ,Ṽ ′

W,i)
)⊗EF

(
f (Zi)

2ZiZ
′
i

)
, (2.7)

and thus has KP structure even though, obviously, CHOM is not satisfied because

EF(UiU
′
i |Zi) = f (Zi)

2EF (̃εi + Ṽ ′
W,iγ,Ṽ ′

W,i)
′(̃εi + Ṽ ′

W,iγ,Ṽ ′
W,i) (2.8)

depends on Zi.
We can construct illustrative examples where the proportionality (εi,V ′

W,i)
′ :=

f (Zi)(̃εi,Ṽ ′
W,i)

′ (that would imply KP structure) holds. Consider, e.g., the model

yi = Yiβi +Wiγ,

Wi = Yiφi +Xi�X,

where the covariates Yi and Xi are exogenous, the variables yi,Wi are endogenous,
and Yi has heterogeneous causal effects on yi,Wi, denoted by βi,φi, respectively.
Let β := E (βi),φ := E (φi), define ε̃i := βi −β and ṼWi := φi −φ, and assume
that ε̃i,ṼWi are orthogonal to Zi := (Yi,Xi) . Then, this fits exactly into the setup
above with f (Zi) = Yi. In other words, KP structure can result as a special case of
heterogeneous causal effects.

(ii) In a wage regression to assess the effect of “years of education,” the
assumption of CHOM would require that, e.g., the variance of “wage” does
not depend on the included regressor “race.” This assumption is incompatible

4For example, Andrews (2017) considers f (Zi) = ||Zi||/k1/2.
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with recent U.S. data where the wage dispersion is largest for Asians. Instead,
the construction (εi,V ′

W,i)
′ := f (Zi)(̃εi,Ṽ ′

W,i)
′ in (i) allows for dependence of the

variances of the regressand and all endogenous regressors on a scalar function of
Zi. The maintained restriction is that all these variances are affected approximately
by the same scalar function of Zi. In the related paper, GKM23, we test the null
hypothesis of KP structure for 118 specifications in about a dozen highly cited
papers and find that at the 5% nominal size in 47.5% of the cases the null is not
rejected.

In this section, we will introduce a new conditional subvector ARAKP test and
show it has asymptotic size with respect to the parameter space FAKP,an equal to
the nominal size. We next define the new test statistic and the critical value for the
case considered here of AKP structure.

Estimation of the two factors in the AKP structure: Define

Zi := (n−1Z
′
Z)−1/2Zi ∈ �k (2.9)

and Z ∈ �n×k with rows given by Z′
i for i = 1, . . . ,n.5 Define an estimator of the

matrix

RF = (Ip ⊗ (EFZiZ
′
i)

−1/2)RF(Ip ⊗ (EFZiZ
′
i)

−1/2) ∈ �kp×kp (2.10)

by

R̂n := n−1∑n
i=1fif

′
i ∈ �kp×kp, where

fi := ((MZY0)i,(MZW)′i)
′ ⊗Zi ∈ �kp, and Y0 := y−Yβ0. (2.11)

Note that R̂n is automatically a centered estimator because, as straightforward
calculations show, n−1∑

ifi = 0. From RF = GF ⊗ HF +ϒn, it follows that RF =
GF ⊗HF +o(1) for

HF := (EFZiZ
′
i)

−1/2HF(EFZiZ
′
i)

−1/2. (2.12)

Let

(Ĝn,Ĥn) = argmin ||G⊗H − R̂n||, (2.13)

where the minimum is taken over (G,H) for G ∈ �p×p,H ∈ �k×k being pd,
symmetric matrices, and normalized such that the upper left element of G equals 1.

It can be shown that (Ĝn,Ĥn) are given in closed form by the following
construction.6 First, for a pd matrix A ∈ �kp×kp define the rearrangement of A as

R(A) :=
⎛⎝A1

. . .

Ap

⎞⎠ ∈ �pp×kk, where

5For simplicity, we do not use the more precise notation Zin for Zi. It is explained in detail in Comment 3 below
Theorem 1 why we introduce Zi, namely to obtain invariance of the testing procedure with respect to nonsingular
transformations of the IVs.
6This follows from a combination of Lemma 2 and Theorem 5.8 in van Loan and Pitsianis (1993, Cor. 2.2).
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Aj :=
⎛⎝(vec(A1j))

′
. . .

(vec(Apj))
′

⎞⎠ ∈ �p×kk for j = 1, . . . ,p, (2.14)

where Alj ∈ �k×k denotes the (l,j) submatrix of dimensions k × k, where l,j =
1, . . . ,p. Second, denote by

L̂′R(A)N̂ = diag(̂σl) ∈ �pp×kk, (2.15)

a singular value decomposition of R(A),7 where the singular values σ̂l for l =
1, . . . ,p2 are ordered nonincreasingly. Finally, denote by L̂(: ,1) and N̂(: ,1)

singular vectors corresponding to the largest singular value σ̂1 and let L̂(1,1)

denote the first component of L̂(: ,1). Then, letting the role of A be played by
R̂n in (2.15), minimizers (Ĝn,Ĥn) to (2.13) are defined by

vec(Ĝn) = L̂(: ,1)/̂L(1,1) and vec(Ĥn) = σ̂1L̂(1,1)N̂(: ,1), (2.16)

where L̂(1,1) > 0 whenever R̂n is pd. By Lemma 4, the definition given in (2.16)
is unique for all large enough n wp18 and

Ĝn −GFn → 0p×p and Ĥn −HFn → 0k×k a.s. (2.17)

under certain sequences Fn as defined in FAKP,an for which RFn = GFn ⊗
HFn + o(1) (where RFn is defined in (2.10) with F replaced by Fn), HFn :=
(EFn ZiZ

′
i)

−1/2HFn(EFn ZiZ
′
i)

−1/2 (as defined in (2.12)), and the upper left element
of GFn is normalized to 1.

Definition of the conditional subvector test: We denote the subvector AR
statistic when the variance matrix has AKP structure by ARAKP,n(β0) and define
it as the smallest root κ̂pn of the roots κ̂in,i = 1, . . . ,p (ordered nonincreasingly) of
the characteristic polynomial∣∣∣κ̂Ip −n−1Ĝ−1/2

n

(
Y0,W

)′
ZĤ−1

n Z′ (Y0,W
)

Ĝ−1/2
n

∣∣∣= 0. (2.18)

The conditional subvector test ARAKP,α rejects H0 at nominal size α if

ARAKP,n(β0) > c1−α(κ̂1n,k −mW), (2.19)

where c1−α (·,·) is defined as follows. Muirhead (1978), in the case where mW =
1 and assuming normality, provides an approximate, nuisance parameter free,
conditional density of the smaller eigenvalue κ̂2n given the larger one κ̂1n for any
degree of overidentification k−mW, see (2.12) in GKM19 for the conditional pdf.
For given κ̂1n and arbitrary mW, c1−α(κ̂1n,k−mW) denotes the 1−α-quantile of that
approximation. Table 1 and Supplement C of GKM19 provide c1−α(κ̂1n,k − mW)

for α = 1,5,10%,k − mW = 1, . . . ,20 and a fine grid of values for κ̂1n, say

7In van Loan and Pitsianis (1993, Cor. 2), the orthogonal matrices L̂ ∈ �pp×pp and N̂ ∈ �kk×kk are called U and V,

respectively, notation that we have already used for other objects.
8Note that it would not be unique if the eigenspace associated with the largest singular value had dimension larger
than 1.
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Table 1. cv = c1−α(κ̂1,k−mW) for α = 5%,k−mW = 4 for various values of κ̂1

κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv κ̂1 cv

1.2 1.1 2.1 1.9 3.2 2.9 4.5 3.9 5.9 4.9 7.4 5.9 9.4 6.9 12.5 7.9 20.9 8.9

1.3 1.2 2.3 2.1 3.5 3.1 4.7 4.1 6.2 5.1 7.8 6.1 9.9 7.1 13.4 8.1 26.5 9.1

1.4 1.3 2.5 2.3 3.7 3.3 5.0 4.3 6.5 5.3 8.2 6.3 10.5 7.3 14.5 8.3 39.9 9.3

1.6 1.5 2.7 2.5 4.0 3.5 5.3 4.5 6.8 5.5 8.6 6.5 11.1 7.5 15.9 8.5 57.4 9.4

1.8 1.7 3.0 2.7 4.2 3.7 5.6 4.7 7.1 5.7 9.0 6.7 11.7 7.7 17.9 8.7 1000 9.48

κ̂1,1 ≤ ·· · ≤ κ̂1,j ≤ ·· · ≤ κ̂1,J for some large J. We reproduce Table 1 (that covers
the case α = 5% and k − mW = 4) from GKM19. Conditional critical values
for values of κ̂1n not reported in the tables are obtained by linear interpolation.
Specifically, let q1−α,j(k − 1) denote the 1 −α quantile of the distribution whose
density is given by (2.12) in GKM19 with κ̂1n replaced by κ̂1,j. The end point of
the grid κ̂1,J should be chosen high enough so that q1−α,J(k − mW) ≈ χ2

k−mW,1−α .
For any realization of κ̂1n ≤ κ̂1,J , find j such that κ̂1n ∈ [κ̂1,j−1,κ̂1,j

]
with κ̂1,0 = 0

and q1−α,0 (k −mW) = 0, and let

c1−α(κ̂1n,k −mW) := κ̂1,j − κ̂1n

κ̂1,j − κ̂1,j−1
q1−α,j−1(k −mW)+ κ̂1n − κ̂1,j−1

κ̂1,j − κ̂1,j−1
q1−α,j(k −mW).

(2.20)

Denote by P(γ,�W,�Y,F)(·) the probability of an event under the null hypothesis
when the true values of the structural and reduced-form parameters and the
distribution of the random variables are given by (γ,�W,�Y,F). Recall the
definition of the parameter space FAKP,an in (2.5). We can now formulate the main
result of this section.

Theorem 1. Under Assumption B, the conditional subvector test ARAKP,α

defined in (2.19) implemented at nominal size α has asymptotic size, i.e.,

lim sup
n→∞

sup
(γ,�W,�Y,F)∈FAKP,an

P(γ,�W,�Y,F)(ARAKP,n(β0) > c1−α(κ̂1n,k −mW))

equal to α for α ∈ {1%,5%,10%} and k −mW ∈ {1, . . . ,20}.

Comment. 1. The conditional subvector test ARAKP,α adapts the test in GKM19
from a setup under CHOM to AKP structure. The modification involves replacing
the matrices

(
Y0,W

)′
MZ

(
Y0,W

)
/(n − k) and n−1Z

′
Z in GKM19 by the matrices

Ĝn and Ĥn, respectively, in (2.18) to account for the more general structure of
the covariance matrix. Some portions of the proof follow similar steps as the
proof of Theorem 5 in GKM19. In particular, one portion of the proof relies on
a one-dimensional simulation exercise to prove that the NRPs are bounded by the
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nominal size. This exercise could be extended to choices of α and k −mW beyond
those in the theorem and likely the theorem would extend to many more choices.

2. Trivially, under the same assumptions as in Theorem 1, we obtain that

lim sup
n→∞

sup
(γ,�W,�Y,F)∈FAKP,an

P(γ,�W,�Y,F)(ARAKP,n(β0) > χ2
k−mW,1−α) = α.

That is, the generalization of the subvector test in GKMC to AKP structure has
correct asymptotic size. This result is obtained fully analytically; its proof does
not require any simulations.

3. Invariance with respect to nonsingular transformations of the IV matrix.
The identifying power of the model comes from the moment condition EFεiZi =
EF(yi −Y ′

iβ −W ′
iγ )Zi = 0. This moment condition obviously still holds when the

instrument vector is premultiplied by a nonrandom nonsingular matrix A ∈ �k×k,

i.e., EFεiAZi = 0. It then seems reasonable to look for testing procedures whose
outcome is invariant to such nonsingular transformations. In the weak IV literature,
e.g., Andrews, Moreira, and Stock (2006) and Andrews, Marmer, and Yu (2019)
and the references therein, the class of (similar) invariant tests to orthogonal
transformations A, that is, changes of the coordinate system, has been studied. The
transformation of the IVs in (2.9) is performed in order for the test to be invariant
to nonsingular transformations of the IVs.

If the conditional subvector ARAKP test defined in (2.19) (and R̂n in (2.11))
was defined with Zi in place of Zi it would be invariant to orthogonal trans-
formations but not necessarily to nonsingular ones. To see the former, denote
by R̂nA the matrix R̂n when the instrument vector has been transformed to AZi

(and consequently Z is changed to ZA′). Then the claim follows from R(̂RnA) =
R(̂Rn)(A′ ⊗ A′) (which holds for any nonsingular matrix A by straightforward
calculations using vec(ABC) = (C′ ⊗A)vec(B) for any conformable matrices A,B,

and C and MZ = MZA′) which implies ĜnA = Ĝn and ĤnA = AĤnA′ when A
is orthogonal, where again ĜnA and ĤnA denote the matrices Ĝn and Ĥn when
the instrument vector Zi has been transformed to AZi. It then follows that the
matrix n−1Ĝ−1/2

n
(
Y0,W

)′
ZĤ−1

n Z
′ (

Y0,W
)

Ĝ−1/2
n in (2.18) (and thus its eigenval-

ues) remain invariant under orthogonal transformations Zi → AZi of the instrument
matrix. This test, however, is not invariant in general to arbitrary nonsingular
transformations.

But with the replacement of Zi by Zi as done in (2.11) and, correspondingly, Z by
Z(n−1Z

′
Z)−1/2 in (2.18), the test is invariant against nonsingular transformations

A. The invariance of this test to arbitrary nonsingular transformations Zi → AZi of
the instrument matrix (which leads to a transformation of Zi to (AZ

′
ZA′)−1/2AZi)

follows from straightforward calculations and the fact that the matrix

TA := (Z
′
Z)1/2A′(AZ

′
ZA′)−1/2 ∈ �k×k (2.21)

is orthogonal. In particular, one can easily show that the matrices R(̂Rn),Ĝn, and
Ĥn that appear as ingredients in the conditional subvector test ARAKP,α with A = Ik
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are related to the corresponding matrices R(̂RnA),ĜnA, and ĤnA, when A is an
arbitrary nonsingular matrix, via

R(̂RnA) = R(̂Rn)(TA ⊗TA), ĜnA = Ĝn, and ĤnA = T ′
AĤnTA, (2.22)

which immediately implies the desired invariance result.
4. The conditional subvector test can be generalized to a stationary time series

setting, see Appendix A.5 for details. In the context of a time series setting, we
offer another example of AKP structure. Namely, consider a structural vector
autoregression AXt = BXt−1 +ηt, where dimXt = dimηt = n,E (ηt|Xt−1) = 0 and
suppose that var (ηt|Xt−1) = var (ηt) = �t = diag

(
σ 2

1t, . . . ,σ
2
nt

)
. If σ 2

it = atσ
2
i for

some scalar function of time at, i.e., the volatilities of all the shocks change over
time in a proportional manner, then the variance of Xt−1ηt has KP structure. In
this model, identification can be achieved by exclusion restrictions (Sims, 1980)
that render some of Xt−1 valid instruments. It can also be achieved with external
instruments if available (Stock and Watson, 2018). Time-variation in volatilities
has been reported in many contexts. For instance, the “great moderation” is a well-
documented phenomenon of a fall in macroeconomic volatility in the US in the
early 1980s (cf. Bernanke, 2004, Chap. 4). AKP would result if the fall in the
volatilities were similar across variables.

5. Note that under the null hypothesis, the test does not depend on the value
of the reduced form matrix �Y because the test statistic and the critical value are
affected by Y only through Y0 = y−Yβ0.

6. GKM19 establish that the conditional subvector AR test introduced there
enjoys near optimality properties in the linear IV model with conditional
homoskedasticity in a certain class of tests that depend on the data only through
the roots κ̂in,i = 1, . . . ,p when k −mW = 1. On the other hand, when k −mW gets
bigger the test may be quite conservative. The power gains over the projected AR
subvector test discussed in Dufour and Taamouti (2005) arise in weakly identified
scenarios while under strong identification these two tests become identical.
Similarly, we expect the power properties of the new conditional subvector test
ARAKP,α to be most competitive for small k−mW, in particular, when k−mW = 1,
in weakly identified situations.

Intuition behind the result derived in GKM19 that conditioning on the largest
eigenvalue when mW > 1 leads to a test with correct size is based on (i) the
corresponding result for mW = 1 and (ii) the so-called “inclusion principle” that
provides a ranking of the corresponding eigenvalues of a Hermitian matrix and its
principal submatrices (see GKM19, pp. 499–500, in particular, eqn. (2.23)).

3. SUBVECTOR TESTING UNDER ARBITRARY FORMS OF
CONDITIONAL HETEROSKEDASTICITY

We now allow for arbitrary forms of CHET, that is, the parameter space does
not impose an AKP structure for RF. We describe a testing procedure under
high-level assumptions that we then verify in the next subsections for particular
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implementations of the test. In particular, Lemma 1 verifies Assumptions RT and
RP for a particular implementation of the AR/AR test.

In what follows, FHet is a generic parameter space for (γ,�W,�Y,F) that does
not impose an AKP structure, but if the restriction RF = GF ⊗ HF + ϒn as in
FAKP,an in (2.5) was added to the conditions in FHet then FHet ⊂ FAKP,an . For
example, the null parameter space FHet may impose stronger moment conditions
than FAKP,an so that certain Lyapunov CLTs apply. See the definitions of FHet in
the next subsections. We summarize the restrictions on the parameter space (PS)
in the following assumption.

Assumption PS. FHet ⊂ F̃AKP,an, where F̃AKP,an is equal to FAKP,an without
the condition RF = GF ⊗ HF +ϒn (AKP structure) and without the assumptions
κmin(A) ≥ δ2 for A ∈ {GF,HF}.

We assume there exists a robust test (RT) ϕRob,α that has asymptotic size for
the parameter space FHet bounded by the nominal size α. For example, in the next
subsection, we consider a particular implementation of the AR/AR test in Andrews
(2017). In general, we think of ϕRob,α as a test whose power can be substantially
improved on by the test ϕAKP,α when RF has AKP structure.

Assumption RT. The test ϕRob,α of (2.3) has asymptotic size bounded by the
nominal size α for the parameter space FHet.

We now define a new test that, roughly speaking, coincides with ϕAKP,α or ϕRob,α

depending on whether the data seems consistent or not with AKP structures. We
now provide the details.

Consider a given sequence of constants cn such that

cn → ∞ and cn/n1/2 → 0, (3.1)

e.g., cn = cn1/2/ ln(n) or cn = cn1/2/ ln ln(n) for some constant c > 0 and define

λ9n := min ||R−1/2
Fn

(G⊗H −RFn)R
−1/2
Fn

||/cn, (3.2)

where the minimum (here and in analogous expressions below) is taken over (G,H)

for G ∈ �p×p,H ∈ �k×k being pd, symmetric matrices, normalized such that the
upper left element of G equals 1.9 The quantity λ9n measures how far from KP
structure the covariance matrix RFn in (2.10) when F = Fn is. To show that the new
test ϕMS−AKP,α defined below has asymptotic significance level α, it is sufficient
(as proven in the Appendix) to consider two types of drifting sequences of DGPs
in FHet and to establish that the test has limiting NRP bounded by the nominal size
α in each case. The first type of sequences are those for which

n1/2λ9n → h9 = ∞, (3.3)

that is, sequences where the covariance matrix RFn is “far away” from KP structure.
We assume that there is a model selection (MS) method ϕMS,cn ∈ {0,1} such that

9The expression G⊗H −RFn is pre- and postmultiplied by R−1/2
Fn

for invariance reasons.
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when RFn is “far from” KP structure it will choose the robust test wpa1. The
next assumption makes that statement more precise. To properly formulate the
assumption, we require terminology that is provided in the Appendix because it
requires a lot of space. In particular, we need to consider particular sequences of
drifting parameters λwn,h (defined in (A.21) in the Appendix) where wn denotes a
subsequence of n.

Assumption MS. The model selection method ϕMS,cn ∈ {0,1} satisfies ϕMS,cn =
1 wpa1 under parameter sequences λwn,h (with underlying parameter space FHet)

with h9 = ∞.

By definition, along λwn,h,w
1/2
n λ9wn → h9 and thus when h9 = ∞ the sequence

is not local to KP structure.
Definition of the fully robust test: Let δ ≥ 0. The new suggested test

ϕMS−AKP,δ,cn,α of nominal size α of the null hypothesis (2.3) is defined as

ϕMS,cnϕRob,α−δ + (1−ϕMS,cn)ϕAKP,α . (3.4)

We typically write ϕMS−AKP,α rather than ϕMS−AKP,δ,cn,α to simplify notation.
Ideally, δ = 0 can be chosen in this construction. To verify Assumption RP using
the AR/AR test as ϕRob,α−δ we need to have δ > 0. (Potentially, Assumption RP
may hold with δ = 0 but our current proof technique does not allow verifying it.)

By Assumption MS, ϕMS−AKP,α = ϕRob,α−δ wpa1 in case (3.3). Thus, by
Assumption RT, the new test ϕMS−AKP,α has limiting NRP bounded by α − δ

of the test in that case.
For the model selection methods introduced below, the sequence of constants cn

reflects a trade-off between size and power. Large values of cn will imply frequent
use of ϕAKP,α which should translate into good power properties. On the other
hand, use of ϕAKP,α could distort the NRPs in finite samples if the test is used in
a scenario where the covariance matrix does not have AKP structure. Below we
make a recommendation regarding the choice of cn based on comprehensive Monte
Carlo studies. Note that cn can also depend on observed nonrandom quantities such
as, e.g., k and mW but for the sake of notational simplicity we do not make that
explicit.

To guarantee correct asymptotic significance level α of the test ϕMS−AKP,α and
to rule out any potential pretesting issue, we have to implement the test ϕRob,α at a
nominal size infinitesimally smaller than α. For example, we can pick δ = 10−6,

which should not make any practical difference in terms of power relative to using
the test with δ = 0.

In addition, we have to impose one additional assumption regarding the relative
NRPs (Assumption RP) of the robust test ϕRob,α−δ and ϕAKP,α under sequences with
AKP structure in order to make sure that ϕMS−AKP,α has limiting NRP bounded by
α. More precisely, consider a sequence of DGPs in FHet such that

n1/2λ9n → h9 ∈ [0,∞). (3.5)
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Using n1/2/cn → ∞, one can then show that min ||G ⊗ H − RFn || → 0 and the
sequences are of AKP structure. Therefore, under such sequences the test ϕAKP,α

has limiting NRP bounded by α. The notation Pλwn,h(A) denotes probability of
an event A when the true DGP is characterized by λwn,h. By definition, along
λwn,h,w

1/2
n λ9wn → h9 and thus when h9 < ∞ the sequence is local to KP structure.

Assumption RP. Under sequences of DGPs (γwn,�Wwn,�Ywn,Fwn) in FHet

for subsequences wn for which λwn,h satisfies h9 ∈ [0,∞), Pλwn,h(ϕRob,α−δ ≤
ϕAKP,α) → 1.

Assumption RP says that under null sequences local to KP structure the robust
test ϕRob,α−δ has critical region that is contained in the critical region of ϕAKP,α

with probability going to one. Even when δ = 0 this does not need to imply that
the two tests are asymptotically identical because the robust test may have limiting
NRP strictly smaller than α and may be more conservative than ϕAKP,α . Under
Assumption RP, one can show that in case (3.5) (i.e., under drifting sequences of
DGPs λwn,h with finite h9) ϕMS−AKP,α has limiting NRP bounded by the nominal
size of the test (because from the proof of Theorem 1, the test ϕAKP,α has limiting
NRP bounded by α; and the limiting NRP of the new test ϕMS−AKP,α is then
bounded by α by the assumption that ϕRob,α−δ has asymptotic size bounded by
α − δ.)

From the above, it then follows quite straightforwardly, that the asymptotic size
of ϕMS−AKP,α is bounded by the nominal size for the parameter space FHet. Also,
the new test is at most as nonsimilar asymptotically as ϕRob,α−δ which translates
into favorable power properties of the new test.

Theorem 2. Suppose Assumptions PS, RT, MS, and RP hold. Then the test
ϕMS−AKP,δ,cn,α defined in (3.4) with δ > 0 and cn satisfying the conditions in (3.1)

has asymptotic size bounded by the nominal size α for the parameter space FHet

for α ∈ {1%,5%,10%} and k −mW ∈ {1, . . . ,20}.

Comments. 1. If liminfn→∞ inf(γ,�W,�Y,F)∈FHet E(γ,�W,�Y,F)ϕMS−AKP,δ,cn,α is
continuous in δ at δ = 0 then as δ → 0 the new test ϕMS−AKP,δ,cn,α is asymptotically
not more nonsimilar (i.e., less conservative) than ϕRob,α , i.e.,

lim
δ→0

lim inf
n→∞ inf

(γ,�W,�Y,F)∈FHet
E(γ,�W,�Y,F)ϕMS−AKP,δ,cn,α

≥ lim inf
n→∞ inf

(γ,�W,�Y,F)∈FHet
E(γ,�W,�Y,F)ϕRob,α . (3.6)

See the proof of Theorem 2 for a proof. Property (3.6) should translate into
improved power of ϕMS−AKP,δ,cn,α relative to ϕRob,α .

2. The restriction to α ∈ {1%,5%,10%} and k−mW ∈ {1, . . . ,20} in the formula-
tion of Theorem 2 is an artifact of Theorem 1 where the conditional subvector test
ϕAKP,α was shown to have correct asymptotic size for these cases only. The same
is true for other theorems formulated below.
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In the next subsection, we specifically use the AR/AR subvector procedure due
to Andrews (2017) as ϕRob,α−δ .

3.1. Model Selection Methods ϕMS,cn

In this subsection, we discuss two methods that can be used for ϕMS,cn as model
selection procedures. The first one is akin to the moment selection method in
Andrews and Soares (2010) to check which moment inequalities are binding in
a model defined by moment inequalities. The second one is based on the test for
KP structure introduced in GKM23.

Method 1: Define

K̂n := n1/2||̂R−1/2
n (Ĝn ⊗ Ĥn − R̂n)̂R

−1/2
n ||, (3.7)

with Ĝn and Ĥn defined in (2.13), to evaluate how far the true model is away from
KP structure. Define the first choice for model selection as

ϕMS,cn := I(K̂n > cn). (3.8)

Recall the definition of F̃AKP,an given in Assumption PS. Here, we take

FHet = {(γ,�W,�Y,F) ∈ F̃AKP,an,

EF((||Zi||2||Ui||2)2+δ1) ≤ B, κmin(Rn) ≥ δ2}. (3.9)

It is easy to show using the formulas in (2.22) and the analogous one R̂nA = (Ip ⊗
T ′

A)̂Rn(Ip ⊗ TA) for R̂n, orthogonality of TA, and using the fact that the Frobenius
norm is invariant to orthogonal transformations, that K̂n is invariant to nonsingular
transformations of the instrument vector. Crucial for this result is again that fi in
(2.11) in the definition of R̂n (and as a result in the definition of Ĝn and Ĥn in (2.13))
is implemented with the transformed instrument vector Zi (rather than with Zi).

Method 2: Define

ϕMS,cn := I(KPST > cn), (3.10)

where KPST is the test statistic introduced in GKM23 to test the null of a KP
structure of RF.10 To employ this method, we need to strengthen the moment
restrictions in FHet to EF(||Ti||2+δ1) ≤ B, for Ti ∈ {||Zi||4||Ui||4,||Zi||4}, see
Theorem 3 in GKM23.

We verify Assumption MS in Appendix A.3 for these two choices of ϕMS,cn and
for the parameter space defined in (3.9).

3.2. Choice for ϕRob,α : The AR/AR Test in Andrews (2017)

In this subsection, we define one particular version of the various weak IVs and
heteroskedasticity robust subvector tests suggested in Andrews (2017), namely the

10The test statistic is defined in (19) and (22) in GKM23 and not reproduced here for brevity. In their notation, our
fi is f̂i, compare the formula below (7) in GKM23 to our (2.11).
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so-called AR/AR test and verify that it satisfies Assumptions RT and RP from the
previous subsection. We define it for nominal size α.

To do so, we use the following quantities. For θ = (β,γ ), let11

gi (θ) := Zi(yi −Y ′
iβ −W ′

iγ ) and ĝn (θ) := n−1∑n
i=1gi (θ) . (3.11)

Define

�̂n (θ) := n−1∑n
i=1 (gi (θ)− ĝn (θ))(gi (θ)− ĝn (θ))′ . (3.12)

The heteroskedasticity-robust AR statistic for testing hypotheses involving the full
parameter vector θ , evaluated at (β0,γ ), is defined as

HARn (β0,γ ) := n̂gn (β0,γ )′ �̂n (β0,γ )−1 ĝn (β0,γ ) . (3.13)

For s = 1, . . . ,mW , denote by Ws ∈ �n the sth column of W. Next, as in Andrews
(2017, eqns. (7.9) and (7.10)), let

D̃n (θ) := �̂n (θ)−1/2 (D̂1n (θ), . . . ,D̂mW n (θ)) ∈ �k×mW,

D̂sn (θ) := −n−1Z
′
Ws − �̂sn (θ)�̂n (θ)−1 ĝn (θ) ∈ �k,

�̂sn (θ) := −n−1∑n
i=1

(
ZiW

s
i −n−1Z

′
Ws
)

gi (θ)′ ∈ �k×k, and

HARβ,n (β0,γ ) := n̂gn (β0,γ )′ �̂n (β0,γ )−1/2

×MD̃n(β0,γ )+an−1/2ζ1
�̂n (β0,γ )−1/2 ĝn (β0,γ ), (3.14)

where HARβ,n (β0,γ ) is a C (α)-AR statistic, obtained as a quadratic form in the
moment conditions projected onto the space orthogonal to the orthogonalized
Jacobian with respect to γ . The random perturbation an−1/2ζ1 (with ζ1 ∈ �k×mW

a random matrix of independent standard normal random variables that are
independent of all other statistics considered) in the last line of (3.14) is introduced
in Andrews (2017, p. 23) to guarantee that the space projected on has rank mW a.s.
Here, a ∈ � is a tiny positive constant.

Let α ∈ (0,1). The AR/AR test at nominal size α is defined as follows:

1. Fix an α1 ∈ (0,α) . As in Andrews (2017, eqn. (7.1)), define

CS+
1n := {γ̃ ∈ �mW : HARn (β0,γ̃ ) < χ2

k,1−α1
}∪ �̃1n, (3.15)

where for Q̂n (θ) := ĝn (θ)′ (n−1∑n
i=1ZiZ

′
i)

−1̂gn (θ),

�̃1n :=
{
γ ∈ �mW : W ′Z(

∑n
i=1ZiZ

′
i)

−1ĝn (β0,γ ) = 0mW & (3.16)

Q̂n (β0,γ ) ≤ min
γ̃∈�mW

Q̂n (β0,γ̃ )+ lnn

n

}
is the so-called “estimator set” (see Andrews, 2017, p. 1 and eqn. (7.3). If
W ′PZW is invertible (which would happen wpa1 under the assumption (not

11To simplify notation, we write (β,γ ) here and in other situations, rather than the more correct (β ′,γ ′)′.
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imposed here) that EFZiW ′
i is full column rank) then the first condition in

�̃1n has the unique solution γ n := (W ′PZW)−1W ′PZ(y − Yβ0) and therefore
�̃1n = {γ n}. (Note that along certain sequences for which ||γ || → ∞ it follows
that ||̂gn (β0,γ ) || → ∞ and therefore if the function Q̂n (β0,γ ) ≥ 0 only has one
local extremum it must be a global minimum.)

2. For α2,n(θ) defined below (and depending on α and α1), H0 in (2.3) is rejected
if

inf
γ̃∈CS+

1n

(
HARβ,n (β0,γ̃ )−χ2

k−mW,1−α2,n(β0,γ̃ )

)
> 0.

That is,

ϕAR/AR,α,α1 = 1{
inf

γ̃∈CS+
1n

(
HARβ,n(β0,γ̃ )−χ2

k−mW ,1−α2,n(β0,γ̃ )

)
>0

} (3.17)

(see Andrews, 2017, eqn. (4.2)). We typically write ϕAR/AR,α instead of
ϕAR/AR,α,α1 .

The second step size α2,n(θ) is chosen as

α2,n(θ) :=
{

α −α1, if ICSn(θ) ≤ KL,

α, if ICSn(θ) > KL,
(3.18)

for some positive number KL, e.g., KL = 0.05 and α1 = 0.005 (see Andrews, 2017,
eqn. (7.8) and p. 34),12 where

�̂n(θ) := Diag{σ̂−1
1n (θ), . . . ,σ̂−1

mW n(θ)} ∈ �mW×mW,

σ̂ 2
sn(θ) := n−1∑n

i=1

(
Hsi(θ)− Ĥsn(θ)

)2
, for s = 1, . . . ,mW,

Hsi(θ) :=
√

(Ws
i )

2Z
′
i�̂n (θ)−1 Zi, Ĥsn(θ) := n−1∑n

i=1Hsi(θ),

ICSn(θ) := n−1κ
1/2
min(�̂n(θ)W ′Z�̂n (θ)−1 Z

′
W�̂n(θ)) (3.19)

(see Andrews, 2017, eqns. (7.4) and (7.5)), where Ws
i ∈ � denotes the sth

component of Wi.
Coming back to the statistic ARAKP,n(β0) given in (2.18) note that

ARAKP,n(β0) = inf
γ̃∈RmW

ÃRAKP,n(β0,γ̃ ), where

ÃRAKP,n(β0,γ̃ ) := n−1
( 1
−γ̃

)′ (
Y0,W

)′
ZĤ−1

n Z′ (Y0,W
)( 1

−γ̃

)( 1
−γ̃

)′
Ĝn
( 1
−γ̃

) (3.20)

12Andrews (2017, eqn. (7.8)) allows for more involved definitions of α2,n(θ). We choose the version that takes
KU = KL in the notation of Andrews (2017) that is also used in the Monte Carlos in Andrews (2017). Regarding the
definition of �̂n(θ), note that it constitutes a slight modification compared with the definitions in Andrews (2017,
eqn. (7.5)). In particular, the modification in the definition of σ̂ 2

sn is necessary to make the procedure invariant to
nonsingular transformations of the instrument vector. We thank Donald Andrews for suggesting this updated version
of his test statistic.
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using the fact that the minimal eigenvalue of any symmetric square matrix A ∈
Rp×p is obtained as minx∈Rp,||x||=1 x′Ax. Furthermore,

ÃRAKP,n(β0,γ̃ ) = n̂gn (β0,γ̃ )′ �̃n (β0,γ̃ )−1 ĝn (β0,γ̃ ), where

�̃n (β0,γ̃ ) := (
(
1, − γ̃ ′) Ĝn

(
1, − γ̃ ′)′)⊗ (n−1Z

′
Z)1/2Ĥn(n

−1Z
′
Z)1/2

=
((

1

−γ̃

)
⊗ Ik

)′
(Ĝn ⊗ (n−1Z

′
Z)1/2Ĥn(n

−1Z
′
Z)1/2)

((
1

−γ̃

)
⊗ Ik

)
(3.21)

and (Ĝn,Ĥn) defined in (2.16).
Let γ +

n be an element in argminγ̃∈RmW ÃRAKP,n(β0,γ̃ ). We impose a mild
technical condition below, namely that

�Wnn1/2(γ +
n −γn) = Op(1) (3.22)

and γ +
n = Op(1) under sequences in FHet (defined in (3.24)) that are of AKP

structure, i.e., under sequences λn,h for which h9 ∈ [0,∞).
Condition (3.22) has been established for several closely related estimators.

E.g., γ +
n − γn = Op(1) holds under weak IV sequences �Wn = C/n1/2 (for some

fixed matrix C) and homoskedasticity when γ +
n is the LIML estimator (see Staiger

and Stock, 1997, Thm. 1). Results in Hahn and Kuersteiner (2002, Thm. 1) imply
(3.22) for the 2SLS estimator under a setup where �Wn = C/nδ for δ > 0. Stock
and Wright (2000, Thm. 1(ii)) and Guggenberger and Smith (2005, Thm. 2)
implies (3.22) for the CU estimator under mixed weak/strong IV asymptotics
�Wn = (C/n1/2,D) for a fixed full rank matrix D ∈ �k×m′

W with m′
W ≤ mW (using

high-level assumptions, such as Assumptions B and D in Stock and Wright, 2000)
and possible CHET.

Stock and Wright (2000, Thm. 1(ii)) can also be applied in the current situation
to show (3.22) under sequences λn,h for which h9 ∈ [0,∞). Given ε > 0, we need
to show that for some compact set Kε,�Wnn1/2(γ +

n −γn) ∈ Kε with probability at
least 1 − ε for all large enough sample sizes. Assuming γ +

n = Op(1), then for
all ε > 0,γ +

n is contained in a compact set Kε with probability at least 1 − ε

for all large enough sample sizes. Consider the estimator γ Kε
n that is defined as

a minimizer of ÃRAKP,n(β0,γ̃ ) in γ̃ over Kε. Thus γ Kε
n and γ +

n are numerically
identical for all sample sizes large enough with probability at least 1−ε. Note that
ÃRAKP,n(β0,γ̃ ) has the same structure as the criterion function ST(θ,θ) in (2.2)
in Stock and Wright (2000) with �̃n (β0,γ̃ )−1 playing the role of the weighting
matrix WT(θ) and n1/2̂gn (β0,γ̃ ) playing the role of n−1/2∑T

s=1φs (θ). Therefore,
under drifting sequences of mixed weak/strong IVs, namely �Wn = (C/n1/2,D),

the limiting distribution of γ Kε
n is given in Stock and Wright (2000, Thm. 1(ii))

if Assumptions B and D in Stock and Wright (2000) hold for parameter space Kε

for γ̃ and ÃRAKP,n(β0,γ̃ ) has a unique minimum. Stock and Wright (2000, Thm.
1(ii)) states that those components of γ Kε

n −γn that correspond to the columns of
C/n1/2 in �Wn are Op(1) and those that correspond to the columns of D in �Wn

are Op(n−1/2) which establishes �Wnn1/2(γ Kε
n −γn) = Op(1).
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Assumption B in Stock and Wright (2000) holds for γ Kε
n (in fact, Assumption B’

in Stock and Wright, 2000, which is sufficient for Assumption B, holds by linearity
of gi (θ), the moment conditions in FHet, and compactness of Kε). To establish
Assumption D, note that under sequences λn,h, n−1Z

′
Z →p limEFn ZiZ

′
i,Ĝn →p

limGFn, and Ĥn →p limHFn (note that the right-hand side limits exist by definition
of λn,h). Therefore, under sequences λn,h

�̃n (β0,γ̃ )−1

→p (limEFn ZiZ
′
i)

−1/2 limH−1
Fn

(limEFn ZiZ
′
i)

−1/2/(
(
1, − γ̃ ′) limGFn

(
1, − γ̃ ′)′)

(3.23)

uniformly over γ̃ (noting that ||(1, − γ̃ ′) || ≥ 1, limGFn > 0, and limHFn > 0) with
the limit matrix being nonrandom, continuous, symmetric, and pd for all γ̃ . Thus,
by Stock and Wright (2000, Thm. 1(ii)), if ÃRAKP,n(β0,γ̃ ) has a unique minimum
in Kε and γ +

n = Op(1), it follows that �Wnn1/2(γ Kε
n − γn) = Op(1). Thus there

exists a compact set K such that �Wnn1/2(γ Kε
n − γn) ∈ K at least with probability

1−ε for all n large enough. Because γ +
n and γ Kε

n coincide at least with probability
1−ε for all large enough sample sizes, it then follows that �Wnn1/2(γ +

n −γn) ∈ K
at least with probability 1−2ε for all n large enough.

Deriving (3.22) under all possible drifting sequences �Wn is technically tedious
and involves, e.g., also consideration of so-called sequences of nonstandard weak
identification (see Andrews and Guggenberger, 2019, hereafter AG, for more
discussion). If (3.22) is not already implied by the restrictions in the parameter
space FHet below then the asymptotic size results should simply be interpreted for
sequences of parameter spaces FHet,n that impose additional restrictions on FHet

such that (3.22) holds.
The null parameter space is restricted by the conditions in FAR/AR of Andrews

(2017, eqn. (8.8)) and some weak additional ones, namely,

FHet = {(γ,�W,�Y,F) ∈ F̃AKP,an : γ ∈ �γ ∗ ⊂ �mW,

EF||UijZil1 Zil2 Zil3 ||1+δ1 ≤ B for j = 1, . . . ,p, l1,l2,l3 = 1, . . . ,k,

EF||εiZi||2+δ1 ≤ B, EF||vec(W ′
i Zi)||2+δ1 ≤ B, varF||Ws

i Zi)|| ≥ δ2 for

s = 1. . . ,mW, and κmin(A) ≥ δ2 for A ∈ {RF,EFε2
i ZiZ

′
i}}, (3.24)

for constants B < ∞, and δ1,δ2 > 0 and a bounded set �γ ∗ such that, for some
ε > 0, we have B(�γ ∗,ε) ⊂ �γ, where �γ denotes the null nuisance parameter
space for γ and B(�γ ∗,ε) denotes the union of closed balls in �mW with radius ε

centered at points in �γ ∗.

Lemma 1. Assume that under any sequence of DGPs (γwn,�Wwn,�Ywn,Fwn) in
FHet defined in (3.24) for subsequences wn for which λwn,h satisfies h9 ∈ [0,∞)

we have γ +
wn

= Op(1) and �Wwn w1/2
n (γ +

wn
− γwn) = Op(1). Then, for any δ > 0,

the AR/AR test ϕAR/AR,α−δ,α1 in (3.17) satisfies Assumptions RT and RP for the
parameter space FHet.
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3.3. Main Result

We obtain the following corollary of Lemma 1, Theorem 2, and the verification
of Assumption MS in Section 3.1 for the two model selection methods ϕMS,cn

suggested there.
Define the parameter space FHet as the intersection of the parameter spaces

defined in (3.9) and (3.24) when the method in (3.8) is used as ϕMS,cn (and a slightly
more restricted parameter space when (3.10) is used, as explained below (3.10).)

Corollary 3. Assume the same condition as in Lemma 1. Then the test
ϕMS−AKP,α defined in (3.4) with δ > 0 and cn satisfying the conditions in (3.1)

implemented with the AR/AR test ϕAR/AR,α−δ,α1 of Andrews (2017) playing the role
of ϕRob,α−δ and either of the two model selection methods described above used
for ϕMS,cn, has asymptotic size bounded by the nominal size α for the parameter
space FHet defined in the paragraph above for α ∈ {1%,5%,10%} and k − mW ∈
{1, . . . ,20}.

Comment. Note that under the null hypothesis the test does not depend on the
value of the reduced form matrix �Y .

4. MONTE CARLO STUDY

In this section, we investigate the finite sample performance in model (2.1) of the
suggested new test ϕMS−AKP,α defined in (3.4) and juxtapose it to the performance
of alternative methods suggested in the extant literature, namely the two-step tests
AR/AR, AR/LM, and AR/QLR1 in Andrews (2017). For the implementation of
ϕMS−AKP,α , we use both methods considered in Section 3.1 and call the resulting
tests MS-AKP1 and MS-AKP2 for the remainder of this section. We also simulate
the performance of the test ARAKP,α (which is of course size distorted in the setups
with CHET that are outside of KP structure).

All results below are for nominal size α = 5%. Unless otherwise stated, we take
mW = 1. We consider the case β ∈ � and γ ∈ � and pick γ = 0 and test the null
hypothesis in (2.3) with β0 = 0.

4.1. Choice of Tuning Parameters

The implementation of the various tests depends on a large number of user chosen
constants. In particular, to implement the AR/AR, AR/LM, and the AR/QLR1 tests
we pick α1 = 0.005,KL = KU = 0.05 as already mentioned above after (3.18).
To calculate the estimator set �̃1n, we employ the closed form solution provided
below (3.16). We choose a = 0.001 and pick the elements of the random matrix
ζ1 ∈ �k×mW as i.i.d. N(0,1) independent of all other variables considered, see the
last line of (3.14).13 The confidence interval (or region) for γ that appears in (3.15)

13Note that by choosing a �= 0, the tests are no longer invariant to nonsingular transformations of the IV vector.
However, for small a, the differences after a transformation are usually very small.
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is obtained by grid search over an interval (or rectangle) of length 20 centered
at the true value of γ with 100 equally spaced gridpoints.14 To implement the
AR/QLR1 test, as in Andrews (2017), we pick K∗

L = K∗
U = 0.005 and Krk = 1. We

refer to Table II in Andrews (2017) that provides the results of a comprehensive
sensitivity analysis on most of the user chosen constants above. To calculate the
data-dependent critical values for the AR/QLR1 test, we use 10,000 i.i.d chi-square
random variables. There was no noticeable difference between δ = 0 and δ = 10−6

for δ given in (3.4); therefore, for the sake of computational simplicity, we pick
the former in the simulations. Finally, cn has to be chosen, which we do in the next
subsection.

4.2. Recommended Choices for cn

First, we perform a large number of simulations in order to determine recommen-
dations for the sequence of constants cn satisfying (3.1). We make recommen-
dations for cn,k,mW = cn as a function of the number k of IVs and the subvector
dimension mW and consider choices from k ∈ {2,3,4} and mW ∈ {1,2}.

For each k, sample size n ∈ {250,500}, and (�Y,�W) ∈ �k×2 with

�W = 1kπW/(nk)1/2 (4.1)

with πW ∈ {2,4,40}, corresponding to “very weak,”“weak,” and “strong” identi-
fication of γ (and, relevant for the power results below, �Y = 1̃kπY/(nk)1/2 with
πY ∈ {2,4,40} and 1̃k equal to (1k/2′,−1k/2′)′ when k is even and equal to (1,−12′)′
when k = 3) we randomly generate 1,000 different DGPs (that is, a choice for the
covariance matrix) as described below and simulate the NRPs (using 5,000 i.i.d
samples of each given DGPs) of MS-AKP1 and MS-AKP2 for choices of cn given
as

cn = cn,k,1 = c(k,1)n1/2/ ln lnn (4.2)

with c(k,1) taken from the set C := {0.05,0.1, . . . ,3}.
In finite sample simulations for the DGPs considered here, the AR/AR test

sometimes slightly overrejects. For example, under CHOM, n = 250,k = 3, strong
IVs, and covariance matrix � being chosen as below (4.8), where (ui,vY,i,vW,i)

′ ∼
i.i.d. N(03,�), the AR/AR test has NRP equal to 5.4%. From our theory, we also
know that the test ARAKP,α (at least under AKP structures) has nonsmaller NRP
than the AR/AR test. Define as the “simulated size of a test when there are k IVs”
the highest empirical NRP of the test over all choices of n, �, and (1,000) random
DGPs considered. For each of the two methods MS-AKP1 and MS-AKP2 and for
each k ∈ {2,3,4}, our recommendation for cn,k,1 then is to take the largest c(k,1) in
C such that the simulated size does not exceed 6% (that is, we allow for a distortion
of 1% in the “simulated size”). It turns out that in our simulations this criterion for

14When the dimension of γ grows then the implementation of that step by grid search will cause an exponential
increase in computation time for each of the two-step methods.
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cn,k,1 always leads to well defined choice of c(k,1) (when a priori it could be that
even for the smallest/largest choice of c(k,1) in C the simulated size exceeds/is
still below 6%).

To generate random DGPs, we consider the following mechanism. Given all
tests considered above, including ARAKP,α, have correct asymptotic size under
AKP structure we focus attention on designs with conditional heteroskedasticity
that are not of AKP structure. In particular, we choose

εi = (αε +||QεZi||)ui,

VY,i = (αV +||QVZi||)vY,i,

VW,i = (αV +||QVZi||)vW,i, (4.3)

with (ui,vY,i,vW,i)
′ ∼ i.i.d. N(03,�) and independent of Zi ∼ i.i.d. N(0k,Ik) for

i = 1, . . . ,n. Each of the 1,000 random DGPs is determined by choosing αε,αV ∈
�,Qε,QV ∈ �k×k, and � ∈ �3×3, where � has diagonal elements equal to 1. The
scalars αε,αV and the components of Qε,QV ∈ �k×k are obtained by i.i.d. draws
from a U[0,10], and the off-diagonal ones of � ∈ �3×3 are obtained by i.i.d. draws
from a U[0,1] (subject to the restriction that the resulting matrix � is pd). Note
that the setup in (4.3) nests KP structure when, e.g., αε = αV = 0,Qε = QV = Ik

and CHOM when, e.g., αε = αV = 1, Qε = QV = 0k×k.
For each k = 2,3,4, the binding constraint on c(k,1) always came from the

combination n = 250 and “strong” identification, while for the “very weakly”
identified scenario even the largest choice of c(k,1) ∈ C typically did not yield
overrejection for any of the sample sizes considered. Based on the above setup,
we recommend the following choices for cn,k,1. For Method 1 in Section 3.1, MS-
AKP1, that is for ϕMS−AKP,α based on the distance in Frobenius norm statistic, we
suggest

c(2,1) = 0.85, c(3,1) = 1.25, c(4,1) = 1.4, (4.4)

while for Method 2, MS-AKP2, that is for ϕMS−AKP,α based on the KPST statistic
in GKM23, we suggest

c(2,1) = 0.75, c(3,1) = 1.45, c(4,1) = 1.9. (4.5)

Recall that with these choices of c(k,1) and cn chosen as in (4.2) the tests MS-
AKP1 and MS-AKP2 have correct asymptotic size for a parameter space with
arbitrary forms of conditional heteroskedasticity.

Next, we consider mW = 2. We take γ = (0,0)′. As pointed out above already,
the computational effort in the above exercise increases exponentially in the
dimension of mW if we use the same number of gridpoints in each dimension in
the calculation of the confidence interval for γ that appears in (3.15). Therefore,
we use a grid of a product of two intervals of length 20 centered at the true value
of γ with only 50 equally spaced gridpoints in each dimension (rather than 100 in
the case mW = 1.) Everything else is the same, mutatis mutandis (e.g., � is now a
4×4 matrix), as described in the case mW = 1 except that �W ∈ �k×2 is taken as

https://doi.org/10.1017/S0266466622000627 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000627


A POWERFUL SUBVECTOR ANDERSON RUBIN TEST 979

(πW1e1,πW2e2)/(nk)1/2 with πW1,πW2 ∈ {2,40} and that the search set for c(k,2)

is increased to C := {0.05,0.1, . . . ,7.5}.
For Method 1 in Section 3.1, MS-AKP1, we suggest

c(3,2) = 1.75, c(4,2) = 3.2, c(5,2) = 3.05, (4.6)

while for Method 2, MS-AKP2, we suggest

c(3,2) = 2.9, c(4,2) = 7.2, c(5,2) = 7.5. (4.7)

Just like in the case mW = 1, the highest null rejection probabilities occur in the
strongly identified case.

4.3. Size Results

All results below are for the case where mW = 1. Under a setup with CHET
outside of KP, the tests MS-AKP1 and MS-AKP2 equal the AR/AR test wpa1.
We therefore first consider the KP setup in Andrews (2017) in Section 9.1 which
is obtained from (4.3) with αε = αV = 0 and Qε = QV = Ik. We also consider
the setup with CHOM obtained from (4.3) with αε = αV = 1 and Qε = QV = 0k×k.
Then, finally, below we also examine how power is affected as the DGP transitions
from CHOM to CHET outside of KP.

In both cases of CHET and CHOM, we take the matrix

k� ∈ �3×3 (4.8)

to have diagonal elements equal to one, and the (1,2) and (1,3) elements equal to 0.8
and the (2,3) element equal to 0.3, as in Andrews (2017). We consider πW = πY ∈
{2,4,40} in (4.1), again, representing “very weak,” “weak,” and “strong” IVs (also
see Andrews, 2017). Finally, we take k ∈ {2,3,4} and sample sizes n ∈ {250,500}.
Altogether, that makes for 36 different specifications. In addition, we also obtain
results for certain cases of mixed identification strength, e.g., when πW �= πY ∈
{2,40} and also some results for larger sample sizes.

As reported in Andrews (2017), we also find that in an overall sense the AR/AR
and AR/LM tests are dominated by the AR/QLR1 test. For instance, regarding
the AR/LM test, its power function (even in the strong IV context under CHOM)
is not always U-shaped and suffers from power dips against certain alternatives.
For example, for the KP setup for n = 250,k = 4, with weak IVs, the power of
the AR/LM and AR/QLR1 tests when β = −2 are 8.6% and 75.6%, respectively,
while in the setup with CHOM when β = −1.43 the power of the AR/LM test is
34.9% while all the other tests have power equal to 100%. On the other hand, the
AR/AR test fares worse than the AR/QLR1 test in strongly identified overidentified
situations. In what follows, we do not therefore discuss the AR/LM test in much
detail.

We consider rejection probabilities under the null β0 = 0 and (for power) under
a grid of seven β values on each side of 0 with distances from the hypothesized
value 0 chosen depending on the strength of identification. For example, in the
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very weakly, weakly, and strongly identified cases, we take β in the interval
[−2,2],[−2,2], and [−.2,.2], respectively, around the true value of 0. Results are
obtained from 10,000 i.i.d samples from each DGP.

First, we discuss the NRPs. Over the 18 DGPs of the KP setups, the NRPs
of MS-AKP1, MS-AKP2, AR/AR, AR/LM, and AR/QLR1 lie in the inter-
vals (all numbers in %): [3.5,5.9], [3.3,6.0], [1.9,5.1], [0.6,5.2], and [1.5,4.9].
As set up above, the tests MS-AKP1 and MS-AKP2 slightly overreject the
null for small sample sizes (especially in the strongly identified case), but the
size distortion disappears as n grows. For example, the NRPs of MS-AKP2 in
the KP setup with k = 3 and strong identification is 6.0, 5.5, 5.2, and 5.1%,
respectively, when n = 250,500,1,000, and 1,500. On the other hand, the tests
AR/AR, AR/LM, and AR/QLR1, while controlling the NRP very well, underreject
the null in weakly identified scenarios. This leads to relatively poor power
properties relative to the tests MS-AKP1 and MS-AKP2 in weakly identified
situations.

Regarding the 18 DGPs with CHOM, the one important difference relative
to the KP setup is that the three tests AR/AR, AR/LM, and AR/QLR1 are less
conservative with NRPs over the 18 DGPs in the intervals [4.1,5.4], [3.5,5.4], and
[3.7,5.1], respectively. As a consequence, these tests have relatively better power
properties than in the KP setup.

4.4. Power Results

Next, we discuss the power results. We focus again on the case where mW = 1.
Power for MS-AKP1, MS-AKP2, AR/AR, and AR/QLR1 increases as the IVs
become stronger. On the other hand, by the local-to-zero design considered here
(see (4.1) and below), as n increases, power for these three tests changes only
slightly. We therefore only provide details for the case where n = 250. Power of
all the tests is much higher in the setting with CHOM compared to the KP setting
and especially so for the AR/QLR1 test (because it underrejects the null hypothesis
less under CHOM than under KP). As one example, consider the case n = 250,k =
2, with weak identification. In that case, when β = −0.571, the tests MS-AKP2,
AR/AR, and AR/QLR1 have power 48.7, 46.3, and 45.4% under KP, but power
equal to 95.9, 95.6, and 95.4% under CHOM!

A representative selection of power curves in four different cases is plotted in
Figure 1. Note that in the figures corresponding to the different cases, both the
scale of the horizontal and the vertical axes vary by a lot depending on the strength
of identification.

The key takeaways from the power study are as follows:
(i) Based on the DGPs considered here, we cannot make a clear recommendation

as to which one of the two tests MS-AKP1 and MS-AKP2 is preferable. In most
cases, they have virtually identical power. In few cases, one dominates the other,
but only by a small difference. In the figures below, we only report results for
MS-AKP2.
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a) n=250, k=2, Very Weak, KP
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b) n=250, k=4, Strong, KP
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d) n=250, k=4, Mixed Strength, KP

–1 –0.5 0 0.5 1
0

0.05

0.1
0.15

0.2
0.25

0.3

Figure 1. Power of various subvector tests in different cases. Covariance structure: Kronecker product
(KP); CHOM. Identification strength (πW,πY ): very weak (2,2); weak (4,4); strong (40,40); mixed
strength (2,40).

(ii) Regarding the comparison between the tests MS-AKP1, MS-AKP2, and
AR/AR, we find that the former two virtually uniformly dominate the latter in
all the designs considered. This is not surprising given the construction of the new
tests and given they satisfy Assumption RP. The relative power advantage of the
tests MS-AKP1, MS-AKP2 over AR/AR partly stems from the underrejection of
the latter test under the null. See, e.g., Figure 1a that contains power curves for
n = 250,k = 2, very weak identification, and KP structure for MS-AKP2, AR/AR,
and AR/QLR1. (The NRPs of the three tests reported here are 4.2, 2.0, and 1.6%,
respectively. Note that the x-axis in Figures I–IV plots the true value β).

(iii) Regarding the comparison between the tests MS-AKP1, MS-AKP2, and
AR/QLR1 in the case of equal identification strength πW = πY , we find that
the former two are generally more powerful under weak identification and small
k while the reverse is true under strong identification and larger k (see Figure
1a, b for the cases “k = 2 and very weak identification” and “k = 4 and strong
identification,” respectively, both for n = 250 and KP). (In Figure 1b, the NRPs of
the tests MS-AKP2, AR/AR, and AR/QLR1 are 5.9, 5.1, and 4.6%, respectively.)
These two figures show the best relative performances for the MS-AKP1, MS-
AKP2, and AR/QLR1 tests in the “equal identification” settings where πW = πY .
In Figure 1a, the power advantage of MS-AKP2 over AR/QLR1 is as high as 5.2%,
whereas in Figure 1b, the power of AR/QLR1 can be up to 13.1% higher than that
of MS-AKP2.

In the “intermediate” case between these extremes, namely “k = 3 and weak
identification” (again with n = 250 and KP; not reported in Figure 1), the MS-
AKP1 and MS-AKP2 tests have slightly higher power than AR/QLR1 when β is
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positive while the reverse is true for negative values of β. In all cases, the relative
performance of the AR/QLR1 test improves under CHOM; under CHOM, for the
“intermediate” case “k = 3 and weak identification” (again with n = 250) the
AR/QLR1 test has uniformly higher power than the MS-AKP1 and MS-AKP2
tests (see Figure 1c). (In Figure 1c, the NRPs of the tests MS-AKP2, AR/AR, and
AR/QLR1 are 5.5, 4.7, and 5.1%, respectively.)

In cases of mixed identification strength, πW �= πY ∈ {2,40}, we find that when
πW = 2 and πY = 40, the tests MS-AKP1 and MS-AKP2 have uniformly higher
power than AR/QLR1 for all k considered, whereas in the case πW = 40 and πY =
2, all tests have comparable power. See Figure 1d that contains the case πW = 2
and πY = 40, n = 250,k = 4, with KP structure where the power gap between the
new tests and AR/QLR1 is as high as 13.4%. (In Figure 1d, the NRPs of the tests
MS-AKP2, AR/AR, and AR/QLR1 are 3.3, 1.9, and 0.9%, respectively.) It seems
that in these cases of mixed identification strength the new tests enjoy their most
competitive relative performance.

4.5. Results for Non-KP DGPs

Finally, we examine how rejection probabilities are affected as the DGP transitions
from KP to CHET outside of KP. To do so, we report rejection probabilities under
the null and certain alternatives and probabilities with which MS-AKP1 and MS-
AKP2 equals the AR/AR test in the second stage for a class of DGPs that under
KP coincide with the ones considered in Figure 1b (πW = πY = 40) and Figure
1d ((πW,πY) = (2,40)). In particular, we choose k = 4,n = 250, γ = 0, and the
matrix � equals the one in (4.8). In (4.3), we take

Qε = I4 +�

⎛⎜⎜⎝
10 8 6 4
3 5 9 3
8 6 9 2
4 3 2 1

⎞⎟⎟⎠ (4.9)

for � ∈ {0,0.01, . . . ,0.1},αε = αV = 0, and QV = I4. Note that for � = 0,
the design leads to KP, while for � > 0, it leads to CHET outside of KP.
In particular, argminG,H>0 ||G ⊗ H − RF|| (with RF defined in (2.4) with Ui =
(εi,V ′

W,i)
′) equals 0,0.14,0.29,0.45,0.60,0.74,0.88,1.01,1.13,1.24, and 1.34 when

� ∈ {0,0.01,0.02, . . . ,0.1}, respectively. The latter numbers are found by simula-
tions based on 107 simulation repetitions using Theorem 1 in GKM23.

As before, we report results for 10,000 simulation repetitions at nominal
size 5%.

4.5.1. Null Rejection Probabilities. Here, we report results, when β = 0, that
is, we report NRPs.

First, in the setup of Figure 1b, the probability with which MS-AKP1 and MS-
AKP2 coincide with AR/AR is strictly increasing in � and, e.g., equals 66.2% and
64.9%, 82.9% and 85.1%, and 98.8% and 99.5%, respectively, for � = 0,0.03, and
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0.1, respectively. (We also simulated these probabilities when � = 0 for n = 500
and they equal 20.8% and 20.2%, respectively.) The highest NRP of both the MS-
AKP1 and MS-AKP2 tests is 5.9% which occurs when � = 0 and is caused by
a 7.4% NRP of the conditional subvector test ARAKP,α (even though by Theorem
1 this test has correct asymptotic NRP for this DGP; interestingly, this test has
NRP equal to 5.8% when � = 0.1, a case that is not covered by Theorem 1).
Given the MS-AKP1 and MS-AKP2 tests equal the AR/AR test with increasing
probability as � increases, their NRPs get closer (but not monotonically so) to 5%
as � increases. As � = 0.1, both tests have NRP equal to 5.2%.

Second, in the setup of Figure 1d, the probability with which MS-AKP1 and MS-
AKP2 coincide with AR/AR are identical as just reported for the setup in Figure
1b. The highest NRPs of the MS-AKP1 and MS-AKP2 tests are 3.5% and 3.2%,
respectively, which occur when � = 0. The AR/AR and AR/QLR1 tests have NRPs
in the intervals [1.2%,1.9%] and [0.3%,0.8%], respectively, and therefore, quite
substantially underreject the null hypothesis. As the MS-AKP1 and MS-AKP2
tests equal the AR/AR test with increasing probability as � increases, their NRPs
approach 1.2% as � gets closer to 0.1.

4.5.2. Power Results. Here, we examine how power is affected as the DGP
transitions from KP to CHET outside of KP.

First, in the setup of Figure 1b, we consider the alternative β = 0.1. The
probabilities with which MS-AKP1 and MS-AKP2 coincide with AR/AR are
increasing in � and are very similar to the corresponding values when β = 0; e.g.,
the probabilities equal 68.6% and 68.9% when � = 0.01, respectively, and equal
98.2% and 99.1% when � = 0.1. Power for all tests monotonically decreases as �

increases, e.g., for AR/QLR1, AR/AR, and MS-AKP1 from 83.5% to 44.4%, from
71.5% to 32.4%, and from 72.5% to 32.4%, respectively, when � goes from 0 to
0.1.

Second, in the setup of Figure 1d, we consider the alternative β = −1. When
� = 0.01, MS-AKP1 and MS-AKP2 coincide with AR/AR with probability
78.3% and 75.5%, respectively, and for � ≥ 0.04, both MS-AKP1 and MS-AKP2
coincide with AR/AR at least 99.6% of the cases. The power of the AR/AR
and the AR/QLR1 for all values of � ∈ {0,0.01,0.02, . . . ,0.1} are in the intervals
[27.9%,29.4%] and [21.2%,23.5%], respectively, with neither test’s power being
monotonic in �. While the power of MS-AKP1 and MS-AKP2 slightly exceeds
the power of the AR/AR test for � < 0.04 their power is identical to the one of the
AR/AR test for larger values of �.

In sum, as one would expect given the construction of MS-AKP1 and MS-AKP2
tests, when moving from KP to CHET outside of KP, their rejection probabilities
get closer and closer to those of the AR/AR test.

5. CONCLUSION

We propose the construction of a robust test that improves the power of another
robust test by combining it with a powerful test that is only robust for a subset of

https://doi.org/10.1017/S0266466622000627 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000627


984 PATRIK GUGGENBERGER ET AL.

the parameter space. We implement this construction in the context of the linear IV
model applied to the ARAKP,α test that has correct asymptotic size for a parameter
space that imposes AKP structure and the AR/AR test that is robust even when
allowing for arbitrary forms of CHET. We believe that the particular construction
and implementation suggested here, namely combining a powerful but non fully
robust test with a less powerful fully robust test in order to obtain a fully robust
more powerful test, might be successfully applied in other scenarios and also in the
current scenario based on different choices of testing procedures. For instance, it
might be feasible to combine the LR type subvector test of Kleibergen (2021) with
the AR/QLR1 of Andrews (2017) but it would be technically substantially more
challenging to verify the assumptions given above that are sufficient for control of
the asymptotic size of the resulting test. Other extensions include improving the
power of the ARAKP,α test by making the conditional critical value depend on more
than just the largest eigenvalue.

A. APPENDIX

The Appendix is structured as follows: In Appendix A.1, the proof of Theorem 1
is given, prepared for first with several technical lemmas in Appendix A.1. Next
in Appendix A.2, the proof of Theorem 2 is given. We provide verifications of the
high-level assumptions for particular implementations of the test including for both
ϕMS,cn and AR/AR in Appendixes A.3 and A.4, respectively. Finally, in Appendix
A.5, we generalize the conditional subvector test to a time series framework.

A.1. Proof of Theorem 1

A.1.1. Technical lemmas. In what follows below, we will require results about
solutions to certain minimization problems involving the Frobenius norm. The next
lemma provides a special case of Corollary 2.2 in van Loan and Pitsianis (1993).
Note that van Loan and Pitsianis (1993) point to Golub and van Loan (1989, p. 73)
for a proof of Corollary 2.2. However, the result in Golub and van Loan (1989,
p. 73) is for a minimization problem using the p-norm for p = 2 and not the
Frobenius norm which is used here.

Lemma 2. Consider the minimization problem

min
B∈�m×n, rk(B)=1

||A−B||2

for a given nonzero matrix A ∈ �m×n with singular value decomposition A =
Udiag(σ1, . . . ,σp)V ′ for singular values σ1 ≥ σ2 ≥ ·· · ≥ σp ≥ 0 with p = min{m,n}
and rectangular diag(σ1, . . . ,σp) ∈ �m×n, orthogonal matrices U = [u1, . . . ,um] ∈
�m×m, and V = [v1, . . . ,vn] ∈ �n×n. Then a minimizing argument is given by
B = σ1u1v′

1 and the minimum equals
∑p

i=2σ
2
i . If σ1 > σ2 then B = σ1u1v′

1 is the
unique minimizer.
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Proof of Lemma 2. Note that

min
B∈�m×n, rk(B)=1

||A−B||2 = min
C∈�m×n, rk(C)=1

||diag(σ1, . . . ,σp)−C||2 (A.1)

by viewing C = U′BV and because ||D|| = ||U′D|| = ||DV|| for any matrix D ∈
�m×n and conformable orthogonal matrices U and V . We can write any matrix
C ∈ �m×n with rk(C) = 1 as

C = ||c||−1(α1c, . . . ,αnc) (A.2)

for c ∈ �m\{0m} and αk ∈ � for k = 1, . . . ,n. Because ||A+B||2 = ||A||2 +||B||2 +
2 < A,B >F, where < A,B >F:= trace(A′B) denotes the Frobenius inner product,
and ||diag(σ1, . . . ,σp)||2 =∑p

i=1σ
2
i ,||C||2 =∑n

i=1α
2
i , < diag(σ1, . . . ,σp),C >F=∑p

i=1σiαici||c||−1, for c = (c1, . . . ,cm)′, we have

||diag(σ1, . . . ,σp)−C||2 =∑p
i=1σ

2
i +∑n

i=1α
2
i −2

∑p
i=1σiαici||c||−1. (A.3)

Viewing (A.3) as a function in αk,k = 1, . . . ,n, and c, taking first-order conditions
(FOCs) with respect to αk, we obtain 2αk −2σkck||c||−1 = 0 or

αk = σkck||c||−1 for k = 1, . . . ,p and αk = 0 for k = p+1, . . . ,n. (A.4)

Taking FOCs with respect to cj,j = 1, . . . ,p, we obtain
(||c||σjαj − (

∑p
i=1σiαici)cj||c||−1)||c||−2 = 0 and thus

||c||2σjαj − (
∑p

i=1σiαici)cj = 0, (A.5)

and for j = p+1, . . . ,m, we have (
∑p

i=1σiαici)cj||c||−3 = 0, and therefore

cj
∑p

i=1σiαici = 0. (A.6)

The objective is to find (c1, . . . ,cp) such that the two summands in (A.3) that
depend on C are being minimized. Using (A.4), we thus need to find (c1, . . . ,cm)

such that∑p
i=1σ

2
i c2

i ||c||−2 −2
∑p

i=1σ
2
i c2

i ||c||−2 = −∑p
i=1σ

2
i

(
ci

||c||
)2

(A.7)

is minimized. Let a be the largest index for which σ1 = ·· · = σa. Given that σa > σb

for b > a it follows that a vector c = (c1, . . . ,cm)′ is a minimizing argument if and
only if (c1, . . . ,ca)

′ �= 0a and (ca+1, . . . ,cm)′ = 0m−a and the minimum in (A.3)
equals

∑p
i=1σ

2
i −∑p

i=1σ
2
i

(
ci

||c||
)2

=∑p
i=1σ

2
i −σ 2

1

∑a
i=1

(
ci

||c||
)2

=∑p
i=2σ

2
i . (A.8)

For example, one solution is c = e1 := (1,0, . . . 0)′ ∈ �m for which the minimizing
matrix in (A.1) becomes C = (σ1e1,0m, . . . 0m). Correspondingly, a minimizing
matrix B becomes UCV ′ = σ1u1v′

1.
If σ1 > σ2, then a = 1. Therefore, any minimizing c equals (c1,0, . . . ,0)′ for

some c1 �= 0, and therefore, by (A.2) and (A.4), the only minimizing matrix C
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equals ||c||−1(α1c, . . . ,αnc) = (σ1e1,0m, . . . 0m). And consequently, there can only
be a unique minimizer B = UCV ′ = σ1u1v′

1. �

Let R ∈ �m×l and R = U�V ′ be a singular value decomposition of R, where
� ∈ �m×l has min{m,l} singular values of R on the diagonal and zeros elsewhere,
U ∈ �m×m is an orthogonal matrix of eigenvectors of RR′, and V ∈ �l×l is an
orthogonal matrix of eigenvectors of R′R. In general, U,�, and V are not uniquely
defined. The matrix � is uniquely determined by the restriction that the singular
values are ordered nonincreasingly. We assume that this is the case from now on.
Let a be the geometric multiplicity of the largest eigenvalue of RR′. Write U =
[W̃ : W̃C] for W̃ ∈ �m×a. Thus W̃ = (w̃1, . . . ,w̃a) denotes an orthogonal basis for
the eigenspace associated with the largest eigenvalue of RR′.

Lemma 3. Let R and Rn for n ≥ 1 be �m×l matrices such that Rn → R as n →
∞. Let U�V ′ and Un�nV ′

n be any singular value decompositions of R and Rn,

respectively, where the singular values are ordered nonincreasingly. For j ≤ m,
denote by w̃j and w̃nj the jth column of U and Un, respectively. Decompose U =
[W̃ : W̃C] ∈ �m×m, where W̃ = (w̃1, . . . ,w̃a) ∈ �m×a is an orthogonal basis for
the eigenspace associated with the largest eigenvalue of RR′. Conformingly, let
Un = [W̃n : W̃C

n ].15 Assume � does not equal the zero matrix. Then w̃′
njw̃l = o(1)

for j > a and l ≤ a.

Proof of Lemma 3. Wlog we can assume m ≥ l. (If m < l add l − m rows of
zeros to the bottom of R and Rn. Then the result for(

R
0l−m×l

)
=
(

U 0m×l−m

0l−m×m Ũ

)(
�

0l−m×l

)
V ′

for any orthogonal matrix Ũ implies the desired result for R = U�V ′.) Denote by
σj the jth singular value of R (i.e., σj equals the (j,j)th element of �) for j = 1, . . . ,l,
and likewise σnj denotes the jth singular value of Rn. By definition (and given that
the algebraic and geometric multiplicities coincide for any diagonalizable matrix),
a is the largest index for which σ1 = ·· · = σa. Define

δn := min

{
min

1≤j≤l−a
|σa −σn(a+j)|,σa

}
. (A.9)

Then by Wedin’s (1972) theorem (see, e.g., Li, 1998, eqns. (4.4) and (4.8)16), it
follows that

||sin�(W̃,W̃n)|| = o(1/δn), (A.10)

15But note that W̃n does not necessarily correspond to a basis for the eigenspace of the largest eigenvalue of RnR′
n but

may represent eigenvectors corresponding to several different eigenvalues because the multiplicities of eigenvalues
of RnR′

n and RR′ may not be the same. As a trivial example, consider RR′ = I2 and RnR′
n equal to a diagonal matrix

with first and second diagonal elements equal to 1 and 1−n−1, respectively.
16A comprehensive reference for background reading on Wedin’s (1972) theorem is Stewart and Sun (1990, p. 260
and Thm. 4.1).
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where �(W̃,W̃n) denotes the angle matrix between W̃ and W̃n (see Li, 1998, eqn.
(2.3) for a definition). Furthermore, by Lemma 2.1 and equation (2.4) in Li (1998),
we have

||sin�(W̃,W̃n)|| = ||W̃C′
n W̃||. (A.11)

Note that δn is bounded away from zero for all large n because (i) σa > 0 by the
assumption that � �= 0, (ii) if a < l, by construction σa > σa+1 and therefore
min1≤j≤l−a |σa −σn(a+j)| is uniformly bounded away from zero (because singular
values are continuous as functions of the matrix elements and Rn → R), and (iii) if
a = l then min1≤j≤l−a |σa −σn(a+j)| = ∞, because we take a minimum of the empty
set. Therefore, by (A.10) and (A.11), we have

||W̃C′
n W̃|| = o(1) (A.12)

which implies that w̃′
njw̃l = o(1) for j > a and l ≤ a. �

A.1.2. Uniformity Reparameterization. To prove that the new conditional
subvector ARAKP test has asymptotic size bounded by the nominal size α, we use
a general result in Andrews, Cheng, and Guggenberger (2020; hereafter ACG).
To describe it, consider a sequence of arbitrary tests {ϕn : n ≥ 1} of a certain null
hypothesis and denote by RPn(λ) the NRP of ϕn when the DGP is pinned down
by the parameter vector λ ∈ �, where � denotes the parameter space of λ. By
definition, the asymptotic size of ϕn is defined as

AsySz = lim sup
n→∞

sup
λ∈�

RPn(λ). (A.13)

Let {hn(λ) : n ≥ 1} be a sequence of functions on �, where
hn(λ) = (hn,1(λ), . . . ,hn,J(λ))′ with hn,j(λ) ∈ �∀j = 1, . . . ,J. Define

H = {h ∈ (�∪{±∞})J : hwn(λwn) → h for some subsequence {wn}
of {n} and some sequence {λwn ∈ � : n ≥ 1}}. (A.14)

Assumption B in ACG. For any subsequence {wn} of {n} and any sequence
{λwn ∈ � : n ≥ 1} for which hwn(λwn) → h ∈ H,RPwn(λwn) → [RP−(h),RP+(h)]
for some RP−(h),RP+(h) ∈ (0,1).17

The assumption states, in particular, that along certain drifting sequences of
parameters λwn indexed by a localization parameter h the NRP of the test cannot
asymptotically exceed a certain threshold RP+(h) indexed by h.

Proposition 4. (ACG, Theorem 2.1(a) and Theorem 2.2) Suppose Assumption
B in ACG holds. Then, infh∈H RP−(h) ≤ AsySz ≤ suph∈H RP+(h).

We next verify Assumption B in ACG for the conditional subvector ARAKP test
and establish that suph∈H RP+(h) = α when the test is implemented at nominal

17By definition, the notation xn → [x1,∞,x2,∞] means that x1,∞ ≤ liminfn→∞ xn ≤ limsupn→∞ xn ≤ x2,∞.
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size α. In the setup considered here, the parameter space � actually depends on n
which does not affect the conclusion of Theorem 2.1(a) and Theorem 2.2 in ACG.

We use Proposition 16.5 in AG, to derive the joint limiting distribution of the
eigenvalues κ̂in,i = 1, . . . ,p in (2.18). We reparameterize the null distribution F
to a vector λ. The vector λ is chosen such that for a subvector of λ convergence
of a drifting subsequence of the subvector (after suitable renormalization) yields
convergence of the NRP of the test. For given F and any GF ∈ �p×p and HF ∈ �k×k

such that RF = GF ⊗HF +ϒn as in (2.5) define

UF := G−1/2
F ∈ �p×p and QF := H−1/2

F (EFZiZ
′
i)

1/2 ∈ �k×k, (A.15)

where again HF = (EFZiZ
′
i)

−1/2HF(EFZiZ
′
i)

−1/2 from (2.12). Denote by

BF ∈ �p×p an orthogonal matrix of eigenvectors of

U′
F(�Wγ,�W)′Q′

FQF(�Wγ,�W)UF (A.16)

ordered so that the p corresponding eigenvalues (η1F, . . . ,ηpF) are nonincreasing.
Denote by

CF ∈ �k×k an orthogonal matrix of eigenvectors of

QF(�Wγ,�W)UFU′
F(�Wγ,�W)′Q′

F. (A.17)

The corresponding k eigenvalues are (η1F, . . . ,ηpF,0, . . . ,0).18 Denote by

(τ1F, . . . ,τpF) the singular values of QF(�Wγ,�W)UF ∈ �k×p, (A.18)

which are nonnegative, ordered so that τjF is nonincreasing. (Some of these
singular values may be zero.) As is well known, the squares of the p singular values
of a k×p matrix A equal the p largest eigenvalues of A′A and AA′. In consequence,
ηjF = τ 2

jF for j = 1, . . . ,p. In addition, ηjF = 0 for j = p+1, . . . ,k.
Define the elements of λ to be:19

λ1,F := (τ1F, . . . ,τpF)′ ∈ �p,

λ2,F := BF ∈ �p×p,

λ3,F := CF ∈ �k×k,

λ4,F := EFZiZ
′
i ∈ �k×k,

λ5,F := (λ5,1F, . . . ,λ5,p−1F)′ :=
(

τ2F

τ1F
, . . . ,

τpF

τp−1F

)′
∈ [0,1]p−1, where 0/0 := 0,

λ6,F := QF ∈ �k×k,

18The matrices BF and CF are not uniquely defined. We let BF denote one choice of the matrix of eigenvectors
of U′

F(�Wγ,�W )′Q′
FQF(�Wγ,�W )UF and analogously for CF . Note that the role of EFGi in AG, Section 16, is

played by (�Wγ,�W ) ∈ Rk×p and the role of WF is played by QF .
19For simplicity, as above, when writing λ = (λ1,F, . . . ,λ8,F) (and likewise in similar expressions) we allow the
elements to be scalars, vectors, matrices, and distributions. Note that λ5,F is included so that Proposition 16.5 in AG
can be applied.
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λ7,F := UF ∈ �p×p,

λ8,F := F, and

λ := λF := (λ1,F, . . . ,λ8,F). (A.19)

Note that by (A.15), we have GF = U−2
F = λ−2

7,F and HF = (EFZiZ
′
i)

1/2Q−1
F Q′−1

F

(EFZiZ
′
i)

1/2 = λ
1/2
4,Fλ−1

6,Fλ
′−1
6,F λ

1/2
4,F. In Section 3, the additional element λ9,F defined

in (3.2) is appended to λ with corresponding changes to several objects below,
e.g., �n and hn(λ) in (A.20) and λwn,h in (A.19) and (A.21); e.g., hn(λ) becomes
(n1/2λ1,F,λ2,F,λ3,F, . . . ,λ7,F,λ9,F).

The parameter space �n for λ and the function hn(λ) (that appears in Assump-
tion B in ACG) are defined by

�n := {λ : λ = (λ1,F, . . . ,λ8,F)

for some F st (γ,�W,�Y,F) ∈ FAKP,an for some (γ,�W,�Y)},
hn(λ) := (n1/2λ1,F,λ2,F,λ3,F, . . . ,λ7,F). (A.20)

We define λ and hn(λ) as in (A.19) and (A.20) because, as shown below, the
asymptotic distributions of the test statistic and conditional critical values under a
sequence {Fn : n ≥ 1} for which hn(λFn) → h depend on limn1/2λ1,Fn and limλm,Fn

for m = 2, . . . ,7. Note that we can view h ∈ (�∪{±∞})J (for an appropriately
chosen finite J ∈ N).

For notational convenience, for any subsequence {wn : n ≥ 1},
{λwn,h : n ≥ 1} denotes a sequence {λwn ∈ �n : n ≥ 1} for which hwn(λwn) → h.

(A.21)

It follows that the set H defined in (A.14) is given as the set of all h ∈ (�∪{±∞})J

such that there exists {λwn,h : n ≥ 1} for some subsequence {wn : n ≥ 1}.
We decompose h analogously to the decomposition of the first seven compo-

nents of λ: h = (h1, . . . ,h7), where λm,F and hm have the same dimensions for m =
1, . . . ,7. We further decompose the vector h1 as h1 = (h1,1, . . . ,h1,p)

′, where the
elements of h1 could equal ∞. Again, by definition, under a sequence {λn,h : n ≥ 1},
we have

n1/2τjFn → h1,j ≥ 0 ∀j = 1, . . . ,p, λm,Fn → hm ∀m = 2, . . . ,7. (A.22)

Note that h1,p = τpFn = 0 because ρ(�Wγ,�W) < p, where ρ(A) denotes the rank
of a matrix A.

By Lyapunov-type WLLNs and CLTs, using the moment restrictions imposed
in (2.5), we have under λn,h(

n−1/2Z
′
(ε +VWγn)

vec
(

n−1/2Z
′
VW

) )
→

d

(
ξ1,h

ξ2,h

)
∼ N

(
0kp,

(
h−2

7 ⊗ (h4h−1
6 h′−1

6 h4)
))

,

λ−1
4,Fn

(n−1Z
′
Z) →

p
Ik, n−1Z

′
[ε : VW ] →

p
0k×p, (A.23)
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where the random vector (ξ1,h,ξ
′
2,h)

′ is defined here, Fn denotes the distribution of

(εi,Z
′
i,V

′
Y,iV

′
W,i) under λn,h, and, by definition above, h−2

7 and h4h−1
6 h′−1

6 h4 denote
the limits of GFn and HFn under λn,h.

Let q = qh ∈ {0, . . . ,p−1} be such that

h1,j = ∞ for 1 ≤ j ≤ qh and h1,j < ∞ for qh +1 ≤ j ≤ p, (A.24)

where h1,j := limn1/2τjFn ≥ 0 for j = 1, . . . ,p by (A.22) and the distributions
{Fn : n ≥ 1} correspond to {λn,h : n ≥ 1} defined in (A.21). This value q exists
because {h1,j : j ≤ p} are nonincreasing in j (since {τjF : j ≤ p} are nonincreasing
in j, as defined in (A.18)). Note that q is the number of singular values of
QFn(�Wnγn,�Wn)UFn ∈ �k×p that diverge to infinity when multiplied by n1/2. Note
again that q < p because ρ(�Wnγn,�Wn) < p.

A.1.3. Asymptotic Distributions. One might wonder whether the definition of
Ĝn in (2.16) as vec(Ĝn) = L̂(: ,1)/̂L(1,1) where (Ĝn,Ĥn) are minimizers in (2.13) is
unique. If for instance the eigenspace corresponding to the largest eigenvalue was
of dimension bigger than one, then clearly L̂(: ,1) would not be uniquely defined.
The following lemma shows that the definition of Ĝn is unique and derives its limit.

To simplify notation a bit, we write shorthand Rn for RFn and likewise for other
expressions.

Lemma 4. Under sequences λn,h from �n in (A.20) based on the parameter
space FAKP,an , wp1 the definition of Ĝn ∈ �p×p and Ĥn ∈ �k×k in (2.16) is unique
and

Ĝn → lim
n→∞Gn and Ĥn → lim

n→∞Hn a.s.,

where Hn = (EFn ZiZ
′
i)

−1/2Hn(EFn ZiZ
′
i)

−1/2 is defined in (2.12).

Comment. Note that under sequences λn,h, limn→∞ Gn and limn→∞ Hn do exist.
On the other hand, the matrices Gn and Hn may not be uniquely pinned down by the
restrictions in (2.5) inFAKP,an . The results Ĝn → limn→∞ Gn and Ĥn → limn→∞ Hn

a.s. hold for any possible choice of Gn and Hn.

Proof of Lemma 4. Recall the definition

Rn = (Ip ⊗ (EFnZiZ
′
i)

−1/2)EFn(vec(ZiU
′
i)(vec(ZiU

′
i))

′)(Ip ⊗ (EFn ZiZ
′
i)

−1/2)

(A.25)

in (2.10). By Theorem 1 in van Loan and Pitsianis (1993),

||A−B⊗C|| = ||R(A)− vec(B)vec(C)′|| (A.26)

for any conformable matrices A,B, and C. Thus, for

ϒn := (Ip ⊗ (EFn ZiZ
′
i)

−1/2)ϒn(Ip ⊗ (EFn ZiZ
′
i)

−1/2), (A.27)
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it follows that R(Rn − ϒn) = vec(Gn)vec(Hn)
′ and because κmin(EFn ZiZ

′
i)

−1/2),

κmin(Gn), and κmin(Hn) ≥ δ2 in FAKP,an, it follows that R(Rn − ϒn) has rank 1.
It follows also that limn→∞R(Rn − ϒn) = limn→∞R(Rn) (which exists under
sequences λn,h) has rank 1 (even though the rank of R(Rn) could be larger than
1 for every n). By continuity of the singular values and because the geometric and
algebraic multiplicity coincide for diagonalizable matrices, the dimension of the
eigenspace of R(Rn)R(Rn)

′ corresponding to the largest singular value of R(Rn)

is one for all n large enough.
By the uniform moment restrictions in (2.5) in FAKP,an, namely EF(||Ti||2+δ1) ≤

B < ∞, for Ti ∈ {vec(ZiU′
i),vec(ZiZ

′
i)} and κmin(EF(ZiZ

′
i)) ≥ δ2 > 0, a strong law

of large numbers implies that

R̂n −Rn → 0kp×kp and R(̂Rn)−R(Rn) → 0pp×kk a.s. (A.28)

Therefore, the dimension of the eigenspace of R(̂Rn)R(̂Rn)
′ corresponding to the

largest singular value of R(̂Rn) is one for all n large enough wp1.
By the uniqueness statement of Lemma 2 for the rank 1 case, it follows that the

formula for minimizers of the KP approximation problem in (2.13) given in van
Loan and Pitsianis (1993, Cor. 2 and Thm. 11), namely

vec(Ĝn) = σ̂1L̂(: ,1) and vec(Ĥn) = N̂(: ,1) (A.29)

yields symmetric pd matrices Ĝn and Ĥn. When applying Theorem 11, note that
R̂n > 0 for all large enough n wp1, which holds by (A.28), limn→∞ Gn ⊗ Hn =
limn→∞ Rn − ϒn = limn→∞ Rn, and because κmin(EFn ZiZ

′
i)

−1/2),κmin(Gn), and
κmin(Hn) ≥ δ2 in FAKP,an . Given that Ĝn > 0, Sylvester’s criterion for positive
definiteness implies that L̂(1,1) > 0 for all large enough n wp1, and we can
therefore define Ĝn and Ĥn as in (2.16) with normalization to 1 of the upper left
element of Ĝn for all large enough n wp1.

Next, we apply Lemma 3 with a = 1 and the roles of Rn and R in Lemma 3
played by R(̂Rn) and limn→∞R(Rn), respectively. By (A.28), the lemma implies

L̂(: ,j)′L1 = o(1) (A.30)

wp1., for j > 1, where L̂(: ,j) denotes the jth column of L̂ in the singular value
decomposition L̂′R(̂Rn)N̂ = diag(̂σl) of R(̂Rn) and L1 denotes the first column
of L in the singular value decomposition L

′R(limn→∞R(Rn))N = diag(σ l) of
limn→∞R(Rn). For any orthogonal basis (x1, . . . ,xp2) of �p2

and y ∈ �p2
, we

have y =∑p2

j=1(y
′xj)xj. In particular, we have L1 =∑p2

j=1(L
′
1L̂(: ,j))̂L(: ,j) = (L′

1L̂(:

,1))̂L(: ,1) + o(1) wp1, where the second equality holds by (A.30). Together
with the normalization of the upper left elements of Ĝn and Gn to 1, this implies
Ĝn −Gn → 0p×p a.s. and Ĥn −Hn → 0k×k a.s. follows analogously. �

An analog to Lemma 16.4 in AG and Lemma 1 in GKM19 is given by the
following statement. Define20

20Note that the quantity defined here differs from D̂n (θ) introduced in (3.14).
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D̂n := (Z
′
Z)−1Z

′ (
Y0,W

)
and Q̂n := Ĥ−1/2

n (n−1Z
′
Z)1/2. (A.31)

Denote by vec−1
k,mW

(·) the inverse vec operation that transforms a kmW vector into
a k ×mW matrix.

Lemma 5. Under sequences {λn,h : n ≥ 1} with λn,h ∈ �n in (A.20) based on the
parameter space FAKP,an,n

1/2(D̂n − (�Wnγn,�Wn)) →d Dh, where

Dh ∼ h−1
4 (ξ1,h,vec−1

k,mW
(ξ2,h)),

ξ1,h and ξ2,h are defined in (A.23), and again h4 is the limit of λ4,n = EFn ZiZ
′
i.

Furthermore, we have Q̂n −Qn →p 0k×k.

Proof of Lemma 5. We have

n1/2(D̂n − (�Wnγn,�Wn))

= n1/2((Z
′
Z)−1Z

′
(y−Yβ0,W)− (�Wnγn,�Wn))

= n1/2((Z
′
Z)−1Z

′
(Z�Wnγn +VWγn + ε,Z�Wn +VW)− (�Wnγn,�Wn))

= (n−1Z
′
Z)−1[n−1/2Z

′
(VWγn + ε,VW)] →d Dh, (A.32)

where the first equality uses the definition of D̂n in (A.31), the second equality uses
the formulas in (2.1), and the convergence results holds by the (triangular array)
CLT and WLLN in (A.23). The remaining statement holds by the WLLN in (A.23)
and the consistency of Ĥn for Hn proven above. �

For notational convenience, write

Ûn := Ĝ−1/2
n . (A.33)

Note that the matrix nÛnD̂′
nQ̂′

nQ̂nD̂nÛn equals n−1Ĝ−1/2
n

(
Y0,W

)′
ZĤ−1

n Z′(
Y0,W

)
Ĝ−1/2

n which appears in (2.18). Thus, κ̂in for i = 1, . . . ,p equals the ith
eigenvalue of nÛ′

nD̂′
nQ̂′

nQ̂nD̂nÛn, ordered nonincreasingly, and κ̂pn is the subvector
ARAKP test statistic. To describe the limiting distribution of (̂κ1n, . . . ,κ̂pn), we need
additional notation, namely:

h2 = (h2,q,h2,p−q), h3 = (h3,q,h3,k−q),

h�
1,p−q : =

⎡⎣ 0q×(p−q)

Diag{h1,q+1, . . . ,h1,p−1,0}
0(k−p)×(p−q)

⎤⎦∈ �k×(p−q),

�h : = (�h,q,�h,p−q) ∈ �k×p, �h,q := h3,q ∈ �k×q,

�h,p−q := h3h�
1,p−q +h6Dhh7h2,p−q ∈ �k×(p−q), (A.34)
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where h2,q ∈ �p×q,h2,p−q ∈ �p×(p−q), h3,q ∈ �k×q,h3,k−q ∈ �k×(k−q),�h,q ∈ �k×q,

and �h,p−q ∈ �k×(p−q).21 Let Tn := BFn Sn and Sn := Diag{(n1/2τ1Fn)
−1, . . . ,

(n1/2τqFn)
−1,1, . . . ,1} ∈ �p×p. The same proof as the one of Lemma 16.4 in

AG shows that n1/2QFn D̂nUFn Tn →d �h under all sequences {λn,h : n ≥ 1} with
λn,h ∈ �. The following proposition is an analog to Proposition 16.5 in AG and to
Proposition 2 in GKM19.

Proposition 5. Under all sequences {λn,h : n ≥ 1} with λn,h ∈ �n :

(a) κ̂jn →p ∞ for all j ≤ q.
(b) The (ordered) vector of the smallest p − q eigenvalues of nÛ′

nD̂′
nQ̂nQ̂nD̂nÛn,

i.e., (̂κ(q+1)n, . . . ,κ̂pn)
′, converges in distribution to the (ordered) p − q vector

of the eigenvalues of �
′
h,p−qh3,k−qh′

3,k−q�h,p−q ∈ �(p−q)×(p−q).
(c) The convergence in parts (a) and (b) holds jointly with the convergence in

Lemma 5.
(d) Under all subsequences {wn} and all sequences {λwn,h : n ≥ 1} with λwn,h ∈ �n,

the results in parts (a)–(c) hold with n replaced with wn.

Comments. 1. The proof of the proposition follows from the proof of Proposi-
tion 16.5 in AG. Note that Assumption WU in AG (assumed in their Proposition
16.5) is fulfilled with the roles of W2F,WF,U2F, and UF in AG played here by
QF,QF,UF, and UF, respectively, while the roles of W1 and U1 in AG are played

by the identity function. The roles of Ŵ2n and Ŵn in AG are both played by Q̂n and
those of both Û2n and Ûn by Ûn. Lemma 5 then shows consistency Ŵ2n −W2Fn →p

0k×k and Û2n − U2Fn →p 0p×p under sequences {λn,h : n ≥ 1} with λn,h ∈ �n and
trivially the functions W1 and U1 are continuous in our case. Note that by the
restrictions in FAKP,an in (2.5) the requirements in the parameter space FWU in AG,
namely “κmin(QF) and κmin(UF) are uniformly bounded away from zero and ||QF||
and ||UF|| are uniformly bounded away from infinity,”are fulfilled. For example,
the former follows because κmin(QF) = 1/κmax(Q

−1
F ) = 1/κmax((EFZiZ

′
i)

−1/2H1/2
F )

and κmax((EFZiZ
′
i)

−1/2H1/2
F ) is uniformly bounded.

2. Proposition 5 yields the desired joint limiting distribution of the p eigenvalues
in (2.18). Using repeatedly the general formula (C′ ⊗ A)vec(B) = vec(ABC) for
three conformable matrices A,B,C, we have for the expression h6Dhh7 that appears
in �h,p−q

vec(h6Dhh7) = vec(h6h−1
4 (ξ1,h,vec−1

k,mW
(ξ2,h))h7) = (h7 ⊗ (h4h−1

6 )−1)

(
ξ1,h

ξ2,h

)
∼vec(v1, . . . ,vp), (A.35)

where, by definition, vj,j = 1, . . . ,p are i.i.d. normal k-vectors with zero mean and
covariance matrix Ik, and the distributional statement follows by straightforward

21There is some abuse of notation here. For example, h2,q and h2,p−q denote different matrices even if p−q equals q.
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calculations using (A.23). Therefore, by Lemma 5, the definition of �h,p−q in
(A.34), and by noting that

h′
3,k−qh3h�

1,p−q =
(

Diag{h1,q+1, . . . ,h1,p−1,0}
0(k−p)×(p−q)

)
(A.36)

we obtain

h′
3,k−q�h,p−q =

(
Diag{h1,q+1, . . . ,h1,p−1,0}

0(k−p)×(p−q)

)
+h′

3,k−q(v1, . . . ,vp)h2,p−q

∼
(

Diag{h1,q+1, . . . ,h1,p−1,0}
0(k−p)×(p−q)

)
+ (w1, . . . ,wp−q), (A.37)

where, by definition, wj,j = 1, . . . ,p−q are i.i.d. normal (k −q)-vectors with zero
mean and covariance matrix Ik−q. The distributional equivalence in the second
line holds because (v1, . . . ,vp)h2,p−q ∼ (̃v1, . . . ,̃vp−q), where ṽj, j = 1, . . . ,p − q
are i.i.d. N(0k,Ik) as h2,p−q has orthogonal columns of length 1. Analogously,
h′

3,k−q(̃v1, . . . ,̃vp−q) ∼ (w1, . . . ,wp−q) because h3,k−q has orthogonal columns of
length 1.

For example, when q = p − 1 = mW (which could be called the “strong
IV” case), we obtain from (A.37) h′

3,k−q�h,p−q = w1 ∈ �k−mW . Therefore,

�
′
h,p−qh3,k−qh′

3,k−q�h,p−q ∼ χ2
k−mW

, and thus by part (b) of Proposition 5, the
limiting distribution of the subvector ARAKP test statistic is χ2

k−mW
in that case,

while all the larger roots in (2.18) converge in probability to infinity by part (a).

Proof of Theorem 1. Given the discussion in Comment 2 to Proposition 5, the
same proof as for Theorem 5 in GKM19 applies. �

A.2. Proof of Theorem 2

Proof of Theorem 2. It is enough to verify Proposition 4 above for the
parameter space FHet and the test ϕMS−AKP,α . To verify Assumption B in ACG
consider a sequence λwn,h defined as in (A.19) and (A.21) above except that the
component

λ9wn := min ||R−1/2
Fwn

(G⊗H −RFwn
)R−1/2

Fwn
||/cwn (A.38)

is added to λwn , where the minimum (here and in similar expressions below)
is taken over (G,H) for G ∈ �p×p,H ∈ �k×k being pd, symmetric matrices,
normalized such that the upper left element of G equals 1. In (A.20), we replace
FAKP,awn

by FHet and define hwn(λF) := (w1/2
n λ1,F,λ2,F,λ3,F, . . . ,λ7,F,w

1/2
n λ9,F).

To simplify notation, we write n instead of wn from now on.
Consider first a sequence λn,h with h9 = ∞. By Assumption MS, ϕMS,cn = 1

wpa1 and therefore, ϕMS−AKP,α = ϕRob,α−δ wpa1. Thus, the new test ϕMS−AKP,α has
limiting NRP bounded by α − δ in that case because ϕRob,α−δ has asymptotic size
bounded by its nominal size by Assumption RT.
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Second, consider a sequence λn,h with h9 ∈ [0,∞). In that case, n1/2/cn → ∞
implies that min ||R−1/2

Fn
(G ⊗ H − RFn)R

−1/2
Fn

|| → 0. By submultiplicativity of the

Frobenius norm and ||R1/2
Fn

|| being uniformly bounded in FHet it then follows that
min ||G ⊗ H − RFn || → 0. That is, the covariance matrix RFn has AKP structure.
Therefore, also the covariance matrix RFn has AKP structure. By the proof of
Theorem 1, the test ϕAKP,α then has limiting NRP bounded by α under sequences
λn,h with h9 ∈ [0,∞). It, therefore, follows that

lim sup
n→∞

Pλn,h(ϕMS−AKP,α = 1)

≤ lim sup
n→∞

Pλn,h(max{ϕRob,α−δ,ϕAKP,α} = 1)

= lim sup
n→∞

Pλn,h(ϕAKP,α = 1) ≤ α, (A.39)

where the equality uses Assumption RP, Pλn,h(ϕRob,α−δ ≤ ϕAKP,α) → 1, which
implies that Pλn,h((max{ϕRob,α−δ,ϕAKP,α} = 1)∩ (ϕRob,α−δ > ϕAKP,α)) → 0 and the
last inequality follows from the fact that the limiting NRP of the test ϕAKP,α is
bounded by α.

This establishes Proposition 4 with suph∈H RP+(h) ≤ α and thus Theorem 2.
To prove Comment 1 below Theorem 2, note that by the assumed continuity,

lim
δ→0

liminf
n→∞ inf

(γ,�W,�Y,F)∈FHet
E(γ,�W,�Y,F)ϕMS−AKP,δ,cn,α

= liminf
n→∞ inf

(γ,�W,�Y,F)∈FHet
E(γ,�W,�Y,F)ϕMS−AKP,0,cn,α . (A.40)

But note that

lim inf
n→∞ inf

(γ,�W,�Y,F)∈FHet
E(γ,�W,�Y,F)ϕMS−AKP,0,cn,α

= lim inf
n→∞E(γn,�Wn,�Yn,Fn)ϕMS−AKP,0,cn,α

= lim
n→∞E(γwn,�Wwn,�Ywn,Fwn )ϕMS−AKP,0,cwn ,α

= lim
n→∞Eλwn,hϕMS−AKP,0,cwn ,α, (A.41)

where in the first equality (γn,�Wn,�Yn,Fn) ∈ FHet is chosen such that
inf(γ,�W,�Y,F)∈FHet E(γ,�W,�Y,F)ϕMS−AKP,0,cn,α ≥ E(γn,�Wn,�Yn,Fn)ϕMS−AKP,0,cn,α −
n−1, in the second equality a subsequence {wn} of {n} can be found, and
in the third equality {wn} may denote a further subsequence along which
(γwn,�Wwn,�Ywn,Fwn) is of type λwn,h for some h. (We are allowing here for the
possibility that Eλwn,hϕMS−AKP,δ,cwn,α may depend on the particular sequence λwn,h

rather than just h.) If h9 = ∞ then ϕMS−AKP,0,cwn ,α = ϕRob,α wpa1 by Assumption
MS and

lim
n→∞Eλwn,hϕRob,α ≥ lim inf

n→∞ inf
(γ,�W,�Y,F)∈FHet

E(γ,�W,�Y,F)ϕRob,α . (A.42)
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On the other hand, if h9 < ∞ then by Assumption RP, ϕRob,α ≤ ϕAKP,α wpa1 and

lim
n→∞Eλwn,hϕMS−AKP,0,cwn ,α ≥ lim

n→∞Eλwn,hϕRob,α, (A.43)

and the desired conclusion then follows as in (A.42). �

A.3. Assumption MS for the Model Selection Method ϕMS,cn

Here, we verify Assumption MS for the two suggested methods for ϕMS,cn .
Method 1, defined as I(K̂n > cn) : To simplify notation, we write again n instead

of wn and subscripts Fn as n. Consider a sequence λn,h with h9 = ∞. Rewrite

K̂n/cn = n1/2||̂R−1/2
n (Ĝn ⊗ Ĥn −Rn + (Rn − R̂n))̂R

−1/2
n ||/cn. (A.44)

In the proof of Lemma 4, we use the uniform moment restrictions in (2.5) in
FAKP,an to obtain R̂n − Rn = op(1); here the stronger uniform moment condition
EF((||Zi||2||Ui||2)2+δ1) ≤ B allows the application of a Lyapunov CLT and to
establish that n1/2(̂Rn − Rn) = Op(1). Because by assumption κmin(RFn) ≥ δ2 in
FHet, we thus have n1/2R̂−1/2

n (Rn − R̂n)̂R
−1/2
n /cn = op(1). Furthermore,

n1/2||R−1/2
n (Ĝn ⊗ Ĥn −Rn)R

−1/2
n ||/cn ≥ n1/2λ9n → h9 = ∞, (A.45)

where the inequality holds by the definition of λ9n in (3.2). Because R̂1/2
n R−1/2

n →p

Ikp and norms are continuous, it thus follows that K̂n/cn > 1 wpa1.
Method 2: The desired result is obtained using Theorem 3 in GKM23.

A.4. Proofs of Results Involving the AR/AR Test

Proof of Lemma 1. Assumption RT is satisfied by the AR/AR test by Theorem
8.1 in Andrews (2017) noting that the parameter space FAR/AR in Andrews (2017,
eqn. (8.8)) contains the parameter space FHet defined in (3.24). In particular,
note that ξ1i defined in (8.2) in Andrews (2017), equals 0 in the linear IV model
considered here and therefore the condition in (8.8) EFξ 2

1i being bounded holds
trivially. Also, Assumption W in Andrews (2017) holds with the choice Ŵ1n =
(n−1∑n

i=1ZiZ
′
i)

−1 considered here.
Assumption RP is verified by the following argument that uses Lemma

6. To simplify notation, we write n instead of wn. Let γ̂n be an element in
argminγ̃∈RmW HARn (β0,γ̃ ) . Consider first the case where γ̂n /∈ CS+

1n, defined
in (3.15). Then, in particular, it must be that HARn (β0,γ̂n) > χ2

k,1−α1
. We obtain

ARAKP (β0)− c1−α

(
κ̂1n,k −mW

)
= HARn (β0,γ̂n)−χ2

k,1−α1
+ (χ2

k,1−α1
− c1−α

(
κ̂1n,k −mW

)
)+ B̃n +op (1),

(A.46)

where the equality follows from Lemma 6. But χ2
k,1−α1

> χ2
k−mw,1−α ≥

c1−α

(
κ̂1n,k −mW

)
no matter what value κ̂1n takes on. Given mW ≥ 1 and α1 < α we
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have that χ2
k,1−α1

− c1−α

(
κ̂1n,k −mW

)
> ε wp1 for some ε > 0. Because B̃n ≥ 0 it

follows from HARn (β0,γ̂n) > χ2
k,1−α1

that ARAKP (β0) > c1−α

(
κ̂1n,k −mW

)
wpa1.

In other words, the conditional subvector ARAKP test rejects wpa1.
Consider second the case where γ̂n ∈ CS+

1n. Recall the rejection condition
of the test ϕAR/AR,α−δ,α1 , infγ̃∈CS+

1n
(HARβ,n (β0,γ̃ ) − χ2

k−mW,1−α2,n(β0,γ̃ )) > 0. For

any γ̃ ∈ CS+
1n, we have α2,n(β0,γ̃ ) ≤ α − δ by (3.18). Therefore, in particular,

for γ̂n ∈ CS+
1n

χ2
k−mW,1−α2,n(β0,γ̂n) > χ2

k−mw,1−α + ε ≥ c1−α

(
κ̂1n,k −mW

)+ ε (A.47)

for some ε > 0. We thus obtain that

ARAKP,n(β0)− c1−α

(
κ̂1n,k −mW

)
> HARn (β0,γ̂n)−χ2

k−mW,1−α2,n(β0,γ̂n) + ε + B̃n +op (1)

≥ HARβ,n (β0,γ̂n)−χ2
k−mW,1−α2,n(β0,γ̂n) + ε + B̃n +op (1)

≥ min
γ̃∈CS+

1n

(HARβ,n (β0,γ̃ )−χ2
k−mW,1−α2,n(β0,γ̃ ))+ ε + B̃n +op (1), (A.48)

where the first inequality follows from Lemma 6 and (A.47), the second
inequality follows from HARn (β0,γ̃ ) ≥ HARβ,n (β0,γ̃ ) for any (β0,γ̃ ) because
MD̃n(β0,γ̃ )+an−1/2ζ1

is a projection matrix, and the last inequality follows because
γ̂n ∈ CS+

1n. Thus, if ϕAR/AR,α−δ,α1 = 1 and minγ̃∈CS+
1n

(HARβ,n (β0,γ̃ ) −
χ2

k−mW,1−α2,n(β0,γ̃ )) > 0, it must also be true that ARAKP,n(β0)− c1−α

(
κ̂1n,k −mW

)
> 0 wpa1.22

The inequalities in (A.47) and (A.48) immediately imply the desired result

Pλwn,h(ϕRob,α−δ ≤ ϕAKP,α)

= Pλwn,h((ϕRob,α−δ ≤ ϕAKP,α)∩ (γ̂n ∈ CS+
1n))

+Pλwn,h((ϕRob,α−δ ≤ ϕAKP,α)∩ (γ̂n /∈ CS+
1n)) → 1. (A.49)

�

Recall that γ̂wn is an element in argminγ̃∈RmW HARwn (β0,γ̃ ) and γ +
wn

is an
element in argminγ̃∈RmW ÃRAKP,wn(β0,γ̃ ).

22Note that it is this derivation that necessitates using ϕRob,α−δ rather than the more powerful ϕRob,α in the definition
of ϕMS−AKP,δ,cn,α . The term B̃n might go to zero and the op (1) term could be negative and dominate and therefore,
without the ε > 0 term we would not be able to obtain a strict inequality between the first and second line of (A.48)
and thus not be able to show that ϕRob,α ≤ ϕAKP,α holds wpa1 under all drifting sequences. Under weak identification,
we would still be able to do so; namely, if q = qh = 0, see (A.24) above then Proposition 5(b) implies that κ̂1n = Op(1)

and given that the critical values c1−α

(
κ̂1n,k −mW

)
obtained by linear interpolation from the tables in the Appendix

of GKM19 are strictly increasing in κ̂1n with c1−α

(
κ̂1n,k −mW

)→ χ2
k−mw,1−α as κ̂1n → ∞ it follows that there is a

γ > 0 such that χ2
k−mw,1−α ≥ c1−α

(
κ̂1n,k −mW

)+γ wpa1. Then, (A.48) implies that ϕRob,α ≤ ϕAKP,α holds wpa1.
But that argument does not go through when q = qh ≥ 1.
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Lemma 6. Consider a sequence λwn,h (of reparameterized elements inFHet) with
h9 < ∞ (that is, a sequence of AKP structure). If γ +

wn
= Op(1) and �Wwn w1/2

n (γ +
wn

−
γwn) = Op(1) then along λwn,h

ARAKP,wn(β0) = HARwn

(
β0,γ̂wn

)+ B̃wn +op (1)

for some random sequence B̃wn that is nonnegative wp1.

Proof. To simplify notation, we write n instead of wn. Recall from (3.13)

HARn (β0,γ̃ ) = n̂gn (β0,γ̃ )′ �̂n (β0,γ̃ )−1 ĝn (β0,γ̃ )

= n

(
1

−γ̃

)′ (
Y0,W

)′
Z�̂n (β0,γ̃ )−1 Z

′ (
Y0,W

)( 1

−γ̃

)
. (A.50)

Defining b+
n := (

1, −β ′
0, −γ +′

n

)′
it follows that under the null

Y0i −W ′
iγ

+
n = yi −Y ′

iβ0 −W ′
iγ

+
n = vy,i −V ′

Y,iβ0 −V ′
W,iγ

+
n +Z

′
i�Wn(γ −γ +

n )

= V ′
i b

+
n +Z

′
i�Wn(γ −γ +

n ). (A.51)

Define

ξin := ZiZ
′
i�Wn(γ −γ +

n ) ∈ �k and ξ n := n−1∑n
i=1ξin. (A.52)

We then have

n�̂n
(
β0,γ

+
n

)
=∑n

i=1

[
Zi(Y0i −W ′

iγ
+
n )−Z

′ (
Y0 −Wγ +

n

)
/n
]

×
[
Zi(Y0i −W ′

iγ
+
n )−Z

′ (
Y0 −Wγ +

n

)
/n
]′

=∑n
i=1(Y0i −W ′

iγ
+
n )2ZiZ

′
i −Z

′ (
Y0 −Wγ +

n

)(
Y0 −Wγ +

n

)′
Z/n

=∑n
i=1

[(
V ′

i b
+
n

)2 +2(V ′
i b

+
n Z

′
i�Wn(γ −γ +

n ))+
(

Z
′
i�Wn(γ −γ +

n )
)2
]

ZiZ
′
i

− (Z
′
Vb+

n b+′
n V ′Z +2Z

′
Vb+

n (γ −γ +
n )′�′

WnZ
′
Z

+Z
′
Z�Wn(γ −γ +

n )(γ −γ +
n )′�′

WnZ
′
Z)/n

=∑n
i=1

(
V ′

i b
+
n

)2
ZiZ

′
i +
∑n

i=1

(
ξin − ξ n

)(
ξin − ξ n

)′
+2
∑n

i=1(V
′
i b

+
n Z

′
i�Wn(γ −γ +

n ))ZiZ
′
i −2Z

′
Vb+

n (γ −γ +
n )′�′

WnZ
′
Z/n

−Z
′
Vb+

n b+′
n V ′Z/n

=∑n
i=1

(
V ′

i b
+
n

)2
ZiZ

′
i +Op(n

1/2), (A.53)

where, for the third equality, we use (A.51) and Z
′ (

Y0 −Wγ +
n

) = Z
′
Vb+

n +
Z

′
Z�Wn(γ − γ +

n ), in the fifth equality, we apply a WLLN or a Lyapunov CLT
theorem for each of the last three summands in the second to last line and the
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second summand in the third to last line which hold by the moment conditions
imposed in the parameter space FHet in (3.24). In particular, using γ +

n = Op(1)

and �Wnn1/2(γ +
n − γn) = Op(1), the first summand in the second to last line is

Op(n1/2) while the other summands are Op(1).
The first summand in the last line of (A.53) can be expanded as follows after

normalization by n−1.

n−1∑n
i=1

(
V ′

i b
+
n

)2
ZiZ

′
i

= (
b+

n ⊗ Ik
)′

n−1∑n
i=1

(
Vi ⊗Zi

)(
Vi ⊗Zi

)′ (
b+

n ⊗ Ik
)

=
((

1

−γ +
n

)
⊗ Ik

)′
n−1∑n

i=1

((
vyi −V ′

Yiβ0

VWi

)
⊗Zi

)((
vyi −V ′

Yiβ0

VWi

)
⊗Zi

)′

︸ ︷︷ ︸
=:̂RFn

((
1

−γ +
n

)
⊗ Ik

)
.

When β0 = β (which is assumed here), we have

R̂Fn = EFn(vec(ZiU
′
i)(vec(ZiU

′
i))

′)+op(1) = GFn ⊗HFn +ϒn +op(1), (A.54)

for some ϒn = o(1), where the first equality holds by a WLLN and the second
one holds by the assumption that n1/2λ9n → h9 < ∞ and the argument given in the
Proof of Theorem 2 that establishes that RFn has AKP structure.

Therefore, by (3.21),

�̂n
(
β0,γ

+
n

)− �̃
(
β0,γ

+
n

)
= n−1∑n

i=1

(
V ′

i b
+
n

)2
ZiZ

′
i − (

(
1, −γ +′

n

)
Ĝn
(
1, −γ +′

n

)′
)

⊗ (n−1Z
′
Z)1/2Ĥn(n

−1Z
′
Z)1/2 +op(1)

= op (1), (A.55)

where the last line follows from γ +
n = Op(1), (A.54), a WLLN, and Lemma 4.

Therefore,

HARn
(
β0,γ

+
n

)= n̂g
(
β0,γ

+
n

)′ [
�̃
(
β0,γ

+
n

)+op (1)
]−1

ĝ
(
β0,γ

+
n

)
= ÃRAKP,n(β0,γ

+
n )+op(1), (A.56)

where we use positive definiteness of �̃
(
β0,γ

+
n

)
in the last equality which holds

by the restrictions on EF(Z
′
iZi),GF, and HF in (2.5).

By definition of γ̂n,HARn
(
β0,γ

+
n

) ≥ HARn (β0,γ̂n). By definition of
γ +

n ,ARAKP,n(β0) = ÃRAKP,n(β0,γ
+
n ). Thus, by (A.56),

ARAKP,n(β0) =HARn
(
β0,γ

+
n

)+op(1) ≥ HARn (β0,γ̂n)+op(1), (A.57)

which is the desired result. �

A.5. Time Series Case

In this section, we drop Assumption B and allow for a stationary time series setup.
In the time series case, F denotes the distribution of the stationary infinite sequence
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{(Z′
i,V

′
i )

′ : i = . . . ,0,1, . . .}. Recall the definition Ui := (εi + V ′
W,iγ,V ′

W,i)
′ and

define

RF,n := VarF
(
n−1/2∑n

i=1vec(ZiU
′
i)
)

. (A.58)

Consider again a sequence an = o(1) in �≥0. The parameter space is given by

FTS,AKP,an : = {(γ,�W,�Y,F) : γ ∈ �mW,�W ∈ �k×mW,�Y ∈ �k×mY ,

{(Zi,Vi) : i = . . . ,0,1, . . .}
are stationary and strong mixing under F with strong mixing numbers

{αF(m) : m ≥ 1} that satisfy αF(m) ≤ Cm−d,

EF(ZiV
′
i ) = 0k×(m+1), RF,n = GF ⊗HF +ϒn,

EF(||Ti||2+δ) ≤ B, for Ti ∈ {vec(ZiU
′
i),||Zi||2}

κmin(A) ≥ δ for A ∈ {EFZiZ
′
i,GF,HF}} (A.59)

for some δ > 0,d > (2+δ)/δ, B,C < ∞, for symmetric matrices ϒn ∈ �kp×kp such
that ||ϒn|| ≤ an, pd symmetric matrices GF ∈ �p×p (whose upper left element is
normalized to 1) and HF ∈ �k×k.

In the time series context, the definition of R̂n in (2.11) is replaced by a
heteroskedasticity and autocorrelation consistent (HAC) variance matrix estimator
based on {fi : i ≤ n} for RF,n := (Ip ⊗ (EFZiZ

′
i)

−1/2)RF,n(Ip ⊗ (EFZiZ
′
i)

−1/2), e.g.,
see Newey and West (1987) and Andrews (1991). With this modification, the
conditional subvector ARAKP test for the time series case is then defined exactly as
in (2.19). Theorem 1 then holds without Assumption B and with FAKP,an replaced
by FTS,AKP,an .

Comment. 1. The proof of the theorem in the time series case follows the exact
same steps as the proof of Theorem 1 in the i.i.d. case in the Appendix with simple
modifications. In particular, define sequences {λwn,h : n ≥ 1} as in (A.21) but with
FAKP,an replaced by FTS,AKP,an in (A.20). Then, under sequences λn,h (writing n
instead of wn to simplify notation), the HAC estimator R̂n satisfies R̂n − RF,n →p

0kp×kp and thus R̂n →p h−2
7 ⊗h1/2

4 h−1
6 h

′−1
6 h1/2

4 see earlier sections for notation. Also,
the CLT in (A.23) continues to hold under the mixing conditions in FTS,AKP,an .
Then, the exact same proof as for the i.i.d. case applies.

2. Again, we obtain the corresponding result for the generalization of the
subvector test in GKMC to the time series KP structure case. This test has correct
asymptotic size for the parameter space FTS,AKP,an and the result is obtained fully
analytically; its proof does not require any simulations.
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