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ON COMPLETE REDUCIBILITY OF MODULE BUNDLES

G. PREMA AND B.S, KIRANAGI

We prove the local t r i v i a l i t y of module bundles over semisimple

Lie algebra bundles and using th i s r e su l t we es tab l i sh the

complete reduc ib i l i ty of module bundles over semisimple Lie

algebra bundles.

A Lie algebra bundle, for short a Lie bundle, as introduced by Douady

and Lazard [ 7 ] , i s a vector bundle (E, p , X) together with a morphism

6 : E © E •* E , which induces a Lie algebra s t ruc ture on each fibre E

A local ly t r i v i a l Lie bundle i s a vector bundle (E, p , X) in which

each fibre E i s a Lie algebra and for every x in X , there exis ts a

neighbourhood U of x , a Lie algebra L and a homeomorphism

<p : U x L •* p~ {U) such that for each y in U , tp : L -*• p~ (y) i s a

Lie algebra isomorphism. Every loca l ly t r i v i a l Lie bundle i s a Lie bundle

[ 2 ] , but the converse need not be t rue [ 4 ] .

In t h i s paper we prove the complete reduc ib i l i ty of module bundles

over semisimple Lie bundles where a module bundle n = (n, <J, X) over a

Lie bundle E i s a vector bundle together with a morphism p : E © r\ •*• n

such that for each x in X , p induces a E -module s t ruc ture on n
x x x

A vector subbundle n.' of a module bundle r) i s a submodule bundle
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4 0 2 G. P r e m a and B . S . K i r a n a g i

of n , i f each fibre r\' is a submodule of n . We say an E-module n

is simple if n has no proper non-zero submodule bundles .

Let us consider the t r i v i a l bundle n = (X x V, q, X) and the t r iv ia l
Lie bundle E = {X x L, p, X) . Let p : L @ V -»• V be an L-module
structure on V . The morphism p : X*(L@V)->-Xx-V given by
p(x, 1+v) = (x, p ( l , u)) induces on each fibre n = V , the L-module

structure of V . Such a module bundle is called the t r iv i a l module bundle

over E .

We prove that a module bundle n over a semisimple Lie bundle is
locally t r i v i a l . That i s for each x in X , we find a t r i v i a l module

bundle U * V , where U is some open set around x such that q (U) is
isomorphic to LI x V as module bundles .

A representation p of a Lie bundle E on a vector-bundle n is a
Lie bundle morphism from E to the Lie bundle End(n) = U End(n ) [4].

xiX X

We also establish that the concepts of a representation and a module bundle

of a Lie bundle are equivalent over a suitable base space.

NOTATIONS AND TERMINOLOGY. The underlying field considered throughout

is the field of real numbers. We denote the total space of the vector-

bundle (E, p, X) by E i tse l f and the fibres by E . All the bundles

considered in this paper have the first countable space X as the base

space. Further our vector spaces are finite dimensional.

1.

In proving the complete reducibility of module bundles over a semi-

simple Lie bundle, we need the rigidity of submodules of a module over a

semisimple Lie algebra. Richardson [6, Proposition 15.33 has given the

rigidity of submodules over an algebraically closed field. Here we prove

the rigidity of submodules of a module over a real field.

As a first step we shall prove the following.

PROPOSITION 1. If M is a submodule of an L-module V , where L
is a semisimple Lie algebra, then every L-module homomorphism from M to
V/M is induced by a werrber of Hom,(K, V) , the collection of all
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L-module homomorphisms defined on V .

Proof. Since L i s semisimple and M i s a submodule of V , we can

find a submodule M' of V such that V = M ® M' as modules. Further

t h e map h : V/M -*• M' g iven by h(v+M) = m' where v = m + m' , m (. M ,

m' € M' defines a module isomorphism. Now given the L-module

homomorphism f : M -*• V/M , l e t us define g : V -*• V by

g(v) = m + [hf(m)+m'} . I f f(m) = v + M where u = m + m' , then

hf(m) = m^ , and so I • g(m) = m' + M = f{m) where IT : V -*• V/M i s the

canonical project ion. Thus / i s induced by g .

Fi r s t we note tha t G , the col lect ion of a l l L-module automorphisms

i s a Lie subgroup of Aut(7) being a pseudo-algebraic subgroup and tha t

Hom.(l', V) i s the Lie algebra of G .

If F (V) i s the space of a l l r-dimensional submodules of V where

r < dim V , then G acts on T (V) as follows.

Given g 6 G , M € Tp{V) , g • M € Tp(V) i s given by

g • M = g(M) .

PROPOSITION 2. Let V be an L-module and M an r-dimensional

submodule of V . If L is semisimple, then M is rigid. That is G • M

is open in Y (V) .

Proof. Let W be a subspace of V , t ransversa l t o M and F the
W

col lect ion of a l l r-dimensional subspaces of V , t ransversa l to W .

Then P^ is an open submanifold of G (V) , the Grassmann variety of

r-dimensional subspaces of V .

Let P be the projection operator on V with kernel M and image W

and Q = I - P . The vector space Hom(W, W) of a l l l inea r t r a n s -

formations from M to W , i s ident i f ied with

H = {T € End(y) | T(W) = 0; 2"( V) c (/} .

Then the mapping tp : Hom(M, W) •*• Tr, given by (p(T) = Im(Q+T) i s a

diffeomorphism.

For each x in L , we define ip : Eom(M, W) •+ Eom(M, W) by
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\p (T) = (P-T)p(x)(Q+T) . I t can be seen that <f(T) i s a member of T (V)

i f and only i f lp (T) = 0 for a l l x in L . Hence

xiL

Let G be the open subset of G consis t ing of a l l g such that

g(M) i s t ransversa l t o W and g(W) i s t ransversa l to M . Let us

define & : G ->- Hom(M, V) by 6(3) = PgQg'1 [P+gQg'1) ~1 . Then we obtain

= g(M) .

The d i f f e r e n t i a l s <ig : T(G e) = T(G, e) •+ Hom(W, f/) and

/ n \ : Hom(M, f/) •* Hom(^ , W) a r e g i v e n "by (dg }(D) = PZ>5 and

T ~ T ° P(x) ° ^ •

We can i d e n t i f y Hom(M, W) with Hom^Af, 7/A/) through t h e

isomorphism 6^ given by 6 (31) = TTL. • 3" where TT : V •* V/M i s t h e

p r o j e c t i o n . Then we o b t a i n D ker (dp ) /_» i s p r e c i s e l y Homr(M, V/M)
xZL X (0> L

and Im d&, , i s the subcollection of Horn,(M, V/M) consis t ing of

elements which are induced by elements of Horn,(I', V) . Because of th i s

i n t e r p r e t a t i o n of D ker [d\i )lns and Im d&, . , we obtain

fi ker(<i^ )/-.% = Im <i$, > , by applying Proposition 1. Now we apply the

r e s u l t due to Wei I [S, Lemma l ] t o the spaces G and Hom(W, W) and get

a neighbourhood N of zero in Hom(W, W) such tha t cp fr (K)) " N i s a

submanifold of ff and 3 ^ ) n ^ . So ip"1 (1^(10) " J H c J ^ ) . Hence

(p(yV) i s an open se t in r (V) containing the element {M} and contained

in the o rb i t G • M . Thus 5 • K i s open in T (V) .

2.

In this section we shall show that the concepts of representation and

module are equivalent. The first countability of the base space is
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required only in proving that a module bundle structure induces a

representation. Further we prove the local tr iviali ty of a module bundle

over a semisimple Lie bundle.

PROPOSITION 3. Let E be a Lie bundle and r\ an E-module. Then
the module structure induces a representation of E on the vector bundle
n and conversely.

Proof. Let p : E © r| -*• r\ induces the module structure on n • We

can define p : E ->- Hom(n, n) by p (a)(m) = p(a, m) , a € E ,

m € n . Then obviously p induces a Lie algebra homomorphism on each•c 1
fibre E . So i t is sufficient to prove the continuity of p .

*C X

We have vector bundle isomorphisms a : U x V -*• U E and
ytu

S> : U x V -*• U n where V and V are vector spaces. Then
2 yiU y 1 d

Horn 3 : U x Horn (7 , V ) -> U Hom(n , n ) given by

Horn &{y, / ) = 6 • / * 3 , i s a vector bundle isomorphism. Now consider
ij -3

Vl •* U X H o m ( V V2^ g i v e n b y ^1 = ( H ° m e ) - 1 * P l

Let {(yn, u j } converge to (y, v) in U x ^ . Then

converges to P, (£/> u) because

Pifo. u i ) ( y
2 ) = (Hom e)"1(p-L('ot(t/, w ^ ) ^ ) )

= (Horn 6)~1p(a^(u1) , «2) for

By the f i rs t countability of X , p is continuous. Hence p is

continuous.

Conversely l e t p : E •+ Hom(n> n) t>e a representation of E on n

Let us define p : E @ n •* n by p(a , m) = p (a)(m) , a € E , m € n •
X 2C CC

Obviously each n is an E -module, the structure being induced by p

Now we shall prove the continuity of p .

Consider p* : Hom(n, n) @ n •* n given by p*(/, a) = f(a) ,
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f € Homfn , n ] and a € r\ . If we definev x x- x

p* : V x {Hom(V2, V^ ® V2) •+ U x 7g

by P*(#, /+u) = (#, f(v)) which is continuous, then since

p*(Hom 3 + 3) = 3 • P* , we obtain the continuity of p* . Hence

p = p* • (p + id on ri) is continuous.

LEMMA 4. Every module bundle x\ over a semisimple Lie bundle E is

locally trivial.

Proof. Let the module structure on r\ be given by p : E © n. •+ r\ ,

which gives r ise to the representation p : E -*• Hom(r|, n) •

E is locally t r i v i a l being semisimple [3 , Lemma 2.1] . Let the local

t r i v i a l i t y be given by the Lie bundle isomorphism <p : \j x L •*• p (£/) .

The module bundle ri being a vector bundle we have a vector space V and

a vector bundle isomorphism a : U x V •*• q (U) . Let

p : U x L •+ U x Hom(V, V) be the map p = (Horn a ) " 3 ^ . If Y denotes

the collection of a l l Lie algebra homomorphisms from L to Hom(F, V) ,

then p € T for each y in U . The Lie group G - Aut(f) acts on V
y

in the following way.

Given g 6 G , p e r , g • p € V is given by

(g-p)(l) = g - p(l) • g'1 for all 1 € L .

Since L is semisimple, p is rigid [5, Theorem A]. Hence the

orbit G(p ) = G • p is open in T . The mapping y -*• p is continuous

from U to T . So the set U = {y € U | p € G(p 1} is open in U ,

being the inverse image of <?(p ) in U under the mapping y •*• p . If

x y
y € U, then there exists a g in G such that g • p = p

We can apply Aren's theorem to G and G\p ) and proceed in a

similar manner as in the proof of Theorem 3 [2] , we get a neighbourhood U

of x in X and a module bundle isomorphism 3 : U x V -*• U r) where
x y«J y

Vr = [v> p J ^ d B i s given by 8( j , D) = a J (D) , for all V in fx x y y x
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a n d y i n U . Hence t h e r e s u l t .

3.

Now we prove the theorem on complete reduc ib i l i ty of module bundles of

semisimple Lie bundles.

THEOREM 5. Let E be a semisimple Lie bundle and x\ an E-module

bundle. Then n can be written as a direct sum of simple module bundles.

Proof. Let n ' be a submodule of T\ and l e t us consider the

quotient vector bundle i / i ' = H" . For any a € E , m + n ' € n f we
X X X

define p" : E © n" •* n" by P"[a, m+r\') = p(a , m) + n ' . Thus n" i s a
x x

module bundle. We get the exact sequence

o •+ n ' -^U- n — ^ n" •*• o

of module bundles where IT i s the project ion and u i s the inclusion map.

Since E i s semisimple we obtain n. = r\' ® r\ where n i s a
X X X *C X

submodule of r) isomorphic to n" . We can define f : n. -*• r\' byx x x x x

f (m'+ih) = m' , m' € n ' , m i r\ . Let / : n •*• n ' be given by
x x x

f/r\ = f we have f ° V equals the iden t i ty on n ' • The s p l i t t i n g ofx x

the exact sequence follows i f the function / i s continuous. Now we

sha l l show the continuity of / .

Since E i s semisimple, n and n' are loca l ly t r i v i a l module

bundles by Lemma 3. So we obtain i-module bundle isomorphisms

a : U x V -»• U n and a' ; U * W + U n ' . Let <|>: UxW-+UxVKe
y y

yiV y

given by ^( j / , w) = a~ a'(y, w) .

For each y , ip (W) i s a submodule of V . Our aim i s to find a

submodule V of V and a module bundle isomorphism between U x V and

u n' .

Consider G (V) the Grassmann var ie ty of a l l r-dimensional subspaces

of V , where r = dim W . Let h be any hermitian metric on V . Then
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we define the metric M : U •*• U x Herm V on the bundle U x V by

H(y) ~ (j/> h) , where Herm V i s the col lect ion of a l l hermitian metrics

defined on V . Then the subbundle F = ty{U x W) has an orthogonal
-L -L

complement F in U * V . I f P : £/ x p -• f i s the orthogonal

p r o j e c t i o n , then the mapping y •* ker P = ty {W) i s continuous from U to

G (V) . Consequently the mapping y -*• ty {W) i s continuous from U to

r (V) . Let G(x) denote the orb i t c[tyx(W)} . By the r i g i d i t y of

submodules, G[x) i s an open subset of V (V) . The subset T (V) i s

l o c a l l y compact being a closed subset of the compact space G (V) . Since

G (V) i s second countable, G(:c) i s also second countable. Hence by [7 ,

Lemma 2 .9 .1 ] we obtain tha t G/G i s homeomorphic to G(x) where G i s

the s t a b i l i t y subgroup of G , corresponding to <JJ (W) .
CO

I f U = \y (. U | ij> (V) € 5(x)} then for each y in £/ , there

e x i s t s a. g in G such tha t ^ (V) = ff 4> {W) . Now by applying the fact

t h a t G •+• G/G i s a p r inc ipa l "bundle, we obtain the continuity of the

mapping y •*• g from U t o G .

Let V = ty(W) and define CL : W x V' -»• U n ' by

a ( j / , u ' ) = a g (u1) . Given V in V , there exis ts a unique V in

such t h a t y = gr (w ) . We define a : U * V + U n by

a(y, v) = a g [v } . The maps a and a are module bundle isomorphisms.

Now we define f : U * V •+ U * V by f(y, v) = {y, v') where u '

- 1 T -1
i s the component of u = g (y) in 7 ' . That i s f(y, v) = \y, vg (y)

where TI : V •*• V i s the projection operator on V' . I t can be verif ied

t h a t / i s continuous and the following diagram is commutative:
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U, x V »• U n
*

f

i— u

f

Then f becomes a continuous function. Hence the result .
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