ON COMPLETE REDUCIBILITY OF MODULE BUNDLES

G. Prema and B.S. Kiranagi

Abstract

We prove the local triviality of module bundles over semisimple Lie algebra bundles and using this result we establish the complete reducibility of module bundles over semisimple Lie algebra bundles.

A Lie algebra bundle, for short a Lie bundle, as introduced by Douady and Lazard [1], is a vector bundle (E, P, X) together with a morphism $\theta: E \oplus E \rightarrow E$, which induces a Lie algebra structure on each fibre E_{x}.

A locally trivial Lie bundle is a vector bundle (E, p, X) in which each fibre E_{x} is a Lie algebra and for every x in X, there exists a neighbourhood U of x, a Lie algebra L and a homeomorphism $\varphi: U \times L \rightarrow p^{-1}(U)$ such that for each y in $U, \varphi_{y}: L \rightarrow p^{-1}(y)$ is a Lie algebra isomorphism. Every locally trivial Lie bundle is a Lie bundle [2], but the converse need not be true [4].

In this paper we prove the complete reducibility of module bundles over semisimple Lie bundles where a module bundle $\eta=(\eta, q, X)$ over a Lie bundle E is a vector bundle together with a morphism $\rho: E \oplus \eta \rightarrow \eta$ such that for each x in X, ρ_{x} induces a E_{x}-module structure on η_{x}.

A vector subbundle η^{\prime} of a module bundle η is a submodule bundle

Received 28 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $\$ A 2.00+0.00$.
of η, if each fibre η_{x}^{\prime} is a submodule of η_{x}. We say an E-module η is simple if η has no proper non-zero submodule bundles.

Let us consider the trivial bundle $\eta=(X \times V, q, X)$ and the trivial Lie bundle $E=(X \times L, p, X)$. Let $\rho: L \oplus V \rightarrow V$ be an L-module structure on V. The morphism $\hat{\rho}: X \times(L \oplus V) \rightarrow X \times V$ given by $\hat{\rho}(x, 1+v)=(x, \rho(1, v))$ induces on each fibre $\eta_{x}=V$, the L-module structure of V. Such a module bundle is called the trivial module bundle over E.

We prove that a module bundle η over a semisimple Lie bundle is locally trivial. That is for each x in X, we find a trivial module bundle $U \times V$, where U is some open set around x such that $q^{-1}(U)$ is isomorphic to $U \times V$ as module bundles.

A representation ρ of a Lie bundle E on a vector-bundle η is a Lie bundle morphism from E to the Lie bundle $\operatorname{End}(\eta)=\underset{x \in X}{U}$ End $\left(\eta_{x}\right)$ [4]. We also establish that the concepts of a representation and a module bundle of a Lie bundle are equivalent over a suitable base space.

NOTATIONS AND TERMINOLOGY. The underlying field considered throughout is the field of real numbers. We denote the total space of the vectorbundle (E, p, X) by E itself and the fibres by E_{x}. All the bundles considered in this paper have the first countable space X as the base space. Further our vector spaces are finite dimensional.

> J.

In proving the complete reducibility of module bundles over a semisimple Lie bundle, we need the rigidity of submodules of a module over a semisimple Lie algebra. Richardson [6, Proposition 15.3] has given the rigidity of submodules over an algebraically closed field. Here we prove the rigidity of submodules of a module over a real field.

As a first step we shall prove the following.
PROPOSITION 1. If M is a submodule of an L-module V, where L is a semisimple Lie algebra, then every L-module homomorphism from M to V / M is induced by a member of $\operatorname{Hom}_{L}(V, V)$, the collection of all

L-module homomorphisms defined on V.
Proof. Since L is semisimple and M is a submodule of V, we can find a submodule M^{\prime} of V such that $V=M \oplus M^{\prime}$ as modules. Further the map $h: V / M \rightarrow M^{\prime}$ given by $h(v+M)=m^{\prime}$ where $v=m+m^{\prime}, m \in M$, $m^{\prime} \in M^{\prime}$ defines a module isomorphism. Now given the L-module homomorphism $f: M \rightarrow V / M$, let us define $g: V \rightarrow V$ by $g(v)=m+\left(h f(m)+m^{\prime}\right)$. If $f(m)=v_{1}+M$ where $v_{1}=m_{1}+m_{1}^{\prime}$, then $h f(m)=m_{1}^{\prime}$, and so $\pi \cdot g(m)=m_{1}^{\prime}+M=f(m)$ where $\pi: V \rightarrow V / M$ is the canonical projection. Thus f is induced by g.

First we note that \hat{G}, the collection of all L-module automorphisms is a Lie subgroup of $A u t(V)$ being a pseudo-algebraic subgroup and that $\operatorname{Hom}_{L}(V, V)$ is the Lie algebra of \hat{G}.

If $\Gamma_{r}(V)$ is the space of all r-dimensional submodules of V where $r<\operatorname{dim} V$, then \hat{G} acts on $\Gamma_{r}(V)$ as follows.

Given $g \in \hat{G}, M \in \Gamma_{r}(V), g \cdot M \in \Gamma_{r}(V)$ is given by
$g \cdot M=g(M)$.
PROPOSITION 2. Let V be an L-module and M an r-dimensional submodule of V. If L is semisimple, then M is rigid. That is $\hat{G} \cdot M$ is open in $\Gamma_{r}(V)$.

Proof. Let W be a subspace of V, transversal to M and Γ_{W} the collection of all r-dimensional subspaces of V, transversal to W. Then Γ_{W} is an open submanifold of $G_{r}(V)$, the Grassmann variety of r-dimensional subspaces of V.

Let P be the projection operator on V with kernel M and image W and $Q=I-P$. The vector space $\operatorname{Hom}(M, W)$ of all linear transformations from M to W, is identified with

$$
H=\{T \in \operatorname{End}(V) \mid T(W)=0 ; T(V) \subseteq W\} .
$$

Then the mapping $\varphi: \operatorname{Hom}(M, W) \rightarrow \Gamma_{W}$ given by $\varphi(T)=\operatorname{Im}(Q+T)$ is a diffeomorphism.

$$
\text { For each } x \text { in } L \text {, we define } \psi_{x}: \operatorname{Hom}(M, W) \rightarrow \operatorname{Hom}(M, W) \text { by }
$$

$\psi_{x}(T)=(P-T) \rho(x)(Q+T)$. It can be seen that $\varphi(T)$ is a member of $\Gamma_{r}(V)$ if and only if $\psi_{x}(T)=0$ for all x in L. Hence

$$
\varphi^{-1}\left(\Gamma_{r}(V)\right)=\cap_{x \in L} \psi_{x}^{-1}(0)
$$

Let \hat{G}_{1} be the open subset of \hat{G} consisting of all g such that $g(M)$ is transversal to W and $g(W)$ is transversal to M. Let us define $\beta: \hat{G}_{1} \rightarrow \operatorname{Hom}(M, W)$ by $\beta(g)=P g Q g^{-1}\left(P+g Q g^{-1}\right)^{-1}$. Then we obtain $\varphi(\beta(g))=g(M)$.

The differentials $d \beta_{e}: T\left(\hat{G}_{1}, e\right)=T(\hat{G}, e) \rightarrow \operatorname{Hom}(M, W)$ and $\left(d \psi_{x}\right)_{(0)}: \operatorname{Hom}(M, W) \rightarrow \operatorname{Hom}(M, W)$ are given by $\left(d \beta_{e}\right)(D)=P D Q$ and $\left(d \psi_{x}\right)_{(0)}(T)=P \circ \rho(x) \circ T-T \circ \rho(x) \circ Q$.

We can identify $\operatorname{Hom}(M, W)$ with $\operatorname{Hom}_{L}(M, V / M)$ through the isomorphism θ_{0} given by $\theta_{0}(T)=\left.\pi\right|_{W} \cdot T$ where $\pi: V \rightarrow V / M$ is the projection. Then we obtain $\prod_{x \in L} \operatorname{ker}\left(d \psi_{x}\right)_{(0)}$ is precisely $\operatorname{Hom}_{L}(M, V / M)$ and $\operatorname{Im} d \beta_{(e)}$ is the subcollection of $\operatorname{Hom}_{L}(M, V / M)$ consisting of elements which are induced by elements of $\operatorname{Hom}_{L}(V, V)$. Because of this interpretation of $\prod_{x \in L} \operatorname{ker}\left(d \psi_{x}\right)_{(0)}$ and $\operatorname{Im} d \beta_{(e)}$, we obtain $\bigcap_{x \in L} \operatorname{ker}\left(d \psi_{x}\right)_{(0)}=\operatorname{Im} d \beta(e)$, by applying Proposition 1 . Now we apply the result due to Weil [8, Lemma 1] to the spaces \hat{G}_{1} and $\operatorname{Hom}(M, W)$ and get a neighbourhood N of zero in $\operatorname{Hom}(M, W)$ such that $\varphi^{-1}\left(\Gamma_{r}(V)\right) \cap N$ is a submanifold of N and $\beta\left(\hat{G}_{1}\right) \cap N$. So $\varphi^{-1}\left(\Gamma_{r}(V)\right) \cap N \subseteq \beta\left(\hat{G}_{1}\right)$. Hence $\varphi(N)$ is an open set in $\Gamma_{r}(V)$ containing the element $\{M\}$ and contained in the orbit $\hat{G} \cdot M$. Thus $\hat{G} \cdot M$ is open in $\Gamma_{r}(V)$.
2.

In this section we shall show that the concepts of representation and module are equivalent. The first countability of the base space is
required only in proving that a module bundle structure induces a representation. Further we prove the local triviality of a module bundle over a semisimple Lie bundle.

PROPOSITION 3. Let E be a Lie bundle and η an E-module. Then the module structure induces a representation of E on the vector bundle η and conversely.

Proof. Let $\rho: E \oplus \eta \rightarrow \eta$ induces the module structure on η. We can define $\rho_{1}: E \rightarrow \operatorname{Hom}(\eta, \eta)$ by $\rho_{1}(a)(m)=\rho(a, m), a \in E_{x}$, $m \in \eta_{x}$. Then obviously ρ_{1} induces a Lie algebra homomorphism on each fibre E_{x}. So it is sufficient to prove the continuity of ρ_{1}.

We have vector bundle isomorphisms $\alpha: U \times V_{1} \rightarrow \underset{y \in U}{U} E_{y}$ and $B: U \times V_{2} \rightarrow U_{y \in U} \eta_{y}$ where V_{1} and V_{2} are vector spaces. Then $\operatorname{Hom} B: U \times \operatorname{Hom}\left(V_{2}, V_{2}\right) \rightarrow \underset{y \in U}{U} \operatorname{Hom}\left(\eta_{y}, \eta_{y}\right)$ given by Hom $\beta(y, f)=\beta_{y} \cdot f \cdot \beta_{y}^{-1}$, is a vector bundle isomorphism. Now consider $\hat{\rho}_{1}: U \times V_{1} \rightarrow U \times \operatorname{Hom}\left(V_{2}, V_{2}\right)$ given by $\hat{\rho}_{1}=(\operatorname{Hom} \beta)^{-1} \cdot \rho_{1} \cdot \alpha$.

Let $\left\{\left(y_{n}, v_{n}\right)\right\}$ converge to (y, v) in $U \times V_{1}$. Then $\left(\hat{\rho}_{1}\left(y_{n}, v_{n}\right)\right)$ converges to $\hat{\rho}_{1}(y, v)$ because

$$
\begin{aligned}
\hat{\rho}_{1}\left(y, v_{1}\right)\left(v_{2}\right) & =(\operatorname{Hom} \beta)^{-1}\left(\rho_{1}\left(\alpha\left(y, v_{1}\right)\right)\left(v_{2}\right)\right) \\
& =(\operatorname{Hom} \beta)^{-1} \rho\left(\alpha_{y}\left(v_{1}\right), v_{2}\right) \text { for } v_{1} \in v_{1}, v_{2} \in v_{2} .
\end{aligned}
$$

By the first countability of $X, \hat{\rho}_{1}$ is continuous. Hence ρ_{1} is continuous.

Conversely let $\rho_{1}: E \rightarrow \operatorname{Hom}(\eta, \eta)$ be a representation of E on η. Let us define $\rho: E \oplus \eta \rightarrow \eta$ by $\rho(a, m)=\rho_{1}(a)(m), a \in E_{x}, m \in \eta_{x}$. Obviously each η_{x} is an E_{x}-module, the structure being induced by ρ_{x}. Now we shall prove the continuity of ρ.

Consider $\rho^{*}: \operatorname{Hom}(\eta, \eta) \oplus \eta \rightarrow \eta$ given by $\rho^{*}(f, a)=f(a)$,
$f \in \operatorname{Hom}\left(\eta_{x}, \eta_{x}\right)$ and $a \in \eta_{x}$. If we define

$$
\hat{\rho}^{*}: U \times\left\{\operatorname{Hom}\left(v_{2}, v_{2}\right\} \oplus v_{2}\right\} \rightarrow u \times v_{2}
$$

by $\hat{\rho}^{*}(y, f+v)=(y, f(v))$ which is continuous, then since $\rho^{*}($ Hom $\beta+\beta)=\beta \cdot \hat{\rho}^{*}$, we obtain the continuity of ρ^{*}. Hence $\rho=\rho^{*} \cdot\left(\rho_{1}+i d\right.$ on $\left.\eta\right)$ is continuous.

LEMMA 4. Every module bundle η over a semisimple Lie bundle E is locally trivial.

Proof. Let the module structure on η be given by $\rho: E \oplus \eta \rightarrow \eta$, which gives rise to the representation $\rho: E \rightarrow \operatorname{Hom}(\eta, \eta)$.
E is locally trivial being semisimple [3, Lemma 2.1]. Let the local triviality be given by the Lie bundle isomorphism $\varphi: U \times L \rightarrow p^{-1}(U)$. The module bundle η being a vector bundle we have a vector space V and a vector bundle isomorphism $\alpha: U \times V \rightarrow q^{-1}(U)$. Let $\hat{\rho}: U \times L \rightarrow U \times \operatorname{Hom}(V, V)$ be the map $\hat{\rho}=(\operatorname{Hom} \alpha)^{-1} \rho \varphi$. If Γ denotes the collection of all Lie algebra homomorphisms from L to $\operatorname{Hom}(V, V)$, then $\hat{\rho}_{y} \in \Gamma$ for each y in U. The Lie group $G=\operatorname{Aut}(V)$ acts on Γ in the following way.

Given $g \in G, \tilde{\rho} \in \Gamma, g \cdot \tilde{\rho} \in \Gamma$ is given by

$$
(g \cdot \tilde{\rho})(1)=g \cdot \tilde{\rho}(1) \cdot g^{-1} \text { for all } 1 \in L
$$

Since L is semisimple, $\tilde{\rho}_{x}$ is rigid [5, Theorem A]. Hence the orbit $G\left(\hat{\rho}_{x}\right)=G \cdot \hat{\rho}_{x}$ is open in Γ. The mapping $y \rightarrow \hat{\rho}_{y}$ is continuous from U to Γ. So the set $U_{1}=\left\{y \in U \mid \hat{\rho}_{y} \in G\left(\hat{\rho}_{x}\right)\right\}$ is open in U, being the inverse image of $G\left(\hat{\rho}_{x}\right)$ in U under the mapping $y \rightarrow \hat{\rho}_{y}$. If $y \in U_{1}$, then there exists a g_{y} in G such that $g_{y} \cdot \hat{\rho}_{x}=\hat{\rho}_{y}$.

We can apply Aren's theorem to G and $G\left(\hat{\rho}_{x}\right)$ and proceed in a similar manner as in the proof of Theorem 3[2], we get a neighbourhood U of x in X and a module bundle isomorphism $B: U \times V_{x} \rightarrow \underset{y \in U}{U} \eta_{y}$ where $V_{x}=\left(V, \hat{\rho}_{x}\right)$ and β is given by $\beta(y, v)=\alpha_{y} g_{y}(v)$, for all v in V_{x}
and y in U. Hence the result.
3.

Now we prove the theorem on complete reducibility of module bundles of semisimple Lie bundles.

THEOREM 5. Let E be a semisimple Lie buondle and η an E-module buondle. Then η can be written as a direct sum of simple module bundles.

Proof. Let η^{\prime} be a submodule of η and let us consider the quotient vector bundle $\eta / \eta^{\prime}=\eta^{\prime \prime}$. For any $a \in E_{x}, m+\eta_{x}^{\prime} \in \eta_{x}$, we define $\rho^{\prime \prime}: E \oplus \eta^{\prime \prime} \rightarrow \eta^{\prime \prime}$ by $\rho^{\prime \prime}\left(\alpha, m+\eta_{x}^{\prime}\right)=\rho(\alpha, m)+\eta_{x}^{\prime}$. Thus $\eta^{\prime \prime}$ is a module bundle. We get the exact sequence

$$
0 \rightarrow \eta^{\prime} \xrightarrow{\mu} \eta \xrightarrow{\pi} \eta^{\prime \prime} \rightarrow 0
$$

of module bundles where π is the projection and μ is the inclusion map.
Since E_{x} is semisimple we obtain $\eta_{x}=\eta_{x}^{\prime} \oplus \tilde{\eta}_{x}$ where $\tilde{\eta}_{x}$ is a submodule of η_{x} isomorphic to $\eta_{x}^{\prime \prime}$. We can define $f_{x}: \eta_{x} \rightarrow \eta_{x}^{\prime}$ by $f_{x}\left(m^{\prime}+\tilde{m}\right)=m^{\prime}, m^{\prime} \in \eta_{x}^{\prime}, \tilde{m} \in \tilde{n}_{x}$. Let $f: \eta \rightarrow \eta^{\prime}$ be given by $f / \eta_{x}=f_{x}$ we have $f \circ \mu$ equals the identity on η^{\prime}. The splitting of the exact sequence follows if the function f is continuous. Now we shall show the continuity of f.

Since E is semisimple, η and η^{\prime} are locally trivial module bundles by Lenma 3. So we obtain L-module bundle isomorphisms $\alpha: U \times V \rightarrow \underset{y \in U}{U} \eta_{y}$ and $\alpha^{\prime}: U \times W \rightarrow \underset{y \in U}{U} \eta_{y}^{\prime}$. Let $\psi: U \times W \rightarrow U \times V$ be given by $\psi(y, w)=\alpha^{-1} \alpha^{\prime}(y, w)$.

For each $y, \psi_{y}(W)$ is a submodule of V. Our aim is to find a submodule V_{1} of V and a module bundle isomorphism between $U \times V_{1}$ and $\underset{y \in U}{\cup} \eta_{y}^{\prime}$.

Consider $G_{r}(V)$ the Grassmann variety of all r-dimensional subspaces of V, where $r=\operatorname{dim} W$. Let h be any hermitian metric on V. Then
we define the metric $M: U \rightarrow U \times$ Herm V on the bundle $U \times V$ by $H(y)=(y, h)$, where Herm V is the collection of all hermitian metrics defined on V. Then the subbundle $F=\psi(U \times W)$ has an orthogonal complement $\stackrel{\perp}{F}$ in $U \times V$. If $P: U \times V \rightarrow \stackrel{\perp}{F}$ is the orthogonal projection, then the mapping $y \rightarrow \operatorname{ker} P_{y}=\psi_{y}(W)$ is continuous from U to $G_{r}(V)$. Consequently the mapping $y \rightarrow \psi_{y}(W)$ is continuous from U to $\Gamma_{r}(V)$. Let $\hat{G}(x)$ denote the orbit $\hat{G}\left(\psi_{x}(W)\right)$. By the rigidity of submodules, $\hat{G}(x)$ is an open subset of $\Gamma_{r}(V)$. The subset $\Gamma_{r}(V)$ is locally compact being a closed subset of the compact space $G_{r}(V)$. Since $G_{r}(V)$ is second countable, $\hat{G}(x)$ is also second countable. Hence by $[7$, Lemma 2.9.1] we obtain that \hat{G} / \hat{G}_{x} is homeomorphic to $\hat{G}(x)$ where \hat{G}_{x} is the stability subgroup of \hat{G}, corresponding to $\psi_{x}(W)$.

If $U_{1}=\left\{y \in U \mid \psi_{y}(W) \in \hat{G}(x)\right\}$ then for each y in U_{1}, there exists a g_{y} in \hat{G} such that $\psi_{y}(W)=g_{y} \psi_{x}(W)$. Now by applying the fact that $\hat{G} \rightarrow \hat{G} / \hat{G}_{x}$ is a principal bundle, we obtain the continuity of the mapping $y \rightarrow g_{y}$ from U_{l} to \hat{G}.

Let $V^{\prime}=\psi_{x}(W)$ and define $\alpha_{1}: U_{1} \times V^{\prime} \rightarrow \underset{y \in U_{1}}{U} \eta_{y}^{\prime}$ by
$\alpha_{1}\left(y, v^{\prime}\right)=\alpha_{y} g_{y}\left(v^{\prime}\right)$. Given v in V, there exists a unique v_{1} in V such that $v=g_{y}\left(v_{1}\right)$. We define $\hat{\alpha}: U_{1} \times V \rightarrow \underset{y \in U_{1}}{U} \eta_{y}$ by $\hat{\alpha}(y, v)=\alpha_{y} g_{y}\left(v_{1}\right)$. The maps $\hat{\alpha}$ and α_{1} are module bundle isomorphisms.

Now we define $\hat{f}: U_{1} \times V \rightarrow U_{1} \times V^{\prime}$ by $\hat{f}(y, v)=\left(y, v_{1}^{\prime}\right)$ where v_{1}^{\prime} is the component of $v_{1}=g_{y}^{-1}(v)$ in v^{\prime}. That is $\hat{f}(y, v)=\left(y, \pi g_{y}^{-1}(v)\right)$ where $\pi: V \rightarrow V^{\prime}$ is the projection operator on V^{\prime}. It can be verified that \hat{f} is continuous and the following diagram is commutative:

Then f becomes a continuous function. Hence the result.

References

[1] A. Douady et M. Lazard, "Espaces fibrés en algèbre de Lie et en groupes", Invent. Math. 1 (1966), 133-151.
[2] B.S. Kiranagi, "Lie algebra bundles", Bull. Sci. Math. (2) 102 (1978), 57-62.
[3] B.S. Kiranagi, "Semisimple Lie algebra bundles", Quart. BuZl. Math. (to appear).
[4] B.S. Kiranagi, "Lie algebra bundles and Lie rings", Proc. Nat. Acad. Sci. India Sect. A (to appear).
[5] A. Ni jenhuis and R.W. Richardson, "Deformation of homomorphisms of Lie groups and Lie algebras", Bull. Amer. Math. Soc. 7 (1967), 175-179.
[6] R.W. Richardson, "A rigidity theorem for subalgebras of Lie and associative algebras", Illinois J. Math. 11 (1967),
[7] V.S. Varadarajan, Lie groups, Lie algebras and their representations (Prentice-Hall, New York, London, 1974).
[8] A. Weil, "Remarks on the cohomology groups", Ann. of Math. (2) 80 (1964), 149-158.

Department of Mathematics, University of Mysore,
Manasagangotri, Mysore - 570 006, India.

