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Abstract

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If

� = GL=, then there is a degeneration process for obtaining from H a completely reducible subgroup � ′ of G; one

takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive

G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically

closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup � ′ of G,

unique up to � (:)-conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction

that extends various special cases in the literature (in particular, it agrees with the usual notion for � = GL= and

with Serre’s ‘G-analogue’ of semisimplification for subgroups of � (:) from [19]). We also show that under some

extra hypotheses, one can pick � ′ in a more canonical way using the Tits Centre Conjecture for spherical buildings

and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.
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1. Introduction

The aim of this paper is to present a construction of the semisimplification of a subgroup � of a

(possibly non-connected) reductive linear algebraic group � over an arbitrary field : . This construction

unifies and generalizes many concepts already in the literature within a single framework. For example,

the semisimplification of a module for a group is a well-known construction in representation theory,

corresponding in our case to the situation where � ⊆ GL= (:). Building on this idea, for �, a connected
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reductive linear algebraic group over a field : , and �, a subgroup of � (:), Serre introduced the concept

of a ‘�-analogue’ of semisimplification from representation theory in [19, Section 3.2.4]. This notion

is also used for representations of various kinds of algebras: for example, see [12], [8], [16], [23], and

[24]. It is also an ingredient in work of Lawrence-Sawin on the Shafarevich Conjecture for abelian

varieties [13] and work of Lawrence-Venkatesh on Mordell’s Conjecture [14], which involve Galois

representations taking values in possibly non-connected reductive ?-adic groups.

We begin by recalling how the most basic case works. Let = ∈ N, and let � be a subgroup of

GL= (:). There is an �-module filtration of := such that the successive quotients are irreducible, by the

Jordan-Hölder Theorem. In terms of matrices, this implies that by changing basis if necessary, we may

assume that � is in upper block-triangular form, with the action of � on each quotient being represented

by the corresponding block on the diagonal. Letting � ′ be the subgroup of GL= (:) consisting of the

block diagonal matrices obtained by taking each element of � and replacing the entries above the block

diagonal with 0s, we obtain a subgroup that acts semisimply on :=—that is, � ′ is completely reducible.

Since this construction is independent of the choice of basis up to GL= (:)-conjugacy, again by the

Jordan-Hölder Theorem, it is reasonable to call � ′ the semisimplification of �.

We now explain several of the ingredients of our construction in the case that : is algebraically

closed, which removes some technicalities. Recall [2, 19] that if � is connected and � is a subgroup

of �, then � is �-completely reducible (�-cr for short) if for any parabolic subgroup % of � such that

% contains �, there is a Levi subgroup ! of % such that ! contains �. If � = GL=, then � is �-cr

if and only if := is completely reducible as an �-module; this follows from the usual characterisation

of parabolic subgroups of GL= as stabilizers of flags of subspaces. We make the same definition for

arbitrary reductive �, replacing parabolic subgroups and Levi subgroups with R-parabolic subgroups

and R-Levi subgroups instead (see Section 2 for details).

To perform our construction, we apply a characterisation of �-complete reducibility in terms of

geometric invariant theory (GIT). We see this idea already in our original example: we can view � ′ as

a degeneration of � in the following sense. Let the sizes of the blocks down the diagonal be =1, . . . , =A ,

and define a cocharacter _ : G< → GL= by

_(0) = diag(0A , . . . , 0A , . . . , 01, . . . , 01), with =8 occurrences of 0A−8+1, 1 ≤ 8 ≤ A.

For each 0 ∈ :∗, define �0 = _(0)�_(0)−1 for 0 ∈ :∗. Then � ′ = lim0→0 �0 in an appropriate sense.

Our definition of :-semisimplification (Definition 4.1) for arbitrary : is new, generalizes the one

given by Serre in [19, Section 3.2.4], and is closely related to the definition given in [6] using optimal

destabilising cocharacters; the two notions agree whenever the latter makes sense (see also [15, Section

4] for the algebraically closed case). We prove that the :-semisimplification of a subgroup � of �

is unique up to conjugacy (Theorem 4.5), generalizing [19, Proposition 3.3(b)]. In Theorem 5.4, we

show that a normal subgroup of a �-completely reducible subgroup � is �-completely reducible and

that the process of :-semisimplification behaves well under passing to normal subgroups of �, if : is

perfect or � is connected. The proof rests on deep results from the theory of spherical buildings and

the Hesselink-Kempf-Rousseau theory of optimal destabilising cocharacters. We give a short and self-

contained exposition, bringing together some results (such as Corollary 3.5) that follow from previous

work but are not easily extracted from earlier papers.

2. Cocharacter-closed orbits

Following [7] and our earlier work [6, 1], we regard an affine variety over a field : as a variety - over

the algebraic closure : together with a choice of :-structure. We denote the separable closure of : by

:B . We write - (:) for the set of :-points of - and - (:) (or just -) for the set of :-points of - . By a

subvariety of - , we mean a closed :-subvariety of -; a :-subvariety is a subvariety that is defined over

: . We denote by "= the associative algebra of = × = matrices over : . Below � denotes a possibly non-

connected reductive linear algebraic group over : . By a subgroup of �, we mean a closed :-subgroup;
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and by a :-subgroup, we mean a subgroup that is defined over : . (We note here that much of what

follows works for non-closed subgroups—most of the important conditions hold for � if and only if

they hold for the Zariski closure �; the details are left to the reader.) By �0, we denote the identity

component of �, and likewise for subgroups of �.

We define .: (�) to be the set of :-defined cocharacters of � and . (�) := .
:
(�) to be the set of all

cocharacters of �.

Let � be a subgroup of �. Even if � is :-defined, the (set-theoretic) centralizer �� (�) need not be

:-defined in general. It is useful to have criteria to ensure that �� (�) is :-defined (see Proposition 3.4

and Section 5). For instance, if : is perfect and � is :-defined, then �� (�) is :-defined. We say that �

is separable if the scheme-theoretic centralizer �� (�) is smooth [2, Definition 3.27]; for instance, any

subgroup of GL= is separable [2, Example 3.28] (see [5] for more examples of separable subgroups). If

� is :-defined and separable, then �� (�) is :-defined (see [1, Proposition 7.4]).

Next we recall some basic notation and facts concerning parabolic subgroups in (non-connected)

reductive groups � from [2, Section 6] and [6]. Given _ ∈ . (�), we define

%_ = {6 ∈ � | lim
0→0

_(0)6_(0)−1 exists}

and !_ = �� (Im(_)) (for the definition of a limit, see [20, Section 3.2.13]). We call %_ an R-parabolic
subgroup of � and !_ an R-Levi subgroup of %_; they are subgroups of �. We have %_ = !_ = � if

Im(_) is contained in the centre of �. For ease of reference, we record without proof some basic facts

about these subgroups.

Lemma 2.1.

(i) If % is a :-defined R-parabolic subgroup, then 'D (%) is :-defined.
(ii) If % is a parabolic subgroup of �0, then the normalizer #� (%) is an R-parabolic subgroup of �,

and #� (%) is :-defined if % is.

If � is connected, then every pair (%, !) consisting of a parabolic :-subgroup % of � and a Levi

:-subgroup ! of % is of the form (%, !) = (%_, !_) for some _ ∈ .: (�), and vice versa [20, Lemma

15.1.2(ii)]. In general, if _ ∈ .: (�), then %_ and !_ are :-defined [6, Lemma 2.5], but the converse

is not so straightforward. If % is an R-parabolic :-subgroup and ! is an R-Levi :-subgroup of %, then

for any maximal :-torus ) of !, there exists _ ∈ .:B ()) such that % = %_ and ! = !_. However, it is

possible that % is a :-defined R-parabolic subgroup and yet there does not exist any ` ∈ .: (�) such

that % = %`, and similarly for R-Levi subgroups—see [6, Remark 2.4]. This complicates some of the

arguments below.

Lemma 2.2. Let % be an '-parabolic subgroup of � and ! an R-Levi subgroup of %.

(i) We have % � ! ⋉ 'D (%), and this is a :-isomorphism if % and ! are :-defined.
(ii) Any two R-Levi :-subgroups of an R-parabolic :-subgroup % are 'D (%) (:)-conjugate.

We denote the canonical projection from % to ! by 2! ; this is :-defined if % and ! are. If we

are given _ ∈ . (�) such that % = %_ and ! = !_, then we often write 2_ instead of 2! . We have

2_ (6) = lim0→0 _(0)6_(0)
−1 for 6 ∈ %_; the kernel of 2_ is the unipotent radical 'D (%_), and the set

of fixed points of 2_ is !_.

Let< ∈ N. Below we consider the action of� on�< by simultaneous conjugation: 6 · (61, . . . , 6<) =

(6616
−1, . . . , 66<6

−1). Given _ ∈ . (�), we have a map %<
_
→ !<

_
given by g ↦→ lim0→0 _(0) · g; we

abuse notation slightly and also call this map 2_. For any g ∈ %<
_

, there exists an R-Levi :-subgroup !

of %_ with g ∈ != if and only if 2_ (g) = D · g for some D ∈ 'D (%_) (:).

Our main tool from GIT is the notion of cocharacter-closure, introduced in [6] and [1].

Definition 2.3. Let - be an affine �-variety and let G ∈ - (we do not require G to be a :-point). We say
that the orbit � (:) · G is cocharacter-closed over : if for all _ ∈ .: (�) such that G ′ := lim0→0 _(0) · G

exists, G ′ belongs to � (:) · G. If : = : then it follows from the Hilbert-Mumford Theorem that � (:) · G is
cocharacter-closed over : if and only if � (:) · G is closed [11, Theorem 1.4]. If O is a � (:)-orbit in - ,
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then we say that O is accessible from G over : if there exists _ ∈ .: (�) such that G ′ := lim0→0 _(0) · G

belongs to O.

Example 2.4. If - = �<, _ ∈ .: (�), and g ∈ %<
_

, then � (:) · 2_ (g) is accessible from g over : .

The following result is [1, Theorem 1.3].

Theorem 2.5 (Rational Hilbert-Mumford Theorem). Let �, - , G be as above. Then there is a unique
� (:)-orbit O such that O is cocharacter-closed over : and accessible from G over : .

3. �-complete reducibility

Definition 3.1. Let � be a subgroup of �. We say that � is �-completely reducible over : (�-cr over
:) if for any R-parabolic :-subgroup % of � such that % contains �, there is an R-Levi :-subgroup !

of % such that ! contains �. We say that � is �-irreducible over : (�-ir over :) if � is not contained
in any proper R-parabolic :-subgroup of � at all.

Remark 3.2. We say that � is �-cr if � is �-cr over :—cf. Section 1. More generally, if : ′/: is an
algebraic field extension, then we may regard � as a : ′-group, and it makes sense to ask whether � is
�-cr over : ′.

For more on �-complete reducibility, see [18, 19, 2].

Note that the definitions make sense even if � is not :-defined. It is immediate that �-irreducibility

over : implies �-complete reducibility over : . We have %6 ·_ = 6%_6
−1 and !6 ·_ = 6!_6

−1 for any

_ ∈ . (�) and any 6 ∈ � (see, for example, [2, Section 6]). It follows that if � is �-cr over :

(respectively, �-ir over :), then so is any � (:)-conjugate of �. More generally, one can show that if

� is �-cr over : (respectively, �-ir over :), then so is q(�) for any :-defined automorphism q of �.

If : = : and � is �-cr, then � is reductive [19, Proposition 4.1] and [2, Section 2.4, Section 6.2]. It

follows from Proposition 3.4 below that if � is :-defined, : is perfect and � is �-cr over : , then � is

reductive. We see below (Corollary 3.5) that the converse holds in characteristic 0. On the other hand,

the converse is false in general, as is shown by the example in [22, Proof of Proposition 1.10].

We now explain the link between �-complete reducibility and GIT. Fix a :-embedding ] : � → GL=

for some = ∈ N. Let � be a subgroup of �. Let < ∈ N, and let h = (ℎ1, . . . , ℎ<) ∈ �<. We call h a

generic tuple for � with respect to ] if ℎ1, . . . , ℎ< generate the subalgebra of "= generated by � [6,

Definition 5.4]. Note that we don’t insist that h is a :-point. Our constructions below do not depend on

the choice of ], so we suppress the words ‘with respect to ]’. It is immediate that if h ∈ �< is a generic

tuple for � and 6 ∈ �, then 6 · h is a generic tuple for 6�6−1.

Theorem 3.3 ([1, Theorem 9.3]). Let � be a subgroup of �, and let h ∈ �< be a generic tuple for �.
Then � is �-completely reducible over : if and only if � (:) · h is cocharacter-closed over : .

Using this result, one can derive many results on �-complete reducibility: for instance, see [2] for

the algebraically closed case and [6, 1] for arbitrary : . Note that if h ∈ �< is a generic tuple for �, then

the centralizer �� (�) coincides with the stabilizer �h.

Proposition 3.4. Let � be a :-subgroup of �. Suppose : is perfect. Then � is �-completely reducible
over : if and only if � is �-completely reducible.

Proof. If : is perfect, then :/: is separable and �� (�) is :-defined. The result now follows from [1,

Corollary 9.7(i)]. �

Corollary 3.5. Suppose char(:) = 0. Let � be a :-subgroup of �. Then � is �-completely reducible
over : if and only if � is reductive.

Proof. If : = : , then this is well known (see [19, Proposition 4.2] and [2, Section 2.2, Section 6.3], for

example). The result for arbitrary : now follows from Proposition 3.4. �
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Recall that if ( is a :-split torus of �, then �� (() is an R-Levi :-subgroup of � [1, Lemma 2.5].

Part (i) of the next result gives the converse, and part (ii) strengthens [1, Corollary 9.7(ii)]: we do not

need the hypotheses that � and �� (�) are :-defined. See also [19, Proposition 3.2].

Proposition 3.6. Let ! be an R-Levi :-subgroup of �, and let � be a subgroup of !.

(a) There exists a :-split torus ( in � such that ! = �� (().
(b) � is �-completely reducible over : if and only if � is !-completely reducible over : .

Proof. (a). We can choose _ ∈ .:B (�) such that ! = �� (Im(_)). Let _ = _1, _2, . . . , _A ∈ .:B (�) be

the Gal(:B/:)-conjugates of _, and let ( be the subtorus of / (!)0 generated by the subtori Im(_8). Then

( is :-defined, and ! = �� ((). The product map _1 × · · · ×_A gives an epimorphism from :
∗
× · · · × :

∗

onto (. But a quotient of a split :-torus is :-split [7, Corollary III.8.4], so ( is split.

(b). Given (a), the result now follows from Theorem 3.3 together with [1, Theorem 5.4(ii)]. �

We finish the section with some results involving non-connected reductive groups that are needed in

the sequel. Note that if & is an R-parabolic :-subgroup of � and " is an R-Levi :-subgroup of &, then

&0 is a parabolic :-subgroup of �0, and "0 is a Levi :-subgroup of &0; see [2, Section 6].

Lemma 3.7. Let % be an R-parabolic subgroup of �, and let ) be a maximal torus of %. Then there is
a unique R-Levi subgroup ! of % such that ) ⊆ !. If % and ) are :-defined, then ! is :-defined.

Proof. The first assertion is [2, Corollary 6.5]. For the second, suppose % and ) are :-defined. Then

the unique R-Levi subgroup ! of % containing ) must be Galois-stable and hence :-defined also. �

Lemma 3.8.

(a) Let & be an R-parabolic :-subgroup of �, and set % = &0. Then the R-Levi :-subgroups of & are
precisely the subgroups of the form #& (!) for !, a Levi :-subgroup of %.

(b) Let &, % be as in (a), and let � be a subgroup of %. Then � is contained in an R-Levi :-subgroup
of & if and only if � is contained in a Levi :-subgroup of %. Moreover, if ! is a Levi :-subgroup
of %, then 2#& (!) (�) is #& (!)-completely reducible over : if and only if 2! (�) is !-completely
reducible over : .

(c) Let � be a subgroup of �0. Then � is �-completely reducible over : if and only if � is �0-
completely reducible over : .

Proof. (a) As observed above, if " is an R-Levi subgroup of &, then "0 is a Levi subgroup of %, and

#& ("0)0 = #% ("
0)0 = "0. Let ! be a Levi subgroup of %, and let ) be a maximal torus of !. By

Lemma 3.7 there is a unique R-Levi subgroup " of & such that ) ⊆ " . The Levi subgroups "0 and

! of % both contain ) , so by Lemma 3.7, they are equal; in particular, " normalizes !. Now #& ())

normalizes ! by Lemma 3.7, so #& (!) meets every component of &. Since & = " ⋉ 'D (&), " also

meets every component of &. It follows that " = #& (!). Finally, ! contains a maximal :-torus of % if

and only if #& (!) does, so ! is :-defined if and only if #& (!) is, by Lemma 3.7.

(b) The first assertion follows immediately from (a), and part (c) now follows. For the second assertion

of (b), note that the restriction of 2#& (!) (�) to % is 2! ; the desired result now follows from part (c)

applied to the reductive :-group #& (!). �

4. k-semisimplification

Now we come to our main definition.

Definition 4.1. Let � be a subgroup of �. We say that a subgroup � ′ of � is a :-semisimplification

of � (for �) if there exist an R-parabolic :-subgroup % of � and an R-Levi :-subgroup ! of % such
that � ⊆ % and � ′ = 2! (�), and � ′ is �-completely reducible (or equivalently, by Proposition 3.6(ii),
!-completely reducible) over : . We say the pair (%, !) yields � ′.
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Remarks 4.2.

(a) Let � be a subgroup of �. If � is �-cr over : , then clearly � is a :-semisimplification of itself,
yielded by the pair (�,�).

(b) Suppose (%, !) yields a :-semisimplification � ′ of �. Let !1 be another R-Levi :-subgroup of %.
Then !1 = D!D−1 for some D ∈ 'D (%) (:), so 2!1

(�) = D2! (�)D−1. Hence (%, !1) also yields a
:-semisimplification of �. We say that % yields a :-semisimplification of �.

(c) It is straightforward to check that if q is an automorphism of � (as a :-group), � is a subgroup
of �; and if (%, !) yields a :-semisimplification � ′ of �, then q(� ′) is a :-semisimplification of
q(�), yielded by (q(%), q(!)).

(d) For � connected and � a subgroup of � (:), Definition 4.1 recovers Serre’s ‘�-analogue’ of a
semisimplification from [19, Section 3.2.4]. For : = : , Definition 4.1 generalizes the definition of
D(�) following [15, Lemma 4.1].

Remark 4.3. Let h = (ℎ1, . . . , ℎ<) ∈ �< be a generic tuple for �. Note that 2_ extends in the
obvious way to a homomorphism from a parabolic subalgebra P_ of "= onto a Levi subalgebra L_

of P_, and P_ contains the subalgebra A generated by �. Since the elements ℎ8 generate A, the
elements 2_ (ℎ8) generate 2_ (A). But 2_ (A) is the subalgebra of L_ generated by 2_ (�), so we deduce
that 2_ (h) = (2_ (ℎ1), . . . , 2_ (ℎ<)) is a generic tuple for 2_ (�). Hence by Theorem 3.3, 2_ (�) is
a :-semisimplification of � if and only if � (:) · 2_ (h) is cocharacter-closed over : . It follows from
Theorem 2.5 that � admits at least one :-semisimplification: for we can choose _ ∈ .: (�) such that
� (:) · 2_ (h) is cocharacter-closed over : , so 2_ (�) is a :-semisimplification of �, yielded by (%_, !_).

Lemma 4.4. Suppose that � ′ is a :-semisimplification of �. Then there is _ ∈ .: (�) such that � ′ is
yielded by the pair (%_, !_).

Proof. Suppose � ′ is yielded by the pair (%, !). By the discussion in Section 2, there exist a maximal

:-torus ) of ! and ` ∈ .:B ()) such that % = %` and ! = !`. Choose a finite Galois extension : ′/:

such that ) splits over : ′, and let _ =
∑

W∈Gal(:′/:) W · ` ∈ .: ()). One checks easily that � ⊆ %_ and

2_ |� = 2` |� (see also the proof of [6, Lemma 2.5(ii)]). Hence (%_, !_) also yields � ′. �

Here is our main result, which was proved in the special case : = : in [6, Proposition 5.14(i)];

see also [19, Proposition 3.3(b)]. The uniqueness asserted in Theorem 4.5 is akin to the theorem of

Jordan–Hölder.

Theorem 4.5. Let � be a subgroup of �. Then any two :-semisimplifications of � are � (:)-conjugate.

Proof. Let �1, �2 be :-semisimplifications of �. By Lemma 4.4, there exist _1, _2 ∈ .: (�) such that

(%_1
, !_1

) realizes �1 and (%_2
, !_2

) realizes �2. Let h ∈ �< be a generic tuple for �. Then 2_8 (h)

is a generic tuple for �8 for 8 = 1, 2, and each orbit � (:) · 2_8 (h) is cocharacter-closed over : and

accessible from h over : (Example 2.4). It follows from the uniqueness result in Theorem 2.5 that the

closed subset �h := {6 ∈ � | 6 · 2_1
(h) = 2_2

(h)} contains a :-point.

Pick 6 ∈ �h. If �2 = 6�16
−1, then we are done. Otherwise, there exists ℎ ∈ � such that

62_1
(ℎ)6−1 ∉ �2 or 6−12_2

(ℎ)6 ∉ �1. Without loss, assume the former. We can repeat the above

argument, replacing h with the generic tuple h′ := (h, ℎ) ∈ �<+1; note that �h′ is properly contained in

�h. The result now follows by a descending chain condition argument. �

Definition 4.6. We define D: (�) to be the set of � (:)-conjugates of any :-semisimplification of � (see
also the discussion preceding [15, Theorem 1.4]). This is well-defined by Theorem 4.5.

Example 4.7. Let � be a subgroup of �. As noted in Remark 4.2(a), if � is �-cr over : , then � is a :-
semisimplification of itself, yielded by the pair (�,�). If � is a �-ir subgroup of �, then � is the only
:-semisimplification of �: this shows that not every element of D: (�) need be a :-semisimplification
of �. In a similar vein, if % and & are arbitrary R-parabolic :-subgroups of � and & ⊇ %, then it is
easily seen that & yields a :-semisimplification of % if and only if %0 = &0.
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Example 4.8. Let � be a subgroup of � and let % be minimal among the R-parabolic :-subgroups
that contain �. Let ! be an R-Levi :-subgroup of %. We claim that 2! (�) is !-ir over : (see also
[19, Proposition 3.3(a)] and [2, Section 3]); it then follows from Proposition 3.6(ii) that 2! (�) is a :-
semisimplification of �. Suppose 2! (�) is not !-ir: say, 2! (�) ⊆ &, where & is a proper R-parabolic
:-subgroup of !. There exist a maximal :-torus) of& and cocharacters _, ` ∈ .:B ()) such that % = %_,
! = !_, and & = %`. Now � ⊆ &'D (%) ( %, and clearly &'D (%) is :-defined. But it is easily checked
that &'D (%) = %<_+` for suitably large < ∈ N (cf. [2, Lemma 6.2(i)]), so &'D (%) is an R-parabolic
:-subgroup of �, contradicting the minimality of %. Conversely, if % is an R-parabolic :-subgroup with
R-Levi :-subgroup ! such that % ⊇ � and 2! (�) is !-ir over : , then a similar argument shows that %
is minimal among the R-parabolic :-subgroups containing �. This proves the claim.

In particular, let �, �, _, and � ′ be as in the GL= example in Section 1. Let % = %_ be the
parabolic subgroup of block upper triangular matrices with blocks of size =1, . . . , =A down the leading
diagonal. Let ! = !_ be the subgroup of block diagonal matrices with blocks of size =1, . . . , =A down
the leading diagonal. Since each =8 × =8 block yields an irreducible representation of � ′ := 2_ (�), � ′

is !-ir over : , so % is minimal among the R-parabolic :-subgroups of � containing �; hence � ′ is the
:-semisimplification of � yielded by (%, !).

Example 4.9. Suppose char(:) = 0. Let � be a :-subgroup of �, and let % be an R-parabolic
subgroup of � with R-Levi subgroup ! such that % ⊇ �. Then Corollary 3.5 implies that 2! (�) is a
:-semisimplification of � if and only if 'D (�) ⊆ 'D (%).

Remark 4.10. Given a reductive :-group � and a subgroup � of �, we may (as in Remark 3.2) regard
� as a :-group by forgetting the :-structure, so it makes sense to consider the semisimplification (that
is, the :-semisimplification) of �. The reader is warned that it can happen that � is �-cr over : but
not �-cr, or vice versa (see [2, Example 5.11] and [5, Example 7.22]), so there is no direct relation
between the notions of :-semisimplification and semisimplification.

5. Optimality and normal subgroups

In Example 4.7, we observed that not every element of D: (�) need be a :-semisimplification of �.

On the other hand, it can happen that � is contained in many different R-parabolic subgroups of �, and

there may exist many conjugate, but different, :-semisimplifications. We now recall two constructions

that give under some extra hypotheses a more canonical choice of R-parabolic subgroup yielding a :-

semisimplification. They apply in particular when � = GL= (see Example 5.6); this does not seem to

be well known even when : = : .

First construction: Suppose � is connected, � is a subgroup of �, and � is not �-cr over : . We

use the theory of spherical buildings (see [18, 19]) and the argument of [3, Proof of Theorem 1.1].

Recall that the spherical building Δ : (�) of � is a simplicial complex whose simplices are the parabolic

:-subgroups of �, ordered by reverse inclusion (the proper :-parabolic subgroups correspond to the

non-empty simplices). The apartments of Δ : (�) are the sets of all :-parabolic subgroups of � that

contain a fixed maximal split :-torus ( of �. The set Σ of parabolic :-subgroups % of � such that

% ⊇ � is a convex subcomplex of Δ : (�), and Σ is not completely reducible in the sense of [19, Section

2.2] because � is not �-cr over : (see [19, Section 3.2.1]). By the Tits Centre Conjecture—see, for

example, [4, Section 2.6] and [19, Section 2.4] and the references therein—Σ has a so-called ‘centre’:

a proper parabolic :-subgroup %2 ∈ Σ such that %2 is fixed by any building automorphism of Δ : (�)

that stabilizes Σ. In particular, %2 is stabilized by any :-automorphism of � that stabilizes �.

Lemma 5.1. Let�, �, and Σ be as above. Let %2 be a centre for Σ such that %2 is not properly contained
in any other centre for Σ. Then %2 yields a :-semisimplification of �.

Proof. Let Λ be the set of :-parabolic subgroups & of � such that & ⊆ %2 . Fix a Levi :-subgroup ! of

%2 . We have an inclusion-preserving bijection k from Λ to Δ : (!) given by & ↦→ & ∩ !, with inverse

given by ' ↦→ ''D (%2). Let Σ! be the subset of Δ : (!) consisting of all the :-parabolic subgroups of
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! that contain 2! (�). It is clear that k(Σ ∩ Λ) = Σ! . If q is a building automorphism of Δ : (�) that

fixes %2 , then q stabilizes Λ, and we get an automorphism q! of Δ : (!) (as a simplicial complex) given

by q! (& ∩ !) = q(&) ∩ !; moreover, if q stabilizes Σ, then q! stabilizes Σ! .

We claim that q! is a building automorphism ofΔ : (!). It is enough to show that q! maps apartments

to apartments. Let ( be a maximal split :-torus of ! (and hence of�). Since q is a building automorphism,

there is a maximal split :-torus (′ of � such that for every :-parabolic subgroup & of � that contains (,

q(&) contains (′. In particular, (′ ⊆ %2 since q(%2) = %2 . By Lemma 3.7, there is a :-Levi subgroup

! ′ of %2 such that (′ ⊆ ! ′. By Lemma 2.2(ii), there exists D ∈ 'D (%2) (:) such that D(′D−1 ⊆ !. Let

' ∈ Δ : (!) such that ( ⊆ ': say, ' = & ∩ ! for & ∈ Λ. Then (′ ⊆ q(&). Since q(&) ⊆ %2 , 'D (q(&))

contains 'D (%2), so D(′D−1 ⊆ q(&). Hence D(′D−1 ⊆ q(&) ∩ ! = q! ('). This proves the claim.

Now suppose %2 does not yield a :-semisimplification of�. Then 2! (�) is not !-cr over : . By the dis-

cussion before the lemma, Σ! has a centre ' ( !. We have ' = &∩! for some& ∈ Λ with& ( %2 . But

the results in the previous paragraph imply that& is a centre forΣ, contradicting the minimality of %2 . �

Second construction: We allow � to be non-connected again. Suppose the following property holds

for a subgroup � of �:

(∗) there exists an R-parabolic :-subgroup % of � such that � ⊆ % but � is not contained in any R-Levi

subgroup—that is, any R-Levi :-subgroup—of %.

This hypothesis implies in particular that � is not �-cr over : . The construction in [6, Section 5.2]

then yields a canonical so-called ‘optimal destabilising’ R-parabolic :-subgroup %opt of � such that

� ⊆ %opt but � is not contained in any R-Levi subgroup of %opt. If : is perfect then %opt yields both a

:-semisimplification of � and a :-semisimplification of � by [11, Theorem 4.2], but both can fail for

general : . Moreover, %opt is stabilized by any :-automorphism of � that stabilizes �; in particular, if "

is a :-subgroup of � that normalizes � then " (:) normalizes %opt. See [6, Theorem 5.16] for details.

This construction rests on the notion of an “optimal destabilising cocharacter” due to work of

Hesselink [10], Kempf [11] and Rousseau [17]. Roughly speaking, the idea is as follows. Take a generic

tuple h ∈ �< for �. Choose g ∈ �< such that � (:) · g is accessible from h over : and � (:) · g is

cocharacter-closed over : . Set O(h) = � (:) · g; note that O(h) is uniquely defined by Theorem 2.5.

Roughly speaking, we define _opt ∈ .: (�) to be the cocharacter that takes h into O(h) as quickly as

possible (in an appropriate sense), and we define %opt to be %_opt
. (In fact, we need a slight variation—

due to Hesselink—on this construction: rather than taking a single generic tuple h, one considers the

action of a cocharacter _ on all elements of � at once.) Note that %opt is not uniquely determined (see

[6, Remark 5.22]).

Now suppose that � is a subgroup of � such that�� (�) is :-defined. One can show that if � is �-cr

then � is �-cr over : (as previously noted, the converse is false). In fact, we prove a slightly stronger

result: if � is not �-cr over : then hypothesis (∗) holds. To see this, choose a generic tuple h ∈ �<.

We can find _ ∈ .: (�) such that (%_, !_) yields a :-semisimplification � ′ of �; so � (:) · 2_ (h) is

cocharacter-closed over : but � (:) · h is not. If � is contained in an R-Levi :-subgroup ! of %_ then

2_ (h) = D · h for some D ∈ 'D (%_). But then [1, Theorem 7.1] implies that 2_ (h) = D1 · h for some

D1 ∈ 'D (%_) (:), so � (:) · 2_ (h) = � (:) · h, a contradiction.

Remark 5.2. Let " be a :-subgroup of � such that " normalizes �, and let % be the R-parabolic
subgroup of � obtained from one of the constructions above. Then it is automatic that " (:) normalizes
%. However, under the extra hypothesis that � is :-defined, we can in fact show that " ⊆ #� (%). To
see this, one can first extend the field from : to :B and then show that the R-parabolic subgroup obtained
from either of the constructions is :-defined (cf. [3, Proof of Theorem 1.1] and [11, Section 4]), and
hence coincides with %—this implies that " (:B), and hence " , normalizes %.

Remark 5.3. There are some limitations on the constructions given above. First, without the hypothesis
that : is perfect, it can happen that the subgroup obtained from %opt is not �-cr over : , and is
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therefore not a :-semisimplification of �. (It is, however, � (:)-conjugate to a :-semisimplification of
�.) Second, as yet there is no theory of optimal destabilising subgroups that holds for arbitrary fields—
this means that we do not know how to define a version of %opt for a subgroup � that is not �-cr
over : if (∗) does not hold. See [6, Section 1 and Example 5.21] for further discussion of this latter
point.

By combining the two constructions above we obtain the following “Clifford theory” result, exploring

the link between the semisimplification of a group and a normal subgroup. In the case : is algebraically

closed, part (a) is [2, Theorem 3.10].

Theorem 5.4. Let " be a :-subgroup of �, and let � be a normal :-subgroup of " . Suppose at least
one of the following holds:

(i) : is perfect.
(ii) � is connected.

Then:

(a) If " is �-completely reducible over : , then � is �-completely reducible over : .
(b) There is an R-parabolic subgroup % of� such that " ⊆ % and % yields both a :-semisimplification of

" and a :-semisimplification of �. In particular, there exist :-semisimplifications " ′ (respectively,
� ′) of " (respectively, of �) such that � ′ is normal in " ′.

Proof. Suppose � is not �-cr over : . Choose % = %opt in case (i) and % = %2 in case (ii). Then

" ⊆ #� (%) by Remark 5.2. Since � is not contained in any R-Levi :-subgroup of %, � is not

contained in any R-Levi :-subgroup of #� (%) (Lemma 3.8). Hence " is not contained in any R-Levi

:-subgroup of #� (%). It follows that " is not �-cr over : . This proves part (a).

For (b), pick _ ∈ .: (�) such that (%_, !_) yields a semisimplification " ′ := 2_ (") of " . Then

2_ (") is �-cr over : , and 2_ (�) is normal in 2_ ("). Now 2_ (") and 2_ (�) satisfy the hypotheses of

the theorem, so 2_ (�) is �-cr over : by (a). Hence (%_, !_) yields a semisimplification � ′ := 2_ (�)

of � as well, and � ′ is normal in " ′. �

Remark 5.5. The hypothesis in part (ii) can be weakened: one only needs to assume that � ⊆ �0. In
order to make the proof go through, one needs to verify that the first construction above extends to this
situation.

Example 5.6. Let � be a :-subgroup of � = GL= such that � is not completely reducible over : .
Since � is separable,�� (�) is :-defined, so � is not �-completely reducible; we obtain a parabolic :-
subgroup %opt as above which yields a subgroup � ′. We claim that � ′ is a :-semisimplification of �. For
suppose � ′ is not �-cr over : . Choose h, g as above, and let h′ = 2_opt

(h) (so that h′ is a generic tuple
for � ′). Since �� (� ′) is :-defined, hypothesis (∗) holds, so we obtain an optimal cocharacter which
takes h′ out of � · h′ = O(h) and into O(h′). But g is accessible from h′ over : by [1, Theorem 4.3(ii)],
so O(h′) = O(h), a contradiction.

The parabolic subgroup %opt is the stabilizer of some flag F of subspaces of :=, and F does not admit
a complementary �-stable flag of subspaces of :=. By Remark 5.2, �� (�) is a subgroup of %opt—that
is, �� (�) stabilizes F—and likewise the normalizer #� (�) stabilizes F if #� (�) is :-defined. If :
is perfect then #� (�) is automatically :-defined but it need not be :-defined in general; see [9] for
further discussion.

Remark 5.7. Hesselink gives an example [10, Example 8.5] of a subgroup � of an almost simple group
� of type �2 such that %opt is not a minimal centre for Σ, the subcomplex of the building Δ : (�) of �
consisting of all parabolic subgroups of � that contain �. This shows that the two constructions above
can yield different R-parabolic subgroups. Nevertheless, the corresponding :-semisimplifications of �
are � (:)-conjugate, thanks to Theorem 4.5.
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