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In this paper, Chebyshev series and rigorous numerics are combined to compute solutions of

the Euler-Lagrange equations for the one-dimensional Ginzburg-Landau model of supercon-

ductivity. The idea is to recast solutions as fixed points of a Newton-like operator defined

on a Banach space of rapidly decaying Chebyshev coefficients. Analytic estimates, the radii

polynomials and the contraction mapping theorem are combined to show existence of solu-

tions near numerical approximations. Coexistence of as many as seven nontrivial solutions is

proved.
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1 Introduction

According to the Ginzburg-Landau theory of superconductivity [1], the electromagnetic

properties of a superconducting material of width 2d subjected to a tangential external

magnetic field are described by a pair (φ,ψ) which minimises the free energy functional

G = G(φ,ψ) =
1

2d

∫ d

−d

(
φ2(φ2 − 2) +

2(φ′)2

κ2
+ 2φ2ψ2 + 2(ψ′ − he)

2
)
dξ. (1.1)

In this context, the functional G is known as the Ginzburg-Landau energy, and provides

a measure of the difference between normal and superconducting states of the material.

The function φ measures the density of superconducting electrons and the function

ψ is the magnetic field potential. The parameter d is the size of the superconducting

material, he is the external magnetic field and κ is the Ginzburg-Landau parameter,

which is a dimensionless constant distinguishing different superconductors. More precisely,

0 < κ < 1/
√

2 characterises type I superconductors while κ > 1/
√

2 characterises type II

superconductors [2] (e.g. see Figure 1(a)).

A standard variational argument shows that the Ginzburg-Landau energy (1.1) has a

minimiser, the minimiser is a solution of the Euler-Lagrange equations, and in particular
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is given by the boundary value problem (BVP)⎧⎪⎪⎨
⎪⎪⎩
φ′′ = κ2φ(φ2 + ψ2 − 1)

ψ′′ = φ2ψ

φ′(±d) = 0, ψ′(±d) = he.

(1.2)

The Ginzburg-Landau BVP (1.2) has been studied by many authors (e.g. see [3–15] and

the references therein). This list of references is by no means meant to provide a complete

review of the literature of the work done on (1.2). Several people have also studied the

Ginzburg-Landau model in higher dimensions [16–19].

A solution (φ,ψ) of (1.2) is called symmetric if

φ′(0) = 0 and ψ(0) = 0, (1.3)

and called asymmetric otherwise. If (1.3) holds, then φ is even and ψ is odd. There is a

family of solutions of (1.2) of the form

(φ(ξ), ψ(ξ) = (0, heξ + q), q ∈ �, (1.4)

which are symmetric when q = 0 and asymmetric otherwise. We refer to solutions (1.4)

as trivial and refer to solutions that are not of the form (1.4) as nontrivial.

An interesting review of results and open problems about existence, uniqueness and

coexistence of nontrivial symmetric and asymmetric solutions of (1.2) can be found in [13].

Moreover, in [13], Aftalion et al. present a detailed numerical study of the bifurcations

arising in (1.2), where they obtain a complete description of the solutions over the range of

physically important parameters (d, κ, he). They consider (d, κ) ∈ D
def
= [0, 5] × [0, 1.4], leave

he as a parameter, and investigate bifurcations of symmetric and asymmetric solutions as

he varies. They numerically obtain two partitions for D. The first one is D = S1 ∪S2 ∪S3

and it characterises the symmetric solutions as follows: given (d, κ) ∈ Si, there exists he
such that (1.2) has i symmetric solutions. The second partition is D = A0 ∪ A1 ∪ A2 and

it characterises the asymmetric solutions as follows: given (d, κ) ∈ Aj , there exists he such

that (1.2) has 2j asymmetric solutions. Note that asymmetric solutions come in pairs.

Indeed, one can easily verify from (1.2) that if (φ(ξ), ψ(ξ)) is an asymmetric solution, then

(φ(−ξ),−ψ(−ξ)) is another asymmetric solution. A geometric representation of the two

partitions of D can be found in Figure 1(a). The following conjecture follows from the

analysis and the numerical investigation of [13].

Conjecture 1.1 For i ∈ {1, 2, 3}, j ∈ {0, 1, 2} and (d, κ) ∈ Si ∩ Aj , there exists he such that

there exist i nontrivial symmetric solutions and 2j nontrivial asymmetric solutions of (1.2).

Partial progress has been made toward a proof of Conjecture 1.1, but many cases remain

open. Perhaps the most interesting open question arising from Conjecture 1.1 concerns the

region S3 ∩ A2, where as many as seven solutions may coexist. Seydel is the first in 1983

to give numerical evidence of existence of parameters for which four asymmetric solutions

and three symmetric solutions may coexist [5]. In 1996, Hastings et al. comment in [8]

that “this [analysis] goes only part way towards verifying the numerical results of Seydel,
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Figure 1. (a) Figure taken from [13] with permission from the authors. The regions Si ∩ Aj

(i ∈ {1, 2, 3} and j ∈ {0, 1, 2}) are delimited by black lines. The regions corresponding to the

two different types of superconductors are pictured in yellow (type I) and green (type II), where

0 < κ < 1/
√

2 characterises type I while κ > 1/
√

2 characterises type II. (b) A global bifurcation

diagram when (d, κ) = (2.5, 1) ∈ S3 ∩ A2 taken from [12] with permission from the authors.

where as many as seven solutions are found in a limited parameter range. This remains an

interesting problem for future research.” In 2000, Dancer et al. in [12] write that “the initial

motivation for our paper was Seydel’s bifurcation diagram, and our goal was to prove that in

some parameter range the problem could have as many as seven solutions, but unfortunately

we have not achieved this goal. Seydel’s bifurcation diagram can be found in Figure 1(b).

Besides the region S3 ∩A2, other cases are interesting. For instance, as mentioned in [13],

“it is an interesting open problem to prove that both symmetric and asymmetric solutions

coexist in S1 ∩ A2.” The goal of the present paper is to prove these open questions for

specific parameter values using the rigorous computational methods of [20–24] and more

specifically with the approach as introduced in [25].

Our proposed approach to the problem has a different flavor than the standard tools

of nonlinear analysis (e.g. bifurcation and perturbation theory, degree theory, global

bifurcation theorems). It combines the strength of numerical analysis, approximation

theory, spectral methods, fixed point theory, functional analysis and interval arithmetic

(e.g. see [26]) to demonstrate that near numerical approximations, there are solutions

of (1.2). This approach uses the field of rigorous numerics (described in Section 2), and

as opposed to classical methods in nonlinear analysis it does not require knowing the

existence of a trivial solution from which one can perturb. In fact, our method is a

perturbative result from a numerical approximation,and this implies that it is extremely

suitable to prove conjectures about coexistence of solutions. However, as opposed to

global methods, our proposed method works well for specific parameter values, rather

than globally (i.e. for all parameters). Let us now present our four main results.

Theorem 1.1 Define (d, κ) = (3.5, 0.9) ∈ S3 ∩ A2. Then at he = 0.85, there exist three

symmetric solutions x(i)
s = (φ(i)

s , ψ
(i)
s ) (i = 1, 2, 3) and four asymmetric solutions x(i)

a =

(φ(i)
a , ψ

(i)
a ) (i = 1, 2, 3, 4) of (1.2). Each solution is nontrivial and all solutions are distinct.

Hence, there are seven coexisting nontrivial solutions.
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(d, κ) = (3.5, 0.9)
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Figure 2. The global bifurcation diagram when (d, κ) = (3.5, 0.9) ∈ S3 ∩ A2. The data from this

diagram was used to obtain the proof of Theorem 1.1. At he = 0.85, there exist three symmetric

solutions x(1)
s ,. . . , x(3)

s and four asymmetric solutions x(1)
a ,. . . , x(4)

a of (1.2).

The proof of Theorem 1.1 can be found in Section 4. A geometrical interpretation of

the global bifurcation diagram with fixed (d, κ) = (3.5, 0.9) and he left as a free parameter

is depicted in Figure 2. The profile of each of the seven nontrivial coexisting solutions of

Theorem 1.1 can be found in Figure 3.

Theorem 1.2 Let (d, κ) = (1.6, 1.2) ∈ S1 ∩ A2. Then at he = 1.1, there exist one symmetric

solution x(1)
s = (φ(1)

s , ψ
(1)
s ) and four asymmetric solutions x(i)

a = (φ(i)
a , ψ

(i)
a ) (i = 1, 2, 3, 4) of

(1.2). Each solution is nontrivial and all solutions are distinct.

The proof of Theorem 1.2 can be found in Section 4. A geometrical interpretation of

the global bifurcation diagram with fixed (d, κ) = (1.6, 1.2) and he left as a free parameter

is depicted in Figure 4. The profile of each of the five nontrivial coexisting solutions of

Theorem 1.2 can be found in Figure 5.

Theorem 1.3 Let (d, κ) = (4, 0.3) ∈ S2 ∩ A1 and he = 0.8. There exist two symmetric

solutions x(i)
s = (φ(i)

s , ψ
(i)
s ) (i = 1, 2) and two asymmetric solutions x(i)

a = (φ(i)
a , ψ

(i)
a ) (i = 1, 2)

of (1.2). All solutions are nontrivial and distinct.

The proof of Theorem 1.3 can be found in Section 4. A geometrical interpretation of

the global bifurcation diagram with fixed (d, κ) = (4, 0.3) and he left as a free parameter

is depicted in Figure 6.

Theorem 1.4 Define (d, κ) = (3, 0.6) ∈ S2 ∩A2. Then at he = 0.9, there exist two symmetric

solutions x(i)
s = (φ(i)

s , ψ
(i)
s ) (i = 1, 2) and four asymmetric solutions x(i)

a = (φ(i)
a , ψ

(i)
a ) (i =

1, 2, 3, 4) of (1.2). All solutions are nontrivial and distinct.
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Figure 3. For (d, κ) = (3.5, 0.9) ∈ S3 ∩ A2 and he = 0.85, the solution profiles of the seven

nontrivial coexisting solutions of Theorem 1.1: three symmetric solutions x(i)
s = (φ(i)

s , ψ
(i)
s ), i = 1, 2, 3,

and four asymmetric solutions x(i)
a = (φ(i)

a , ψ
(i)
a ), i = 1, 2, 3, 4. Each solution is defined on [−d, d] =

[−3.5, 3.5]. Note that φ(1)
s (d) ≈ 0.821, φ(2)

s (d) ≈ 0.161, φ(3)
s (d) ≈ 0.050, φ(1)

a (d) ≈ 0.849, φ(2)
a (d) ≈ 0.827,

φ(3)
a (d) ≈ 0.221 and φ(4)

a (d) ≈ 3.37 × 10−4.

The proof of Theorem 1.4 can be found in Section 4. A geometrical interpretation of

the global bifurcation diagram with fixed (d, κ) = (3, 0.6) and he left as a free parameter

is depicted in Figure 7.

As mentioned above, the proofs of Theorems 1.1–1.4 are done using rigorous numerics,

which is a field that aims at constructing algorithms that provide an approximate solution

to a problem together with precise bounds within which the solution is guaranteed to exist

in the mathematically rigorous sense. In our context, Chebyshev series are combined with

rigorous numerics to compute solutions of (1.2). The idea is to recast solutions as fixed

points of a Newton-like operator defined on a Banach space of rapidly decaying Chebyshev

coefficients and to use the contraction mapping theorem to show existence of solutions near

numerical approximations. Note that a similar approach can be used to prove existence of

connecting orbits (e.g. see [25]). The radii polynomials (first introduced in [20] to compute

equilibria of PDEs) are used to construct sets on which the contraction mapping theorem

is applicable, and their construction is a combination of analytic estimates and interval

arithmetic computations. The last steps of the proofs of Theorems 1.1–1.4 are are done

by running the MATLAB codes which are available at [33].
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Figure 4. The global bifurcation diagram when (d, κ) = (1.6, 1.2) ∈ S1 ∩ A2. The data from this

diagram was used to obtain the proof of Theorem 1.2. At he = 1.1, there exist one symmetric

solution x(1)
s and four asymmetric solutions x(1)

a , x(2)
a , x(3)

a and x(4)
a of (1.2).
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Figure 5. For (d, κ) = (1.6, 1.2) ∈ S1 ∩A2 and he = 1.1, the profiles of the solutions of Theorem 1.2:

1 symmetric solution x(1)
s = (φ(1)

s , ψ
(1)
s ) and 4 asymmetric solutions x(i)

a = (φ(i)
a , ψ

(i)
a ), i = 1, 2, 3, 4.

Each solution is defined on [−d, d] = [−1.6, 1.6]. φ(1)
s (d) ≈ 0.600, φ(1)

a (d) ≈ 0.785, φ(2)
a (d) ≈ 0.688,

φ(3)
a (d) ≈ 0.419 and φ(4)

a (d) ≈ 0.0842.
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Figure 6. The global bifurcation diagram when (d, κ) = (4, 0.3) ∈ S2 ∩ A1. The data from this

diagram was used to obtain the proof of Theorem 1.3. At he = 0.8, there exist two symmetric

solutions x(1)
s , x(2)

s and two asymmetric solutions x(1)
a , x(2)

a of (1.2).
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Figure 7. The global bifurcation diagram when (d, κ) = (3, 0.6) ∈ S2 ∩ A2. The data from this

diagram was used to obtain the proof of Theorem 1.4. At he = 0.9, there exist two symmetric

solutions x(1)
s , x(2)

s and four asymmetric solutions x(1)
a , x(2)

a , x(3)
a , x(4)

a of (1.2).
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Remark 1.1 We also obtained rigorous results concerning existence of solutions in S1 ∩A0

and S2 ∩ A0, but we do not present them here, as these two regions are better understood

theoretically. The codes for the proofs can be found at [33].

Remark 1.2 Note that our proposed approach is certainly not the only rigorous computa-

tional method that could have been used to prove the above results. For instance, a rigorous

numerical integration of the equations combined with studying an appropriate Poincaré sec-

tion could have been used. The choice of the approach is a matter of taste. However, since

the Euler-Lagrange equation (1.2) is naturally a boundary value problem, we believe that

our collocation-type approach based on Chebyshev series is a natural choice.

The paper is organised as follows: in Section 2, we introduce the rigorous computational

method and the theoretical definition of the radii polynomials; in Section 3, analytic

estimates are used to obtain the explicit formulas for the radii polynomials; in Section 4,

the proofs of Theorems 1.1,–1.4 are presented.

2 The rigorous computational method

The rigorous computational method used here is based on the general method first intro-

duced in [25]. More precisely, the idea is to expand solutions of (1.2) using their Chebyshev

series, plug the expansion in the equation, obtain an equivalent infinite dimensional prob-

lem of the form f(x) = 0 to solve in a Banach space of rapidly decaying Chebyshev

coefficients, and finally to get the existence, via a fixed point argument, of a solution of

f(x) = 0 near a numerical approximation of a finite dimensional projection of f. The

fixed point argument is solved by using the radii polynomials, which provide an efficient

way of constructing a set on which the contraction mapping theorem is applicable. We

begin by setting up the problem f(x) = 0.

2.1 Setting up f(x) = 0

Setting u = (u1, u2, u3, u4) = (φ,φ′, ψ, ψ′) and introducing the new independent variable

t = ξ/d, (1.2) becomes

du

dt
= Ψ (u)

def
= d

⎛
⎜⎜⎜⎜⎝

u2

κ2u1

(
u2

1 + u2
3 − 1

)
u4

u2
1u3

⎞
⎟⎟⎟⎟⎠ , u2(±1) = 0, u4(±1) = he, (2.1)

where u = u(t) is defined for t ∈ [−1, 1]. Let P (θ)
def
= u(−1) = (θ1, 0, θ2, he), where

θ = (θ1, θ2) = (u1(−1), u3(−1)) ∈ �2 is a variable that is used to compensate for the fact
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that the values of u1(−1) and u3(−1) are not fixed. Letting

F(θ, u)(t)
def
=

⎛
⎜⎜⎝

u2(1)

u4(1) − he

P (θ) +

∫ t

−1

Ψ (u(s))ds− u(t)

⎞
⎟⎟⎠ , t ∈ [−1, 1], (2.2)

a solution (θ, u) of F(θ, u) = 0 is a solution of (2.1) and therefore solves the Euler-Lagrange

BVP (1.2), provided that u is sufficiently smooth. Note that the extra variable θ ∈ �2

ensures that the operator (2.2) is not overdetermined. Expand u with Chebyshev series

u(t) = a0 + 2
∑
k�1

akTk(t) =
∑
k∈�

akTk(t), (2.3)

where Tk : [−1, 1] → [−1, 1] (k � 0) are the Chebyshev polynomials defined by T0(t) = 1,

T1(t) = t and Tk+1(t) = 2tTk(t) − Tk−1(t), for k � 1, and where a−k
def
= ak , T−k

def
= Tk ,

ak = (a(1)
k , a

(2)
k , a

(3)
k , a

(4)
k )T ∈ �4. Define the infinite dimensional vector of Chebyshev

coefficients a = (ak)k�0. Using that Tk(1) = 1 for every k � 0, define

η(θ, a)
def
= (u2(1), u4(1) − he) =

⎛
⎝a(2)

0 + 2
∑
j�1

a
(2)
j , a

(4)
0 + 2

∑
j�1

a
(4)
j − he

⎞
⎠ . (2.4)

Since Chebyshev polynomials are in fact Fourier series in disguise [27], as Tk(cos ξ) =

cos(kξ) with ξ = arccos t, the Chebyshev coefficients of the product of two functions

is given by the discrete convolution of the Chebyshev coefficients of each function (e.g.

see [25]). In the context of the vector field defined in (2.1),

Ψ (u(t)) = c0 + 2
∑
k�1

ckTk(t) =
∑
k∈�

ckTk(t), (c−k = ck), (2.5)

where

ck =

⎛
⎜⎜⎜⎜⎜⎝
c
(1)
k

c
(2)
k

c
(3)
k

c
(4)
k

⎞
⎟⎟⎟⎟⎟⎠ = d

⎛
⎜⎜⎜⎜⎜⎝

a
(2)
k

κ2
(
[a(1)a(1)a(1)]k + [a(1)a(3)a(3)]k − a

(1)
k

)
a

(4)
k

[a(1)a(1)a(3)]k

⎞
⎟⎟⎟⎟⎟⎠ , (2.6)

and for i, j ∈ {1, 3},

[a(1)a(i)a(j)]k =
∑

k1+k2+k3=k
k1 ,k2 ,k3∈�

a
(1)
k1
a

(i)
k2
a

(j)
k3
, (a(	)

−k = a
(	)
k ).

Plugging the expansions (2.3) and (2.5) in (2.2), and using the properties
∫
T0(s)ds = T1(s),∫

T1(s)ds = (T2(s) + T0(s))/4 and
∫
Tk(s)ds = 1

2
(Tk+1(s)
k+1

− Tk−1(s)
k−1

) for k � 2,

P (θ) +

∫ t

−1

Ψ (u(s))ds− u(t) = f̃0 + 2
∑
k�1

f̃kTk(t),
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where f̃0
def
= P (θ) − a0 + c0 − c1

2
− 2

∑
j�2

(−1)j

j2−1
cj and f̃k

def
= ck−1−ck+1

2k
− ak , for k � 1.

Denote x = (θ, a) so that x−1 = θ ∈ �2 and xk = ak ∈ �4 for k � 0. Finally, define

f(x) = (fk(x))k�−1 component-wise by

fk(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a(2)
0 + 2

∑
j�1

a
(2)
j , a

(4)
0 + 2

∑
j�1

a
(4)
j − he), k = −1,

P (θ) − a0 + c0 − c1

2
− 2

∑
j�2

(−1)j

j2 − 1
cj , k = 0,

−2kak + ck−1 − ck+1, k � 1,

(2.7)

where f0 = f̃0 and fk
def
= 2kf̃k for k � 1. Note that an equivalent simpler formulation for

f0(x) in (2.7) is given by f0(x) = P (θ) − a0 − 2
∑∞

j=1(−1)jaj (see [25]). However, we chose

to work with f0 as in (2.7) because dividing by j2 − 1 gives slightly better estimates.

The importance of introducing the operator (2.7) is that solutions of f(x) = 0 correspond

to solutions of the BVP (1.2) (see Lemma 2.1). Hence, coexistence of solutions of the Euler-

Lagrange equations reduces to demonstrating that the operator f defined component-wise

by (2.7) has several coexisting nontrivial roots.

The next step is to introduce the Banach space Xs of fast decaying Chebyshev coefficients

with algebraic decay ks on which the operator f is defined, and to introduce the equivalent

fixed point problem T (x) = x. Note that the fixed point operator T is defined as a Newton-

like operator defined near a numerical approximation x̄ ∈ Xs. The idea is that locally, the

operator T should be a contraction on a small ball containing x̄. The way to find the ball

is done using the radii polynomials. This is described in Section 2.3.

2.2 The Banach space X s and the fixed point problem T (x) = x

Let ‖θ‖∞ = max{|θ1|, |θ2|}, ‖ak‖∞ = max
i=1,...,4

{|a(i)
k |} for k � 0 and define the weights

ωs
k

def
=

{
1, if k = 0

|k|s, if k� 0.
(2.8)

The Banach space on which we solve the problem f(x) = 0 is defined by

Xs =

{
x = (xk)k�−1 : ‖x‖s

def
= sup

k�−1
{‖xk‖∞ω

s
k} < ∞

}
, (2.9)

which is a space of algebraically decaying sequences with decay rate s > 1. Next, we show

that f : Xs → Xs−1 and that if x ∈ Xs solves f(x) = 0 for some s > 1, then x ∈ Xs0 for

any s0 > 1. Hence, if x = (θ, a) is a solution of f(x) = 0 then the Chebyshev coefficients

a of (2.3) decay faster than any algebraic decay. This comes as no surprise as a solution

u = (u1, u2, u3, u4) = (φ,φ′, ψ, ψ′) of the analytic differential equation (1.2) is analytic. This

implies that the Chebyshev expansion x of any solution of (1.2) is in the space Xs.
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Lemma 2.1 Let f(x) = (fk(x))k�−1 as in (2.7). Then the following statements hold.

(a) f : Xs → Xs−1, s > 1.

(b) If x ∈ Xs is a solution of f(x) = 0, then x ∈ Xs0 for any s0 > 1.

(c) The Chebyshev series u(t) = a0 + 2
∑

k�1 akTk(t) and θ = (u1(−1), u3(−1)) solve

F(θ, u) = 0 where F is the integral operator (2.2) if and only if x = (θ, a) ∈ Xs solves

f(x) = 0.

(d) Any solution x = (θ, u) of f(x) = 0 yields a unique solution (φ,ψ) of the Euler-Lagrange

boundary value problem (1.2).

Proof First of all, for any s > 1, the space of scalar algebraically decaying sequences

Ωs def
= {a = (ak)k∈� : ak ∈ �, sup

k�0
{|ak|ωs

k} < ∞} (2.10)

is an algebra under discrete convolution. Indeed, for any a, b ∈ Ωs, there exists a constant

α = α(a, b) < ∞ such that |(a ∗ b)k| = |
∑

k1+k2=k

ki∈�
a|k1|b|k2|| � α

ωsk
(e.g. see [28] if s � 2 and [29]

if s ∈ (1, 2)). This implies that a ∗ b ∈ Ωs, and hence that (Ωs, ∗) is an algebra.

(a) Consider x = (θ, a) ∈ Xs. For each i = 1, 2, 3, 4, |a(i)
k | � ‖a‖s/ωs

k . Recalling (2.4),

‖f−1(x)‖∞ = ‖η(θ, a)‖∞ < ∞ since s > 1. Consider the Chebyshev coefficients (ck)k�0

of Ψ (u) defined in (2.6). Since Ωs is an algebra, then ‖c‖s < ∞. Hence, ‖ck‖∞ � ‖c‖s
ωsk

and therefore ‖
∑

j�2
cj
j2−1

‖∞ � ‖c‖s
∑

j�2
1

js(j2−1)
< ∞. This implies that ‖f0(x)‖∞ < ∞.

Moreover, there exists a constant α1 < ∞ such that ‖fk(x)‖∞ = ‖ − 2kak + ck−1 −
ck+1‖∞ � 2‖a‖s

ωs−1
k

+ ‖c‖s
ωsk+1

+ ‖c‖s
ωsk−1

� α1

ωs−1
k

for all k � 1. It follows that ‖f(x)‖s−1 < ∞ and

therefore that f(x) ∈ Xs−1.

(b) If x ∈ Xs is a solution of f(x) = 0, then for any k � 1, fk(x) = −2kak+ck−1 −ck+1 = 0,

or in other words ak = − 1
2k

(ck+1 − ck−1). Since ‖ck‖∞ � ‖c‖s
ωsk

, there exists a constant

α2 < ∞ such that

sup
k�1

{‖ak‖∞ω
s+1
k } � sup

k�1

{
1

2k
(‖ck+1‖∞ + ‖ck−1‖∞)ωs+1

k

}
� α2.

That shows that x = (θ, a) ∈ Xs+1. Repeating the same argument inductively and

using the fact that Xs1 ⊂ Xs2 for any s1 � s2, one gets that x ∈ Xs0 for all s0 > 1.

(c) By construction of f in (2.7) and by part (b), one immediately verifies that (θ, u), with

u(t) = a0 + 2
∑

k�1 akTk(t) and θ = (u1(−1), u3(−1)), is a solution of F(θ, u) = 0 where

F is the integral operator (2.2) if and only if x = (θ, a) ∈ Xs solves f(x) = 0.

(d) It follows from (c) and by construction that any solution x = (θ, u) of f(x) = 0 yields

a unique solution (φ,ψ) of the Euler-Lagrange boundary value problem (1.2).

�

The strategy to find solutions of f(x) = 0 is now to consider an equivalent fixed

point operator T : Xs → Xs whose fixed points are in one-to-one correspondence with

the zeros of f. More precisely, the operator T is a Newton-like operator about an
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approximate solution x̄ of f. In order to compute this numerical approximation we

introduce a Galerkin projection. Let m > 1 and define the finite dimensional projection

Πm : Xs → Xs
m by Πmx = (xk)

m−1
k=−1. Note that Xs

m
∼= �4m+2. The Galerkin projection of f

is defined by

f(m) : Xs
m → Xs

m : xF �→ Πmf(xF , 0∞), (2.11)

where 0∞
def
= (0, 0, 0, . . .). Identifying (xF , 0∞) with xF ∈ Xs

m
∼= �4m+2, we think of f(m) :

�4m+2 → �4m+2. Using Newton’s method, assume that we have computed x̄F ∈ �4m+2

such that f(m)(x̄F ) ≈ 0 and let x̄ = (θ̄, ā) = (θ̄, āF , 0∞) = (x̄F , 0∞) ∈ Xs. Let Bx̄(r) = x̄+B(r),

the closed ball in Xs of radius r centred at x̄, with

B(r) =

{
x ∈ Xs : ‖x‖s = sup

k�−1
{‖xk‖∞ω

s
k} � r

}
=
∏
k�−1

[
− r

ωs
k

,
r

ωs
k

]ζ(k)
, (2.12)

where ζ(−1) = 2 and ζ(k) = 4 for k � 0. In order to define the fixed point operator T ,

we introduce a (4m + 2) × (4m + 2) matrix Am ≈ (Df(m)(x̄F ))
−1, which is obtained using

the computer. Assume that the finite dimensional matrix Am is invertible (this hypothesis

can be rigorously verified with interval arithmetic). Define the linear invertible operator

A : Xs → Xs+1 by

(Ax)k =

{
(Am(Πmx))k, k = −1, . . . , m− 1(

1
−2k

)
xk, k � m.

(2.13)

The choice of multiplying xk by 1
−2k

for k � m in the tail of the operator A comes from

the fact that the linear part of fk = −2kak + ck−1 − ck+1 is given by −2k. Hence, in the

tail of A, we only consider the inverse of the linear part.

Finally define the Newton-like operator T : Xs → Xs about the numerical solution x̄

by

T (x) = x− Af(x). (2.14)

2.3 Finding r > 0 such that T maps Bx̄(r) into itself and that T : Bx̄(r) → Bx̄(r) is a

contraction

The next step is to determine a positive radius r of the ball Bx̄(r) so that T maps Bx̄(r)

into itself and that T : Bx̄(r) → Bx̄(r) is a contraction. If such r > 0 exists, an application

of the contraction mapping theorem yields the existence of a unique fixed point x̃ of T

within the closed ball Bx̄(r). By invertibility of the linear operator A, one can conclude that

x̃ is the unique solution of f(x) = 0 in the ball Bx̄(r). By Lemma 2.1, this unique solution

represents a solution u(t) of the operator (2.1). The task of finding r > 0 is achieved with

the notion of the radii polynomials (originally introduced in [20] to compute equilibria

of PDEs), which provide an efficient way of constructing a set on which the contraction

mapping theorem is applicable. Their construction depends on some bounds that we

introduce shortly. Before that, we introduce the notation � to denote component-wise

inequality, that is given two vectors v and w, v � w if and only if vi � wi for all i.

Similarly, the notation ≺ denotes component-wise strict inequality. The radii polynomials

are in fact polynomial bound inequalities in the variable radius r which represent sufficient
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conditions to have that T : Bx̄(r) → Bx̄(r) is a contraction. These polynomials are defined

in terms of two bounds: Y and Z .

The bound Y = (Yk)k�−1 satisfies∣∣∣[T (x̄) − x̄
]
k

∣∣∣ � Yk, k � −1, (2.15)

where Y−1 ∈ �2
+ and Yk ∈ �4

+ for k � 0. The bound Z(r) = (Zk(r))k�−1 satisfies

sup
ξ1 ,ξ2∈B(r)

∣∣∣[DT (x̄+ ξ1)ξ2

]
k

∣∣∣ � Zk(r), k � −1, (2.16)

where Z−1(r) ∈ �2
+ and Zk(r) ∈ �4

+ for k � 0. Since the vector field Ψ (u) defined in

(2.1) is cubic, we can compute a cubic polynomial expansion in r for Zk(r). Consider

now a computational parameter M � 3m − 1 where m fixes the dimension of the

Galerkin projection (2.11). Then the bounds Y and Z satisfying (2.15) and (2.16) can be

constructed such that

R1. Yk = 0 ∈ �4 for all k � 3m− 1, since for any k � 3m− 2, āk = 0 and ck = ck(ā) = 0,

and therefore fk(x̄) = −2kāk + ck−1(ā) − ck+1(ā) = 0, for all k � 3m− 1.

R2. There exists (using the analytic estimates introduced in [28]) a uniform polynomial

bound Z̄M+1(r) ∈ �4
+ such that for all k � M + 1,

Zk(r) � Z̄M+1(r)

ωs
k

. (2.17)

Defintion 2.1 Let 1ζ(k)
def
=

ζ(k) times︷ ︸︸ ︷
(1, . . . , 1)∈ �ζ(k). The finite radii polynomials are

pk(r) = Yk + Zk(r) − r

ωs
k

1ζ(k), k = −1, . . . ,M, (2.18)

and the tail radii polynomial is

pM(r) = Z̄M+1(r) − r14. (2.19)

Theorem 2.1 If there exists r > 0 such that pk(r) ≺ 0 for all k = −1, . . . ,M + 1, then

T : Bx̄(r) → Bx̄(r) is a contraction and therefore there exists a unique x̃ ∈ Bx̄(r) such that

T (x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r) such that f(x̃) = 0.

Proof The proof is a consequence of the contraction mapping theorem. We refer to

Corollary 3.6 in [23] for a complete proof. �

The strategy to rigorously compute solutions of f defined in (2.7) is to construct the

radii polynomials of Definition 2.1, to satisfy the hypothesis of Theorem 2.1, and to use
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the result of Lemma 2.1 to conclude that u(t) = a0 + 2
∑

k�1 akTk(t) is a solution of

F(θ, u) = 0 with θ = (u1(−1), u3(−1)), where F is the integral operator (2.2).

While the computation of the bound Y satisfying (2.15) is rather straightforward, the

computation of the polynomial bound Z(r) satisfying (2.16) is more involved. In order to

simplify its computation, we introduce the linear invertible operator A† : Xs → Xs−1 by

(A†x)k =

{
(Df(m)(x̄F )(Πmx))k, k = −1, . . . , m− 1

(−2k) xk, k � m.
(2.20)

We then split T (x) = x − Af(x) = (I − AA†)x − A(f(x) − A†x). Letting ξ1 = wr, ξ2 = vr

with w, v ∈ B(1), one has that

DT (x̄+ ξ1)ξ2 = (I − AA†)ξ2 − A
(
Df(x̄+ ξ1)ξ2 − A†ξ2

)
=
[
(I − AA†)v

]
r − A

(
Df(x̄+ wr)vr − A†vr

)
.

(2.21)

The first term of (2.21) is of the form εr, where ε
def
= (I − AA†)v ∈ Xs should be small.

The coefficient of r in the second term [Df(x̄+ wr)vr − A†vr]k should be small for large

Galerkin projection dimension m. Hence, for m large enough, the coefficient of r in the radii

polynomials of Definition 2.1 can expected to be negative, and therefore the hypothesis

of Theorem 2.1 can be satisfied. We now derive explicitly the radii polynomials.

3 Explicit construction of the radii polynomials

In this section, the computation of the bounds involved in the radii polynomials are

presented in greater detail. Fix a dimension m for the Galerkin projection (2.11) and

consider x̄ = (θ̄, ā) = (x̄F , 0∞) such that f(m)(x̄F ) ≈ 0, where f is the operator given in

(2.7). We fix the decay rate s = 2. Recalling R1, we obtain

[
T (x̄) − x̄

]
k

=
[

− Af(x̄)
]
k

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
− Amf

(m)(x̄)
]
k
, k = −1, 0, . . . , m− 1

1

2k
fk(x̄), m � k < 3m− 1

0, k � 3m− 1.

Then, compute Y−1 . . . , Y3m−2 using interval arithmetic with the formulas

Yk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣[− Amf
(m)(x̄)

]
k

∣∣ , k = −1, 0, . . . , m− 1

1

2k
|fk(x̄)|, m � k < 3m− 1

0, k � 3m− 1.

(3.1)

To simplify the computation and the presentation of the coefficients of Zk(r), we

consider vectors z(1)
k , z(2)

k and z(3)
k such that

[Df(x̄+ wr)vr − A†vr]k ≺ z
(1)
k r + z

(2)
k r

2 + z
(3)
k r

3. (3.2)

We use the following notation, x̄ = (θ̄, ā), w = (θ̃1, ã1), v = (θ̃2, ã2). Before defining the
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vectors z(1)
k , z(2)

k and z
(3)
k , let us introduce the explicit computation of Dfk(x̄ + wr)v for

each k � −1.

Computation of Dfk(x̄ + wr)v

k = −1: It follows from definition of η in (2.4) that

Df−1(x̄+ wr)v =

⎛
⎜⎜⎝

[ã(2)
2 ]0 + 2

∑
k�1

[ã(2)
2 ]k

[ã(4)
2 ]0 + 2

∑
k�1

[ã(4)
2 ]k

⎞
⎟⎟⎠ .

k = 0: For i, j ∈ {1, 3}, set

[s1ij]k(τ)
def
=
[(
ā(1) + ã

(1)
1 r + τã

(1)
2

)(
ā(i) + ã

(i)
1 r + τã

(i)
2

)(
ā(j) + ã

(j)
1 r + τã

(j)
2

)]
k
.

Computing the derivative with respect to τ and evaluating at τ = 0 yields

[s111]
′
k

def
=

∂[s111]k
∂τ

∣∣∣∣
τ=0

=
[
3(ā(1))2ã(1)

2 + 6ā(1)ã
(1)
1 ã

(1)
2 r + 3(ã(1)

1 )2ã(1)
2 r

2
]
k

[s113]
′
k

def
=

∂[s113]k
∂τ

∣∣∣∣
τ=0

=
[
(ā(1))2ã(3)

2 + 2ā(1)ã
(1)
2 ā

(3) + 2ā(1)ã
(1)
1 ã

(3)
2 r + 2ā(1)ã

(1)
2 ã

(3)
1 r

+ 2ã(1)
1 ã

(1)
2 ā

(3)r + (ã(1)
1 )2ã(3)

2 r
2 + 2ã(1)

1 ã
(1)
2 ã

(3)
1 r

2
]
k

[s133]
′
k

def
=

∂[s133]k
∂τ

∣∣∣∣
τ=0

=
[
ã

(1)
2 (ā(3))2 + 2ā(1)ā(3)ã

(3)
2 + 2ã(1)

2 ā
(3)ã

(3)
1 r + 2ã(1)

1 ā
(3)ã

(3)
2 r

+ 2ā(1)ã
(3)
1 ã

(3)
2 r + ã

(1)
2 (ã(3)

1 )2r2 + 2ã(1)
1 ã

(3)
1 ã

(3)
2 r

2
]
k
.

Therefore,

Df0(x̄+ wr)v = −[ã2]0+

d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(θ̃2)1 + [ã(2)
2 ]0 − 1

2
[ã(2)

2 ]1 − 2
∑∞

k=2[ã
(2)
2 ]k

(−1)k

k2−1

κ2

(
[s111]

′
0 + [s133]

′
0 − [ã(1)

2 ]0 − 1

2

(
[s111]

′
1 + [s133]

′
1 − [ã(1)

2 ]1
)

− 2

∞∑
k=2

(
[s111]

′
k + [s133]

′
k − [ã(1)

2 ]k
) (−1)k

k2 − 1

)

(θ̃2)2 + [ã(4)
2 ]0 − 1

2
[ã(4)

2 ]1 − 2

∞∑
k=2

[ã(4)
2 ]k

(−1)k

k2 − 1

[s113]
′
0 − 1

2
[s113]

′
1 − 2

∞∑
k=2

[s113]
′
k

(−1)k

k2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

k � 1: Using that fk(x) = −2kak + ck−1 − ck+1 for k � 1, one gets that

Dfk(x̄+ wr)v = −2k[ã2]k+

d

⎛
⎜⎜⎜⎜⎝

[ã(2)
2 ]k−1 − [ã(2)

2 ]k+1

κ2

(
[s111]

′
k−1 + [s133]

′
k−1 − [ã(1)

2 ]k−1 − [s111]
′
k+1 − [s133]

′
k+1 + [ã(1)

2 ]k+1

)
[ã(4)

2 ]k−1 − [ã(4)
2 ]k+1

[s113]
′
k−1 − [s113]

′
k+1

⎞
⎟⎟⎟⎟⎠ .
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For w ∈ B(1), |w−1|∞, |w0|∞ � 1, |wk|∞ � k−s, wk = ([ã(1)
1 ]k, [ã

(2)
1 ]k, [ã

(3)
1 ]k, [ã

(4)
1 ]k), and

similarly for v. Hence, for k � 0, i ∈ {1, 2} and j ∈ {1, 2, 3, 4}, |(ã(j)
i )k| � 1

ωsk
.

We introduce the notation ω−s def
= (ω−s

k )k�−1, ω
−s
F

def
= (ω−s

k )m−1
k=−1 ∈ �m+1 and ω−s

I

def
=

ω−s − ω−s
F . Also Ā(i) def

= max
k∈{0,1,...,m−1}

{ωs
k|ā

(i)
k |} for i = 1, 2, 3, 4, which implies that |ā(i)

k | � Ā(i)

ωsk
.

Before obtaining the bounds z(1)
k , z(2)

k and z
(3)
k in (3.2), we need some analytic estimates,

which are explained in detail in Appendix A.

Lemma 3.1 Consider the decay rate s = 2 and a, b, c ∈ Ωs, where Ωs is defined in (2.10)

with norm ‖a‖s = supk�0{|ak|ωs
k}. Consider α(3)

k as defined in (A 3). Then, for any k � 0,

|(abc)k| � (‖a‖2‖b‖2‖c‖2)
α

(3)
M

ω2
k

. (3.3)

Proof The result follows from Lemmas A.4 and A.5. �

The bound of Lemma 3.1 can be improved by performing some interval arithmetic

computations.

Lemma 3.2 Consider the decay rate s = 2 and a, b, c ∈ Ωs. Consider a computational

parameter M and define a(M) = (a0, a1, . . . , aM−1) ∈ �M . Define b(M), c(M) similarly. Consider

ε
(3)
k = ε

(3)
k (2,M) as in (A 4). Then, for k ∈ {0, . . . ,M − 1},

|(abc)k| �
∣∣(a(M)b(M)c(M)

)
k

∣∣+ 3(‖a‖2‖b‖2‖c‖2)ε
(3)
k .

Proof The result follows from Lemma A.6. �

The convolutions terms |(a(M)b(M)c(M))k| can be bounded with the Fast Fourier Transform

(FFT) algorithm on the computer together with interval arithmetic (e.g. see [30]).

Computation of the bounds z(1)
k , z(2)

k , z(3)
k

Case k = −1: Since
[
Df(x̄+ rw)v − A†v

]
−1

=

(
2
∑
k�m

[ã(2)
2 ]k, 2

∑
k�m

[ã(4)
2 ]k

)T

, then

|
[
Df(x̄+ rw)v − A†v

]
−1

| � z
(1)
−112

def
=

(M−1∑
k=m

2

ks
+

2

(M − 1)s−1(s− 1)

)
12.

Case k = 0: Let [S111]k
def
= [s111]

′
k − ([s111]

′
k)F , [S113]k

def
= [s113]

′
k − ([s113]

′
k)F and [S133]k

def
=
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[s133]
′
k − ([s133]

′
k)F . Then,[

Df(x̄+ rw)v − A†v
]
0

=

d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
∑
k�m

[ã(2)
2 ]k

(−1)k

k2 − 1

κ2

(
[S111]0 + [S133]0 − 1

2

(
[S111]1 + [S133]1

)
− 2

∑
k�m

(
[S111]k + [S133]k − [ã(1)

2 ]k

)
(−1)k

k2 − 1

)

−2
∑
k�m

[ã(4)
2 ]k

(−1)k

k2 − 1

[S113]0 − 1

2
[S113]1 − 2

∑
k�m

[S113]k
(−1)k

k2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In order to find the bounds z(1)
0 , z(2)

0 , and z
(3)
0 satisfying (3.2) for k = 0, we need first to

bound the terms |[S111]k|, |[S113]k| and |[S133]k|. Using the analytic estimates of Lemma 3.1

and Lemma 3.2, we can compute upper bounds for
[
ω−s
I |a(i)||a(j)|

]
k
,
[
ω−sω−s|a(i)|

]
k

and[
ω−sω−sω−s]

k
to obtain

|[S111]k| �3
[
ω−s
I |ā(1)|2

]
k
+ 6

[
(ω−s)2|ā(1)|

]
k
r + 3

[
(ω−s)3

]
k
r2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

[ ∑
k1+k2+k3=k
m�|k1|<M

[ω−s
I ]k1

[|ā(1)|]k2
[|ā(1)|]k3

+ 3(Ā(1))2ε(3)
k

]

+6

[ ∑
k1+k2+k3=k
0�|ki|<M

[ω−s]k1
[ω−s]k2

[|ā(1)|]k3
+ 3Ā(1)ε

(3)
k

]
r + 3

α
(3)
M

ωs
k

r2, 0 � k < M

α
(3)
M

ωs
k

(
3(Ā(1))2 + 6Ā(1)r + 3r2

)
, k � M,

|[S113]k| �
[
ω−s
I |ā(1)|2 + 2ω−s

I |ā(3)||ā(1)|
]
k
+
[
4(ω−s)2|ā(1)| + 2(ω−s)2|ā(3)|

]
k
r + 3

[
(ω−s)3

]
k
r2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k1+k2+k3=k
m�|k1|<M

[ω−s
I ]k1

[|ā(1)|]k2
[|ā(1)|]k3

+ 3(Ā(1))2ε(3)
k

+2

( ∑
k1+k2+k3=k
m�|k1|<M

[ω−s
I ]k1

[|ā(1)|]k2
[|ā(3)|]k3

+ 3Ā(1)Ā(3)ε
(3)
k

)

+

[
4

( ∑
k1+k2+k3=k
0�|ki|<M

[ω−s]k1
[ω−s]k2

[|ā(1)|]k3
+ 3Ā(1)ε

(3)
k

)

+2

( ∑
k1+k2+k3=k
0�|ki|<M

[ω−s]k1
[ω−s]k2

[|ā(3)|]k3
+ 3Ā(3)ε

(3)
k

)]
r + 3

α
(3)
M

ωs
k

r2, 0 � k < M

α
(3)
M

ωs
k

(
(Ā(1))2 + 2Ā(1)Ā(3) +

(
4Ā(1) + 2Ā(3)

)
r + 3r2

)
, k � M,
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|[S133]k| �
[
ω−s
I |ā(3)|2 + 2ω−s

I |ā(1)||ā(3)|
]
k
+
[
4(ω−s)2|ā(3)| + 2(ω−s)2|ā(1)|

]
k
r + 3

[
(ω−s)3

]
k
r2

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k1+k2+k3=k
m�|k1|<M

[ω−s
I ]k1

[|ā(3)|]k2
[|ā(3)|]k3

+ 3(Ā(3))2ε(3)
k

+2

( ∑
k1+k2+k3=k
m�|k1|<M

[ω−s
I ]k1

[|ā(1)|]k2
[|ā(3)|]k3

+ 3Ā(1)Ā(3)ε
(3)
k

)

+

[
4

( ∑
k1+k2+k3=k
0�|ki|<M

[ω−s]k1
[ω−s]k2

[|ā(3)|]k3
+ 3Ā(3)ε

(3)
k

)

+2

( ∑
k1+k2+k3=k
0�|ki|<M

[ω−s]k1
[ω−s]k2

[|ā(1)|]k3
+ 3Ā(1)ε

(3)
k

)]
r + 3

α
(3)
M

ωs
k

r2, 0 � k < M

α
(3)
M

ωs
k

(
(Ā(3))2 + 2Ā(1)Ā(3) +

(
4Ā(3) + 2Ā(1)

)
r + 3r2

)
, k � M.

The finite sums appearing in the upper bounds of [S111]k , [S113]k and [S133]k when

k < M are computed using the FFT algorithm together with interval arithmetic. Defining

V111, V113, V133 as in Table 1 and W111,W113,W133 as follows

W
(1)
111 = 3(Ā(1))2, W

(2)
111 = 6Ā(1), W

(3)
111 = 3

W
(1)
113 = (Ā(1))2 + 2Ā(1)Ā(3), W

(2)
113 = 4Ā(1) + 2Ā(3), W

(3)
113 = 3

W
(1)
133 = (Ā(3))2 + 2Ā(1)Ā(3), W

(2)
133 = 4Ā(3) + 2Ā(1), W

(3)
133 = 3,

and collecting the coefficients of r, we obtain the upper bounds

|[S1ij]k| � [V (1)
1ij ]k + [V (2)

1ij ]kr + [V (3)
1ij ]kr

2, 0 � k < M,

|[S1ij]k| �
α

(3)
M

ωs
k

(
W

(1)
1ij +W

(2)
1ij r +W

(3)
1ij r

2

)
, k � M.

Finally, using the estimates∣∣∣∣∣
∞∑
k=m

[S1ij]k
(−1)k

k2 − 1

∣∣∣∣∣ �
M−1∑
k=m

|[S1ij]k|
k2 − 1

+
∑
k�M

|[S1ij]k|
k2 − 1

�
M−1∑
k=m

(V (1)
1ij )k + (V (2)

1ij )kr + (V (3)
1ij )kr

2

k2 − 1

+ α
(3)
M

(
W

(1)
1ij +W

(2)
1ij r +W

(3)
1ij r

2

)∑
k�M

1

ks(k2 − 1)

�
M−1∑
k=m

(V (1)
1ij )k + (V (2)

1ij )kr + (V (3)
1ij )kr

2

k2 − 1

+ α
(3)
M

(
W

(1)
1ij +W

(2)
1ij r +W

(3)
1ij r

2

)
1

(M2 − 1)(M − 1)s−1(s− 1)
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Table 1. The formulas for V (	)
1ij for i, j ∈ {1, 3} and for 	 = 1, 2, 3

V
(1)
111

3

[ ∑
k1+k2+k3=k
m�|k1 |<M

[ω−s
I ]k1 [|ā

(1)|]k2 [|ā
(1)|]k3 + 3(Ā(1))2ε(3)

k

]

V
(2)
111

6

[ ∑
k1+k2+k3=k

0�|ki |<M

[ω−s]k1 [ω
−s]k2 [|ā

(1)|]k3 + 3Ā(1)ε
(3)
k

]

V
(3)
111 3

α
(3)
M

ωs
k

V
(1)
113

∑
k1+k2+k3=k
m�|k1 |<M

[ω−s
I ]k1 [|ā

(1)|]k2 [|ā
(1)|]k3 + 3(Ā(1))2ε

(3)
k + 2

[ ∑
k1+k2+k3=k
m�|k1 |<M

[ω−s
I ]k1 [|ā

(1)|]k2 [|ā
(3)|]k3 + 3Ā(1)Ā(3)ε

(3)
k

]

V
(2)
113

4

[ ∑
k1+k2+k3=k

0�|ki |<M

[ω−s]k1 [ω
−s]k2 [|ā

(1)|]k3 + 3Ā(1)ε
(3)
k

]
+ 2

[ ∑
k1+k2+k3=k

0�|ki |<M

[ω−s]k1 [ω
−s]k2 [|ā

(3)|]k3 + 3Ā(3)ε
(3)
k

]

V
(3)
113 3

α
(3)
M

ωs
k

V
(1)
133

∑
k1+k2+k3=k
m�|k1 |<M

[ω−s
I ]k1 [|ā

(3)|]k2 [|ā
(3)|]k3 + 3(Ā(3))2ε

(3)
k + 2

[ ∑
k1+k2+k3=k
m�|k1 |<M

[ω−s
I ]k1 [|ā

(1)|]k2 [|ā
(3)|]k3 + 3Ā(1)Ā(3)ε

(3)
k

]

V
(2)
133

4

[ ∑
k1+k2+k3=k

0�|ki |<M

[ω−s]k1 [ω
−s]k2 [|ā

(3)|]k3 + 3Ā(3)ε
(3)
k

]
+ 2

[ ∑
k1+k2+k3=k

0�|ki |<M

[ω−s]k1 [ω
−s]k2 [|ā

(1)|]k3 + 3Ā(1)ε
(3)
k

]

V
(3)
133 3

α
(3)
M

ωs
k

and

∣∣∣∣∑
k�m

[ã(j)
i ]k

(−1)k

k2 − 1

∣∣∣∣ �
∑
k�m

1

ks(k2 − 1)
�

M−1∑
k=m

1

ks(k2 − 1)
+

1

(M2 − 1)(M − 1)s−1(s− 1)
,

we obtain the bounds z(1)
0 , z(2)

0 , and z
(3)
0 satisfying (3.2) for k = 0. The formulas for z(1)

0 ,

z
(2)
0 , and z(3)

0 are given in Table A 1 in Appendix A.

Cases 0 < k < m− 1: Similarly as in the case for k = 0, one gets that

[
Df(x̄+ rw)v − A†v

]
k

= d

⎛
⎜⎜⎜⎜⎝

0

κ2

(
[S111]k−1 + [S133]k−1 − [S111]k+1 − [S133]k+1

)
0

[S113]k−1 − [S113]k+1

⎞
⎟⎟⎟⎟⎠ ,

and |
[
Df(x̄+ rw)vr − A†vr

]
k
| � z

(1)
k r + z

(2)
k r

2 + z
(3)
k r

3, where the formulas for z(1)
k , z(2)

k , and

z
(3)
k are given in Table A 1 in Appendix A.
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Cases k = m− 1, k = m

[
Df(x̄+ rw)v − A†v

]
k

=

d

⎛
⎜⎜⎜⎜⎝

−[ã(2)
2 ]k+1

κ2

(
[S111]k−1 + [S133]k−1 − [ã(1)

2 ]k−1 − [S111]k+1 − [S133]k+1 + [ã(1)
2 ]k+1

)
−[ã(4)

2 ]k+1

[S113]k−1 − [S113]k+1

⎞
⎟⎟⎟⎟⎠

and |
[
Df(x̄+ rw)vr −A†vr

]
k
| � z

(1)
k r + z

(2)
k r

2 + z
(3)
k r

3, where the formulas for z(1)
k , z(2)

k , and

z
(3)
k are given in Table A 1 in Appendix A.

Cases m < k � M

[
Df(x̄+ rw)v − A†v

]
k

=

d

⎛
⎜⎜⎜⎜⎝

[ã(2)
2 ]k−1 − [ã(2)

2 ]k+1

κ2

(
[S111]k−1 + [S133]k−1 − [ã(1)

2 ]k−1 − [S111]k+1 − [S133]k+1 + [ã(1)
2 ]k+1

)
[ã(4)

2 ]k−1 − [ã(4)
2 ]k+1

[S113]k−1 − [S113]k+1

⎞
⎟⎟⎟⎟⎠

and |
[
Df(x̄+ rw)vr −A†vr

]
k
| � z

(1)
k r + z

(2)
k r

2 + z
(3)
k r

3, where the formulas for z(1)
k , z(2)

k , and

z
(3)
k are given in Table A 1 in Appendix A.

We can finally combine all the above bounds and let

Z
(i)
F

def
= |Am| z(i)

F , for i = {1, 2, 3}

Z
(i)
k

def
=

1

2k
z

(i)
k , for i = {1, 2, 3}, k � m

Z
(0)
F

def
=
∣∣I − AmDf

(m)(x̄F )
∣∣ ω̃−s

F

Z
(0)
k

def
= 0 for k � m,

where ω̃−s
F

def
= ((ω−s

k )ζ(k))k�−1, with (ω−s
k )ζ(k) =

ζ(k) times︷ ︸︸ ︷
(ω−s

k , . . . , ω
−s
k ). We can finally define, for

k = −1, . . . ,M,

Zk(r)
def
=
(
Z

(0)
k + Z

(1)
k

)
r + Z

(2)
k r2 + Z

(3)
k r3. (3.4)

For k > M, we need the tail radii polynomial (2.19) to ensure that Yk + Zk(r) − r
ks

14 =
1
2k

(z(1)
k r+z

(2)
k r

2+z(3)
k r

3)− r
ks

14 ≺ 0 for all k � M+1. Using Lemma 3.1, consider asymptotic

bounds z̃(i)
M+1 such that z(1)

k � z̃
(i)
M+1

ks
for all k > M and for i = 1, 2, 3. The bounds can be
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found at the end of Table A 1. Hence, for all k > M, one has that

Zk(r) =
1

2k

(
z

(1)
k r + z

(2)
k r

2 + z
(3)
k r

3

)

� 1

2k

(
z̃

(1)
M+1

ks
r +

z̃
(2)
M+1

ks
r2 +

z̃
(3)
M+1

ks
r3
)

� 1

ks

(
z̃

(1)
M+1

2(M + 1)
r +

z̃
(2)
M+1

2(M + 1)
r2 +

z̃
(3)
M+1

2(M + 1)
r3

)
.

Hence, we set

Z̄M+1(r)
def
=

z̃
(3)
M+1

2(M + 1)
r3 +

z̃
(2)
M+1

2(M + 1)
r2 +

z̃
(1)
M+1

2(M + 1)
r. (3.5)

Combining the bounds (3.1), (3.4) and (3.5), we have the radii polynomials

pk(r) =

{
Yk + Zk(r) − r

ωsk
1ζ(k), −1 � k � M,

Z̄M+1(r) − r14, k = M + 1.
(3.6)

We are now ready to present the proofs of the theorems in Section 1.

4 Proofs of the theorems

The computer-assisted proof of each theorem is done using MATLAB and the package In-

tLab [31]. The proofs can be reproduced by running the program G L PROOF INTVAL

for each of the four partitions considered. As mentioned previously, the idea of the proofs

is to construct the radii polynomials (3.6), verify the hypothesis of Theorem 2.1, and use

Lemma 2.1 to conclude that u(t) = (u1, u2, u3, u4) = (φ,φ′, ψ, ψ′) = a0 + 2
∑

k�1 akTk(t) is a

solution of the Ginzburg-Landau boundary value problem (1.2). All codes can be found

at [33]. The data of the global diagram for each case were computed separately and are

provided for the proof to be reproduced. The main program loads these data such as the

approximate solution and the values of each parameter (κ, d, he). It then computes the

bounds Y , Z satisfying (3.1), (3.4), (3.5), and determines the positive interval on which the

radii polynomials are negative. The solution is in a ball centred around the approximate

solution. Then, the program attests that all solutions φ are distinct by verifying rigorously

that each value of φ(d) is distinct. Each proof is done in the space X2, that is in the space

of sequences decaying at least as fast as k−2. For each proof, the computational parameter

M has been chosen large enough for the proof to be successful.

Proof of Theorem 1.1 The proof can be reproduced by running the program

G L PROOF INTVAL from the folder S3A2 available at [33]. In this case M = 6m− 1
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and the value of m for each solution is given by the following table

S3 ∩ A2 x(1)
s x(2)

s x(3)
s x(1)

a x(2)
a x(3)

a x(4)
a

m 260 210 330 280 190 190 280

.

�

Proof of Theorem 1.2 The proof can be reproduced by running the program

G L PROOF INTVAL from the folder S1A2 available at [33]. In this case M = 4m− 1

and the value of m for each solution is given by the following table.

S1 ∩ A2 x(1)
s x(1)

a x(2)
a x(3)

a x(4)
a

m 190 150 180 180 150

.

�

Proof of Theorem 1.3 The proof can be reproduced by running the program

G L PROOF INTVAL from the folder S2A1 available at [33]. In this case M = 5m− 1

and the value of m for each solution is given by the following table.

S2 ∩ A1 x(1)
s x(2)

s x(1)
a x(2)

a

m 250 80 100 100

.

�

Proof of Theorem 1.4 The proof can be reproduced by running the program

G L PROOF INTVAL from the folder S2A2 available at [33]. In this case M = 5m− 1

and the value of m for each solution is given by the following table.

S2 ∩ A2 x(1)
s x(2)

s x(1)
a x(2)

a x(3)
a x(4)

a

m 150 70 90 120 90 120

.

�

5 Conclusion

In this paper, we introduced a rigorous computational method using Chebyshev series to

compute solutions of the Euler-Lagrange equations for the one-dimensional Ginzburg-

Landau model of superconductivity. Our approach used analytic estimates, the radii

polynomials and the contraction mapping theorem to show existence of solutions near

numerical approximations. Coexistence of as many as seven nontrivial solutions was

proved. This result is new and prior to this paper has been open for more than thirty years.
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Finally, let us briefly mention that none of the apparent bifurcations that appeared

in our diagrams have been proved rigorously. However, we believe that the method

introduced in [32] could be applied to prove that the bifurcations are there, especially

since many bifurcations seem to involve the breaking of some symmetry.

Appendix A Estimates and bounds

This appendix provides the necessary convolution estimates required and the final bounds

zk to construct the radii polynomials constructed in Section 3. All proofs can be found

in [23,28]. Consider a decay rate s � 2, a computational parameter M � 6 and define, for

k � 3,

γk = γk(s)
def
= 2

[
k

k − 1

]s
+

[
4 ln(k − 2)

k
+

π2 − 6

3

] [
2

k
+

1

2

]s−2

. (A 1)

Lemma A.1 For s � 2 and k � 4 we have

k−1∑
k1=1

ks

ks1(k − k1)s
� γk.

Lemma A.2 (Quadratic estimates) Given a decay rate s � 2 and M � 6. For k ∈ �, define

the quadratic asymptotic estimates α(2)
k = α

(2)
k (s,M) by

α
(2)
k

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + 2

M∑
k1=1

1

ω2s
k1

+
2

M2s−1(2s− 1)
, for k = 0

M∑
k1=1

2ωs
k

ωs
k1
ωs
k+k1

+
2ωs

k

(k +M + 1)sMs−1(s− 1)

+2 +

k−1∑
k1=1

ωs
k

ωs
k1
ωs
k−k1

, for 1 � k � M − 1

2 + 2

M∑
k1=1

1

ωs
k1

+
2

Ms−1(s− 1)
+ γM, for k � M,

(A 2)

and for k < 0,

α
(2)
k

def
= α

(2)
|k| .

Then, for any k ∈ �, ∑
k1+k2=k

kj∈�

1

ωs
k1
ωs
k2

�
α

(2)
k

ωs
k

.

Lemma A.3 For any k ∈ � with |k| � M � 6, we have that α(2)
k � α

(2)
M .
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Lemma A.4 (Cubic estimates) Given s � 2 and M � 6. Let

Σ∗
a

def
=

M−1∑
k1=1

α
(2)
k1
Ms

ωs
k1

(
M − k1

)s + α
(2)
M

(
γM −

M−1∑
k1=1

1

ωs
k1

)
,

α̃
(2)
M

def
= max{α(2)

k | k = 0, . . . ,M}, Σ∗
b

def
= α̃

(2)
M γM and Σ∗ def

= min{Σ∗
a , Σ

∗
b}. Define the cubic

asymptotic estimates α(3)
k = α

(3)
k (s,M) by

α
(3)
k

def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(2)
0 + 2

M−1∑
k1=1

α
(2)
k1

ω2s
k1

+
2α(2)

M

(M − 1)2s−1(2s− 1)
, for k = 0

M−k∑
k1=1

α
(2)
k+k1

ωs
k

ωs
k1
ωs
k+k1

+
α

(2)
Mω

s
k

(M + 1)s(M − k)s−1(s− 1)
+

k−1∑
k1=1

α
(2)
k1
ωs
k

ωs
k1
ωs
k−k1

+

M∑
k1=1

α
(2)
k1
ωs
k

ωs
k1
ωs
k+k1

+
α

(2)
Mω

s
k

(M + k + 1)sMs−1(s− 1)
+ α

(2)
k + α

(2)
0 ,

for 1 � k � M − 1

α
(2)
M

M∑
k1=1

1

ωs
k1

+
2α(2)

M

Ms−1(s− 1)
+ Σ∗ +

M∑
k1=1

α
(2)
k1

ωs
k1

+ α
(2)
M + α

(2)
0 , for k � M

(A 3)

and for k < 0,

α
(3)
k

def
= α

(3)
|k| .

Then, for any k ∈ �, ∑
k1+k2+k3=k

kj∈�

1

ωs
k1
ωs
k2
ωs
k3

�
α

(3)
k

ωs
k

.

Moreover, α(3)
k � α

(3)
M , for all k � M.

Lemma A.5 For any k ∈ � with |k| � M � 6, we have that α(3)
k � α

(3)
M .

Lemma A.6 Given s � 2 and M � 6, define for 0 � k � M − 1

ε
(3)
k = ε

(3)
k (s,M)

def
=

M−k∑
k1=M

α
(2)
k+k1

ωs
k1
ωs
k+k1

(A 4)

+

M+k∑
k1=M

α
(2)
k1−k

ωs
k1
ωs
k1−k

+
α

(2)
M

(M + 1)s(s− 1)

[
1

(M − k)s−1
+

1

(M + k)s−1

]

and for k < 0

ε
(3)
k (s,M)

def
= ε

(3)
|k| (s,M).

Fix 0 � |k| � M − 1 and 	 ∈ {1, 2, 3}. Then, we have that

∑
k1+k2+k3=k

max{|k1|,...,|k	|}�M

1

ωs
k1
ωs
k2
ωs
k3

� 	ε
(3)
k .
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Table A 1. Formulas for zk

k = −1

z
(1)
−1

⎛
⎝M−1∑
k=m

2

ks
+

2

(M − 1)s−1(s− 1)

⎞
⎠ 12

z
(2)
−1 0

z
(3)
−1 0

k = 0

z
(1)
0 d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

M−1∑
k=m

1

ks(k2 − 1)
+

2

(M2 − 1)(M − 1)s−1(s− 1)

κ2
(

[V
(1)
111]0 + [V

(1)
133]0 +

[V
(1)
111]1 + [V

(1)
133]1

2
+ 2

M−1∑
k=m

[V
(1)
111]k + [V

(1)
133]k

k2 − 1

+

2α
(3)
M

(
W

(1)
111 +W

(1)
133

)
(M2 − 1)(M − 1)s−1(s− 1)

+
1

(M2 + 2M)Ms−1(s− 1)

)

2

M−1∑
k=m

1

ks(k2 − 1)
+

2

(M2 − 1)(M − 1)s−1(s− 1)

[V
(1)
113]0 +

[V
(1)
113]1

2
+ 2

M−1∑
k=m

[V
(1)
113]k

k2 − 1
+

2α
(3)
MW

(1)
113

(M2 − 1)(M − 1)s−1(s− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z
(2)
0 d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

κ2
(

[V
(2)
111]0 + [V

(2)
133]0 +

[V
(2)
111]1 + [V

(2)
133]1

2

+2

M−1∑
k=m

[V
(2)
111]k + [V

(2)
133]k

k2 − 1
+

2α
(3)
M

(
W

(2)
111 +W

(2)
133

)
(M2 − 1)(M − 1)s−1(s− 1)

)

0

[V
(2)
113]0 +

[V
(2)
113]1

2
+ 2

M−1∑
k=m

[V
(2)
113]k

k2 − 1
+

2α
(3)
MW

(2)
113

(M2 − 1)(M − 1)s−1(s− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z
(3)
0 d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

κ2
(

[V
(3)
111]0 + [V

(3)
133]0 +

[V
(3)
111]1 + [V

(3)
133]1

2

+2

M−1∑
k=m

[V
(3)
111]k + [V

(3)
133]k

k2 − 1
+

2α
(3)
M

(
W

(3)
111 +W

(3)
133

)
(M2 − 1)(M − 1)s−1(s− 1)

)

0

[V
(3)
113]0 +

[V
(3)
113]1

2
+ 2

M−1∑
k=m

[V
(3)
113]k

k2 − 1
+

2α
(3)
MW

(3)
113

(M2 − 1)(M − 1)s−1(s− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 < k < m− 1

z
(1)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(1)
111

]k−1 + [V
(1)
133

]k−1 + [V
(1)
111

]k+1 + [V
(1)
133

]k+1

)
0

[V
(1)
113

]k−1 + [V
(1)
113

]k+1

⎞
⎟⎟⎟⎟⎠

z
(2)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(2)
111

]k−1 + [V
(2)
133

]k−1 + [V
(2)
111

]k+1 + [V
(2)
133

]k+1

)
0

[V
(2)
113

]k−1 + [V
(2)
113

]k+1

⎞
⎟⎟⎟⎟⎠

z
(3)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(3)
111

]k−1 + [V
(3)
133

]k−1 + [V
(3)
111

]k+1 + [V
(3)
133

]k+1

)
0

[V
(3)
113

]k−1 + [V
(3)
113

]k+1

⎞
⎟⎟⎟⎟⎠
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Table A 1. Continued

k = m− 1, k = m

z
(1)
k d

⎛
⎜⎜⎜⎜⎜⎜⎝

1
(k+1)s

κ2
(

[V
(1)
111

]k−1 + [V
(1)
133

]k−1 + [V
(1)
111

]k+1 + [V
(1)
133

]k+1 + 1
(k+1)s

)
1

(k+1)s

[V
(1)
113

]k−1 + [V
(1)
113

]k+1

⎞
⎟⎟⎟⎟⎟⎟⎠

z
(2)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(2)
111

]k−1 + [V
(2)
133

]k−1 + [V
(2)
111

]k+1 + [V
(2)
133

]k+1

)
0

[V
(2)
113

]k−1 + [V
(2)
113

]k+1

⎞
⎟⎟⎟⎟⎠

z
(3)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(3)
111

]k−1 + [V
(3)
133

]k−1 + [V
(3)
111

]k+1 + [V
(3)
133

]k+1

)
0

[V
(3)
113

]k−1 + [V
(3)
113

]k+1

⎞
⎟⎟⎟⎟⎠

m < k < M − 1

z
(1)
k d

⎛
⎜⎜⎜⎜⎜⎜⎝

1
(k−1)s

+ 1
(k+1)s

κ2
(

[V
(1)
111

]k−1 + [V
(1)
133

]k−1 + [V
(1)
111

]k+1 + [V
(1)
133

]k+1 + 1
(k−1)s

+ 1
(k+1)s

)
1

(k−1)s
+ 1

(k+1)s

[V
(1)
113

]k−1 + [V
(1)
113

]k+1

⎞
⎟⎟⎟⎟⎟⎟⎠

z
(2)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(2)
111

]k−1 + [V
(2)
133

]k−1 + [V
(2)
111

]k+1 + [V
(2)
133

]k+1

)
0

[V
(2)
113

]k−1 + [V
(2)
113

]k+1

⎞
⎟⎟⎟⎟⎠

z
(3)
k d

⎛
⎜⎜⎜⎜⎝

0

κ2
(

[V
(3)
111

]k−1 + [V
(3)
133

]k−1 + [V
(3)
111

]k+1 + [V
(3)
133

]k+1

)
0

[V
(3)
113

]k−1 + [V
(3)
113

]k+1

⎞
⎟⎟⎟⎟⎠

k = M − 1, k = M

z
(1)
k d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
(k−1)s

+ 1
(k+1)s

κ2
(

[V
(1)
111

]k−1 + [V
(1)
133

]k−1 + 1
(k−1)s

+
α
(3)
M

(k+1)s

(
W

(1)
111

+W
(1)
133

)
+ 1

(k+1)s

)
1

(k−1)s
+ 1

(k+1)s

[V
(1)
113

]k−1 +
α
(3)
M

(k+1)s
W

(1)
113

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z
(2)
k d

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

κ2
(

[V
(2)
111

]k−1 + [V
(2)
133

]k−1 +
α
(3)
M

(k+1)s

(
W

(2)
111

+W
(2)
133

))
0

[V
(2)
113

]k−1 +
α
(3)
M

(k+1)s
W

(2)
113

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

z
(3)
k d

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

κ2
(

[V
(3)
111

]k−1 + [V
(3)
133

]k−1 +
α
(3)
M

(k+1)s

(
W

(3)
111

+W
(3)
133

))
0

[V
(3)
113

]k−1 +
α
(3)
M

(k+1)s
W

(3)
113

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

k > M

z̃
(1)
M+1d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
M + 1

M

)s
+

(
M + 1

M + 2

)s
κ2
[
2α

(3)
M

(
W

(1)
111

+W
(1)
133

)
+

(
M + 1

M

)s
+

(
M + 1

M + 2

)s]
(
M + 1

M

)s
+

(
M + 1

M + 2

)s
2α

(3)
M
W

(1)
113

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

z̃
(2)
M+1d

⎛
⎜⎜⎜⎜⎝

0

2κ2α
(3)
M

(
W

(2)
111

+W
(2)
133

)
0

2α
(3)
M
W

(2)
113

⎞
⎟⎟⎟⎟⎠

z̃
(3)
M+1d

⎛
⎜⎜⎜⎜⎝

0

2κ2α
(3)
M

(
W

(3)
111

+W
(3)
133

)
0

2α
(3)
M
W

(3)
113

⎞
⎟⎟⎟⎟⎠
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