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Exponential roughness layer and analytical
model for turbulent boundary layer flow over

rectangular-prism roughness elements
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We conduct a series of large-eddy simulations (LES) to examine the mean flow
behaviour within the roughness layer of turbulent boundary layer flow over rough
surfaces. We consider several configurations consisting of arrays of rectangular-prism
roughness elements with various spacings, aspect ratios and height distributions.
The results provide clear evidence for exponential behaviour of the mean flow
with respect to the wall normal distance. Such behaviour has been proposed
before (see, e.g., Cionco, 1966 Tech. Rep. DTIC document), and is represented
as U(z)/Uh = exp[a(z/h − 1)], where U(z) is the spatially/temporally averaged fluid
velocity, z is the wall normal distance, h represents the height of the roughness
elements and Uh is the velocity at z = h. The attenuation factor a depends on the
density of the roughness element distribution and details of the roughness distribution
on the wall. Once established, the generic velocity profile shape is used to formulate
a fully analytical model for the effective drag exerted by turbulent flow on a surface
covered with arrays of rectangular-prism roughness elements. The approach is based
on the von Karman–Pohlhausen integral method, in which a shape function is assumed
for the mean velocity profile and its parameters are determined based on momentum
conservation and other fundamental constraints. In order to determine the attenuation
parameter a, wake interactions among surface roughness elements are accounted for
by using the concept of flow sheltering. The model transitions smoothly between ‘k’
and ‘d’ type roughness conditions depending on the surface coverage density and the
detailed geometry of roughness elements. Comparisons between model predictions
and experimental/numerical data from the existing literature as well as LES data
from this study are presented. It is shown that the analytical model provides good
predictions of mean velocity and drag forces for the cases considered, thus raising
the hope that analytical roughness modelling based on surface geometry is possible,
at least for cases when the location of flow separation over surface elements can be
easily predicted, as in the case of wall-attached rectangular-prism roughness elements.
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1. Introduction
The problem of predicting the friction drag exerted by turbulent flow on a surface

based on knowledge about the surface geometry has received extensive and enduring
attention. Efforts on this topic date back to the early experimental work of Colebrook
(1939) and Nikuradse (1950). Since 1944 the Moody diagram that relates the friction
drag with the equivalent sand-grain roughness height ks (Moody 1944) has been the
most commonly employed engineering tool. There have been many further efforts
since then to correlate the surface topology with the hydrodynamic response through
equivalent sand-grain roughness height, friction factor (Simpson 1973), effective slope
(Napoli, Armenio & De Marchis 2008; Schultz & Flack 2009), surface skewness factor
(Flack & Schultz 2010) and examinations of Reynolds number similarity for rough
walls (see, e.g., Flack, Schultz & Shapiro 2005). For reviews, see Grimmond & Oke
(1999) and Flack & Schultz (2010).

Researchers working on modelling urban canopy flows have been interested in
parameterizations of the hydrodynamic roughness length (zo), displacement height (d)
and drag coefficient for the specific case of rectangular-prism roughness elements, due
to the typically cubiform shapes of buildings. Some of the extensive efforts have been
reviewed in Grimmond & Oke (1999) and Barlow & Coceal (2009). For particular
applications of various models for zo and d, see Arnfield (2003), Vardoulakis et al.
(2003) and Kanda (2006). Among the parameters expected to be the most important
for zo and d are the solidity λf (defined as the projected frontal area per unit lot
area), the planar density λp (defined as the projected horizontal area per unit lot
area) and the characteristic height h of individual roughness elements (Grimmond &
Oke 1999). Morphometric models usually include explicit dependences of, e.g., zo
on these parameters determined through empirical approaches such as fitting with
experimental or numerical data. Models that fall into this category include those
introduced in Lettau (1969), Counehan (1971), Macdonald, Griffiths & Hall (1998)
and Kim et al. (2011). Calibrated for certain surface roughness and over a given
range of λf , λp, such models can provide reasonably accurate predictions of zo and d
for practical applications. Nevertheless, to a great extent they remain dependent upon
much empirical input. Thus, the problem of relating hydrodynamic and geometrical
roughness remains open, since local flow conditions may depend on details of the
roughness elements in a highly case-specific fashion.

In order to develop physics-based models for flows over surfaces with attached
roughness elements, some detailed understanding of the averaged velocity profile
within the roughness layer (defined here as the region between the surface and the
top of the roughness elements) must be developed. This is similar to the situation
where knowledge about the logarithmic law has led to physically based drag laws
for smooth boundary layers. One option is to examine the differential momentum
equation, as is done in differential urban canopy models (e.g. Macdonald 2000;
Coceal & Belcher 2004; Harman & Finnigan 2007; Di Sabatino et al. 2008) which
focus on predicting the horizontally (x–y) and temporally averaged velocity profile
inside and above the canopy using integration of the momentum differential equation.
To obtain the mean velocity profile as a function of height, the modelling task focuses
on the Reynolds stress (which arises due to temporal averaging over turbulence), the
dispersive stress (which arises due to spatial averaging of the mean velocity across
spatial heterogeneities in the temporal mean velocity distribution) and the form drag
(which arises due to the direct momentum extraction by the roughness elements
interacting with the flow). The Reynolds stress is usually modelled with a Prandtl
mixing-length eddy-viscosity model, the dispersive stress is commonly neglected and
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Rough-wall model 129

the drag is typically modelled using a quadratic law for a body force associated
with the form drag F = CdρU2δAf /δV , where ρ is the fluid density, Cd is the drag
coefficient, U is a mean streamwise reference velocity and δAf is the projected frontal
area within a volume δV . The mixing length (denoted as lm) and the drag coefficient
Cd need to be specified. With these models for stresses and the force, the spatially
and temporally averaged streamwise momentum equation can be integrated in the
wall normal direction to obtain the mean velocity profile.

To increase the accuracy of the predictions from such models, various empirical
inputs have been employed by different authors. Examples include the approach of
Macdonald (2000), requiring an attenuation factor to be specified a priori as a function
of the solidity λf =Af /AT (where Af and AT are the projected frontal and horizontal lot
areas respectively), while Coceal & Belcher (2004) employ an empirical function to
model the displacement height d. As mentioned before, it is quite well established that
the solidity λf is the most important parameter characterizing the surface morphology,
and most currently available rough-wall models are insensitive to more detailed
characterizations of the roughness distribution (see the reviews by Grimmond & Oke
1999; Barlow & Coceal 2009). While typically the wake interactions are not explicitly
modelled, there have been some attempts (e.g. Jiménez 2004; Millward-Hopkins et al.
2011) to model the mutual sheltering between roughness elements.

Thus, while significant progress has been achieved in roughness modelling over
the past few years, shortcomings in the models reviewed above can be identified.
Morphometric and urban canopy models depend significantly on empirical input such
as ad hoc specifications of the mixing length lm on λf , the height from the bottom
surface, etc. Moreover, although differential urban canopy models can make more
detailed predictions than morphometric models, being differential instead of algebraic
(e.g. Coceal & Belcher 2004; Harman & Finnigan 2007), they are more costly to
evaluate. This can be an obstacle when attempting to combine these models with
numerical weather prediction codes. Lastly, mutual sheltering among roughness
elements, while being a commonly accepted concept, lacks a clear operational
definition, and there is still no simple yet accurate model that can include mutual
sheltering in the context of a practical roughness model.

In this study we attempt to resolve some of these difficulties by adopting the
von Karman–Pohlhausen integral approach (Pohlhausen 1921), in which a functional
form for the mean velocity is assumed, including parameters that must be obtained
from physical constraints. At the simplest level, there have been expectations that
an exponential profile occurs within the roughness layer. This expectation can be
motivated (Cionco 1966; Macdonald 2000; Coceal & Belcher 2004) by writing the
Reynolds-averaged streamwise momentum equation in which the vertical (direction
z) gradient of the momentum flux (modelled using a constant-mixing-length eddy
viscosity) balances the distributed drag from roughness elements:

d
dz

[
l2
m

∣∣∣∣dU(z)
dz

∣∣∣∣ dU(z)
dz

]
=CdU(z)2

dAf

dV
. (1.1)

Here, dAf /dV is the projected frontal area per unit volume, and lm and Cd are the
mixing length and drag coefficient respectively. These quantities can in principle be
z-dependent, but at this stage they are assumed to be constant in order to obtain a
simple solution, whose validity must then be tested empirically. It can be readily seen
that an exponential function of z, U(z)∼ exp(z), solves (1.1):

U/Uh = exp[a(z/h− 1)], (1.2)
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where h represents the height of the roughness elements, Uh is the velocity at z= h
and a is an attenuation factor (which depends upon the parameters in (1.1)).

Our first goal is to establish additional empirical evidence to confirm or refute the
expectation of an exponential velocity profile under more realistic conditions in which
some of the underlying assumptions used in (1.1) may not hold exactly. Therefore,
as a first step we determine the mean flow behaviour within the roughness layer via
a series of large-eddy simulations (LES) of turbulent boundary layers over arrays
of wall-attached rectangular-prism roughness elements. Various height distributions,
arrangements and surface coverage densities are considered. The results will be shown
to support a generic form for the velocity profile within the roughness layer with
exponential behaviour, (1.2). This observation motivates us to employ an exponential
shape function for the velocity profile with free parameters (a, Uh, . . .) that depend
on the local surface morphometric properties and flow configurations in the roughness
sublayer. Since we have used the shape function in place of the momentum equation
within the roughness sublayer, the model is algebraic rather than differential. A
similar approach has been used recently to develop a new wall model for LES
(Yang et al. 2015). In order to determine the most important profile parameter,
namely the attenuation coefficient a in the exponential function, an additional model
for mutual sheltering effects among roughness elements must be included. While
the model is developed for possibly more general rough surfaces, it is motivated,
validated and applied here only for the specific, but important, case of 3D and 2D
rectangular roughness elements with uniform and non-uniform height distributions.
As mentioned before, such surfaces are commonly found in urban canopies but also
in flow over engineered surfaces such as electronic circuit boards, etc. In developing
an analytically tractable model for hydrodynamic roughness, we are motivated by the
continued relevance of such models when computational flow predictions spanning
multiple scales and levels are required. For example, in the newly introduced integral
wall model for LES (Yang et al. 2015), for high-Reynolds-number flow over rough
surfaces in which the roughness falls much below the first grid point affordable via
LES near the surface, an analytical model for the roughness length z0 must still be
provided to the (non-equilibrium) wall model. Modelling of geophysical flows also
requires such parameterizations, while engineering design tools require the ability to
cover many cases rapidly, often precluding numerical simulations.

The remainder of the paper is organized as follows. Numerical simulations (LES)
that resolve the roughness elements within the roughness layer are used to determine
the mean velocity profile in the roughness layer in § 2. Motivated by the simulation
results, the assumed shape function for the velocity profile is briefly described in
§ 3 with various constraints that must be satisfied in order to build an analytical
model. The shape function provides a horizontally averaged description of the flow
field, yet some additional details about the flow within the roughness sublayer in
between roughness elements must also be taken into account to build the model.
The flow within the roughness sublayer is examined and modelled in § 3.2, where
a geometry-based sheltering model is proposed. Detailed comparisons of the model
predictions with experimental and numerical data for 3D cubic roughness elements
and 2D elements (bars) are presented in § 4. The model predictions for roughness with
a non-uniform height distribution are compared with LES results in §§ 4.3 and 4.4.
In order for the model to display the correct asymptotic behaviour at low surface
coverage, a correction for drag partitioning is included in appendix B. Conclusions
are given in § 5.
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2. Mean flow profiles within the roughness layer from LES
2.1. Simulation set-up

We use the in-house finite-difference code Vicar3D to solve the incompressible filtered
Navier–Stokes equations, including the Vreman subgrid-scale model (Vreman 2004;
You & Moin 2007) and the iWMLES model for the near-wall closure (Yang et al.
2015). Details of the code and the LES set-up can be found in Mittal et al. (2008)
and Yang et al. (2015). The code has been extensively validated (see, e.g., Mittal
et al. 2008; Bhardwaj & Mittal 2012; Zheng, Hedrick & Mittal 2013; Vedula et al.
2014). A validation of particular interest can be found in Yang et al. (2015), where
simulation results for channel flow with the bottom wall mounted with cubes have
been compared with experimental measurements, showing good agreement in the
predicted mean velocity distribution between the cubes. Considering the fact that in
LES the subgrid-scale turbulence is not explicitly computed, we restrict the current
analysis to the spatially/temporally averaged velocity profiles, which are expected
to be less sensitive to subgrid-scale modelling than, say, second-order statistics, and
have been shown to be reproduced accurately by the code.

The roughness elements considered have the shape of rectangular prisms. The
simulated flow is a spatially growing boundary layer, for which the boundary layer
height grows downstream. This enables us to sample results at various downstream
distances, and thus test that the roughness parameters to be obtained (i.e. zo, d)
are independent of the outer boundary layer conditions and the Reynolds number
which vary slowly as a function of x. The inflow is generated via an extended
rough-wall rescaling–recycling technique (Yang & Meneveau 2016). The boundary
layer thickness at the inflow, δ0, is 4hm (for single-height roughness cases) to 6hm (for
varying-height roughness cases), where hm is the averaged roughness height. Length
scales are expressed in terms of the incoming boundary layer thickness (i.e. δ0 = 1)
used for the reference case (simulations with single-height roughness). In these units,
the value of the mean height of roughness elements is always hm = 0.25, while the
computational domain size is 16× 6× 6 in the streamwise, spanwise and wall normal
directions respectively. The Cartesian mesh size for LES is 256 × 96 × 96. The
average roughness height hm is resolved by eight grid points in the vertical direction.
For the cases with varying height, the inflow boundary layer is increased to δ′0 = 1.5
(to keep the largest height from approaching the height of the incoming boundary
layer thickness). The Reynolds number based on the inlet boundary layer thickness
and free-stream velocity is Reδ0 = δ0U0/ν = 106, i.e. sufficiently high for the flow to
be in the fully rough regime (U0 is the free-stream velocity and ν is the kinematic
viscosity). The surfaces of the roughness elements themselves, as well as the bottom
wall, are assumed to be smooth, with no subgrid-scale roughness. A total simulation
time of 100 flow-through times is computed, using a time step of dt = 0.33 dx/U0,
where dx is the grid spacing in the streamwise direction. The flow-through time is
defined as T0 = Lx/U0, where Lx = 16 is the computational domain size. The code is
massively parallelizable and MPI is used for interprocessor communication.

2.2. The roughness geometries considered
Large-eddy simulations of developing turbulent boundary layer flow over three sets
of rough walls are conducted, for various roughness configurations. For set I, the
solidity is systematically varied for both aligned and staggered arrangements of cubic
roughness elements. Figure 1 shows the repeating tiles for this set of rough walls.
Set II consists of aligned rectangular roughness with 11 % surface coverage and
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Flow direction

(a) (b)

(c) (d ) (e) ( f )

(g) (h)

FIGURE 1. Repeating tiles for the first set of simulations denoted by ‘I’. The roughness
elements are cubic and are coloured black. Each case in this set is denoted with LXXS/A,
where L stands for λf , the number following L is 100λf , S stands for ‘staggered’ and
‘A’ stands for ‘aligned’: (a) L03S, (b) L03A, (c) L06S, (d) L06A, (e) L11S, ( f ) L11A,
(g) L25S, (h) L25A. The surface coverage density is systematically varied within this set
of rough walls for both perfectly aligned and staggered roughness arrangements.
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FIGURE 2. The discretized roughness height PDF compared with the Gaussian PDF. The
standard deviation in roughness height is (from a–c) 0.24hm, 0.35hm, 0.5hm; hm ± std(h)
are marked with dashed lines.

non-uniform roughness heights. The roughness height is selected from a Gaussian
distribution with several values of standard deviation: σh = 0.24hm, 0.35hm, 0.5hm.
The probability-density function (PDF) of the roughness heights used in the LES is
compared with the Gaussian distribution in figure 2. For each σh, four realizations
of rough walls are randomly generated, thus resulting in 12 rough walls in total
in this set. Each case in this set is denoted with LXXStdXXA/S-X, where the two
digits following L denote the value equal to 100λf , the digits following Std represent
100σh/hm, ‘A’ and ‘S’ stand for aligned and staggered arrangement respectively and
the last digit is the simulation index associated with the same σh. Figure 3 shows a
visualization of the surface for case L11Std50A-1 (figure 3a), and instantaneous and
averaged streamwise velocities on a plane at height z= hm (figure 3b,c), for flow case
L11Std50-1 in rough-wall set II.

Using set III, the hydrodynamic response to the lateral displacement of roughness
elements is examined. In set III, we systematically vary the staggering at two
roughness solidities, λf = 0.06, 0.11. The repeating tiles for this set of rough walls
are shown in figure 4.
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FIGURE 3. (Colour online) Flow visualization from LES of flow over an array of
wall-attached rectangular prisms, for case L11Std50A-1. (a) Bottom surface geometry and
transparent isovelocity surface, (b) instantaneous and (c) averaged streamwise velocities on
a plane at height z= hm, for cubic roughness L11Std50A-1. Here, hm is the mean height
of the roughness element. The velocity is normalized with the free-stream velocity U0 and
the length is normalized with δ0 = 4hm = 4h.

Flow direction

(a) (b)

FIGURE 4. Repeating tiles for set III. Roughness elements are cubic and are coloured
black. Each case in this set is denoted as LXXSXX, where L stands for λf and S stands
for percentage of staggering: (a) L06SXX, (b) L11SXX. The percentage of staggering is
defined as 200ls

√
λf /h, where h is the cube height and ls is the roughness displacement

in the spanwise direction. A perfectly aligned arrangement is 0 % staggering and a
perfectly staggered arrangement is 100 % staggering. The number following L is 100λf
and the number following S is the percentage of staggering. For λf = 0.06, six different
percentages of staggering, spaced equally between 0 % to 100 %, are considered, and for
λf = 0.11, seven different cases of staggering are considered. Hence, this set includes 13
separate cases.

2.3. Mean velocity profile within the roughness layer
The velocity profile is examined in detail within the roughness layer, i.e. below
z=H, where H= hm+ σh and σh is the standard deviation in roughness height. Here,
H is referred to as the generalized roughness layer height, which for the case of
uniform roughness height is simply H = h = hm. For the general cases, the choice
of H = hm + σh is guided by examination of the data and by practicality. First, the
results for the case of a bimodal distribution of heights will clearly show that the
break between the logarithmic and exponential behaviours occurs at the height of the
larger roughness elements. This has also been observed by Jiang et al. (2008) and
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0 0.5 1.0
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1.0

L03
L06
L11
L25

FIGURE 5. (Colour online) Comparison of simulated velocity profiles within the roughness
layer and the exponential fit (thin red lines), for set I. The hollow symbols are for the
staggered arrangement and the filled symbols are for the aligned arrangement.

0 1

1

(a) (b) (c)

FIGURE 6. (Colour online) Comparison of simulated velocity profiles within the roughness
layer and the exponential fit (thin red lines), for set II. Cases corresponding to different
σh are displaced horizontally, while four random generated rough walls with the same
σh (from bottom to top: cases L11StdXXA-1/2/3/4) are displaced vertically for clarity of
presentation: (a) σh = 0.24hm, (b) σh = 0.35hm, (c) σh = 0.50hm.

Hagishima et al. (2009). Since for a bimodal distribution with equal probabilities the
standard deviation is equal to the difference between the mean and the maximum
(or minimum) height, the height of the larger element equals hm + σh. Mean velocity
profiles for the case with Gaussian height distributions further confirm that this is a
good approximation of where the mean velocity profile transition takes place.

The velocity profile within the roughness layer is obtained via spatially averaging
the temporally averaged velocity field for two repeating tiles (for perfectly aligned
arrangements) or one repeating tile (for all other arrangements) in the streamwise
direction at the middle of the computational domain. Figures 5–7 show the LES
computed profiles within the roughness layer for all three sets of rough walls. In
each of the individual plots, an exponential has been fitted in a range of z between
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0 1

1

(a) (b)

FIGURE 7. (Colour online) Comparison of the simulated velocity profiles within the
roughness layer and the exponential fit (thin red line), for set III. The cases with
two different solidities are displaced horizontally. Within each panel, the percentage of
staggering increases from bottom to top (from bottom to top: cases L06S00/25/50/75/100
(λf = 0.06) (a), L11S00/17/33/50/67/83/100 (λf = 0.11) (b)).

0

0

0.5

–0.5

1.0
–1.0

FIGURE 8. (Colour online) Velocity profiles for all LES cases plotted together within
the roughness layer, in linear–log scale. The collapse onto a line confirms exponential
behaviour, although each case is characterized by a different (fitted) parameter a.

H/2 and H. Fits are constrained to pass through (U/UH = 1, z/H = 1), thus, the
parameter fitted is the attenuation coefficient a for each case.

In figure 8, we summarize all cases simulated by plotting ln(U/UH)/a against
the wall normal distance, using the fitted value of a. The linear behaviour indicates
that for all rough walls considered in our LES, except for the near-wall region, an
exponential profile is a very good representation of the velocity profile within the
roughness layer (the collapse among the cases is due to the fitting and is thus not
surprising in this plot).

These observations provide good support for the generality of the exponential mean
velocity profile within a roughness layer, at least for the specific class of roughness
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z

h

FIGURE 9. Sketch of layers of the assumed mean velocity profile representing the
horizontally averaged velocity of the fluid in the flow domain (excluding the roughness
elements). From top to bottom a standard logarithmic layer characterized by roughness
and displacement lengths, and friction velocity (and further above possibly a wake), and
an exponential layer characterized by the roughness element height and an attenuation
coefficient.

elements that have a well-defined length scale, each with reasonably uniform cross-
sectional area, and well-defined flow separation points.

3. An analytical rough-wall flow model
3.1. Assumed shape function for mean velocity profile

The proposed approach is inspired by the von Karman–Pohlhausen method (Pohlhausen
1921) and begins by postulating a shape function for the vertical distribution of the
horizontally averaged velocity profile U(z). We divide the height into two layers.
(1) The roughness layer for heights below the roughness elements (for now we use
the symbol h, but for cases with varying heights this can be replaced by H which
includes the mean and standard deviation of the element heights). Based on the results
presented in § 2, for the first layer we use an exponential profile. (2) Above z= h (or
H), we assume a standard logarithmic law (Raupach, Antonia & Rajagopalan 1991;
Jiménez 2004), arising from a constant stress layer in which turbulence alone conveys
momentum in the vertical direction. In sum, the following shape function is assumed
in replacement of the integration of the RANS equations:

U(z)=
{

Uh exp[a(z− h)/h], 0< z< h,
uτ/κ[log[(z− d)/zo] +ΠW(z/δ)], h 6 z< δ,

(3.1)

where κ is the von Karman constant, δ is the boundary layer thickness and ΠW(z/δ)
is a wake function (Coles 1956), with the parameter Π typically of order unity (we
take Π = 0.2 in this study) and W(1) = 2 (Jiménez 2004). The parameter Uh is
the mean velocity at the roughness element height. Above z = δ, we take U = U0,
the free-stream velocity. Figure 9 illustrates the various layers. It should be noted
that the profile does not vanish at z = 0, but for now we are not interested in an
additional, possibly very thin, further layer in which the velocity decreases rapidly
from exp(−a)Uh down to zero. While the numerical results displayed in figures 5–7
show that the exponential fit deviates from the data in the bottom 20–25 % of the
roughness layer, experimental and DNS data typically show a more sudden drop closer
to the surface (a thinner near-wall layer, see, e.g., figure 4 in Macdonald (2000) and
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Rough-wall model 137

figure 4 in Leonardi & Castro (2010)). In our simulations, the deviations from the
exponential layer only occur for the 1–2 grid points nearest to the bottom surface,
where the LES results can be affected by the wall model and numerical errors. Hence,
we take the view that the validity of the exponential profile extends even closer to the
surface than our LES results show.

It should be noted that at z = h, (3.1) implies a sign change in the curvature
of the assumed velocity profile. An inflection point near the roughness layer top is
typically observed in rough-wall boundary layers and canopy flows (see, e.g., Raupach,
Finnigan & Brunei 1996), and is the cause of the instability that in turn leads to
mixing among the roughness layer and the inertial layer. Often, hyperbolic tangent-like
profiles are used to model this mixing-layer-type profile, and one could imagine
introducing a third intermediate layer in the present model. Here, for simplicity,
connecting an exponential and a logarithmic profile on both sides serves a similar
purpose and provides a good approximation to the mixing-layer-type profile for the
present purposes.

It should be noted that there are five unknown parameters in (3.1), i.e. Uh, uτ , d,
zo and a. It will be assumed that we know the velocity outside the boundary layer
U0, the boundary layer height δ, the element height h (or H) and the geometrical
distribution of the element on the surface. Using this information as input, we require
five constraints to express the five unknown parameters Uh, uτ , d, zo and a as functions
of U0, δ and h, and knowledge about the spatial distribution of the roughness elements,
including the parameter λf .

Three fundamental constraints can be found, one based on the basic principle
of momentum balance and two from continuity of the velocity profile. A fourth
constraint is based on relating the displacement height d to the centre of force, the
height at which one may consider the effective wall stress to be applied by the
roughness elements onto the flow (Jackson 1981). The fifth constraint determines the
exponential attenuation coefficient a and is discussed separately in § 3.2, based on
considerations of flow sheltering.

First, we take the control volume that contains vertically the whole roughness layer
and part of the inertial layer. The downward momentum flux within the inertial layer
is balanced by the form drag due to the wall roughness. This leads to the vertically
integrated momentum equation:

ATu2
τ =
∫

Af

CdU(z)2 dAf , (3.2)

where the integration is performed on the projected frontal area Af within the lot
area AT . For the right-hand side we have employed the quadratic law for the form
drag, i.e. dF = CdU(z)2 dAf . Here, Cd is the drag coefficient, for which a typical
value Cd = 1 is used (Coceal & Belcher 2004). The drag coefficient can depend on
the vertical distance, the detailed distribution of the ground roughness, the details of
the local flow, etc. (Santiago et al. 2008). The simplification of employing a constant
drag coefficient is made here, following common practice in rough-wall modelling
(Macdonald 2000; Coceal & Belcher 2004; Harman & Finnigan 2007; Di Sabatino
et al. 2008). The viscous skin friction is not considered on the right-hand side of
(3.2), based on the assumption of a ‘fully rough’ regime (transitional roughness
will be considered in appendix B based on partitioning the drag to include viscous
skin friction). For rectangular-prism roughness elements, integrating the exponential
velocity profile between z= 0 and z= h, (3.2) leads to

u2
τ =

1− exp(−2a)
2a

λf CdU2
h . (3.3)
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Commenting on the accuracy of the exponential fit near the bottom surface, if the
integration were performed between z = 0.2h and h (the typically observed range
of validity of the exponential fit in our LES) instead of between 0 and h, for a
representative value of a= 1, the resulting drag force from the integration would lead
to a difference in uτ of only ∼4 % because the integral is dominated by the profile
near z∼ h.

The second condition related to velocity profile continuity imposed at z = h leads
to

Uh

uτ
= 1
κ

log
(

h− d
zo

)
, (3.4)

where we have assumed W(h/δ)≈0 (an assumption that requires h/δ�1 but that will
be checked based on data in § 4 to hold even in cases where h/δ∼ 0.2). Continuity of
total stress at z=h is usually used in rough-wall models to constrain the mixing length
(see, e.g., Coceal & Belcher 2004). Because we do not invoke the mixing length in
the formulation, continuity in total stress is not explicitly used (although it could be
used to derive the implied mixing length from the roughness layer at z= h).

Third, we require the velocity at z= δ to be the free-stream velocity U0:

U0

uτ
= 1
κ

[
log
(
δ − d

z0

)
+ 2Π

]
. (3.5)

Fourth, we use the viewpoint proposed in Jackson (1981) that the displacement height
d can be set equal to the centroid height of the distributed drag force, namely

d=

∫
Af

CdU(z)2z dAf∫
Af

CdU(z)2 dAf

. (3.6)

For single-height rectangular-prism roughness after integration of the exponential
profile between z= 0 and z= h, (3.6) simply leads to

d
h
= 1

1− exp(−2a)
− 1

2a
. (3.7)

Combining (3.3), (3.4) and (3.7), zo for single-height rectangular-prism roughness can
be expressed as

zo

h
=
(

1− d
h

)
exp

[
−κ
/√

1
2a

Cdλf (1− e−2a)

]
. (3.8)

Replacing (3.8) into (3.4) and (3.5), we obtain the expression for uτ :

uτ
U0
=
[

1
κ

log
δ − d
h− d

+
√

2a
1− exp(−2a)

1√
Cdλf

+ 2Π
κ

]−1

, (3.9)

and
Uh

U0
=
[

1+ 1
κ

(
log

δ − d
h− d

+ 2Π
)√

Cdλf
1− exp(−2a)

2a

]−1

, (3.10)
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b

h
h

Sheltered 
region

(a)

(b)

FIGURE 10. (a) Sketch of the sheltering effect and simplified model in which the
complicated flow between roughness elements is assumed to consist of two regions with
characteristic velocities Uh (unsheltered region) and small velocity in the sheltered region.
The case shown is for when the downstream element overlaps with the sheltered region,
i.e. when hs > 0. (b) A sketch of the volume within the wake of a rectangular-prism
roughness that has reduced momentum. The roughness is h in height, w in width and
b in streamwise length. The streamwise length of the sheltered region is Ls and based on
the linear expansion model is given by Ls = h/ tan θ .

where d is obtained from (3.7). Again, it should be noted that (3.7)–(3.10) are valid
only for single-height rectangular-prism roughness elements. Equations (3.2) and (3.4)–
(3.6) can be used for general rectangular roughness. The fifth condition to determine
a incorporates the effects from mutual sheltering among the roughness elements and
is discussed in the next section.

3.2. Volumetric sheltering
In this section, we model the reduction in the momentum in the wakes of
rectangular-prism roughness elements and its effects upon the drag on neighbouring
roughness elements. This reduction is denoted as volumetric sheltering and has
been considered in various prior studies (see, e.g., Raupach 1992; Shao & Yang
2005, 2008). Qualitatively, the extremes have been denoted as ‘d-type’ and ‘k-type’
roughness, where in the first case much sheltering occurs and the flow can ‘skim
over’ the elements, whereas in ‘k-type’ roughness each element produces considerable
drag (Leonardi, Orlandi & Antonia 2007).

Consider the situation as sketched in figure 10(a). In the wake of rectangular-prism
roughness elements there is a sheltered region in which the velocity is lower than in
the unsheltered region. Depending on the spacing between the roughness elements,
one may be in a sheltered, unsheltered or ‘just sheltered’ condition (the latter is
defined as when the sheltering region ‘just’ begins to intersect the downstream
element, i.e. when hs changes from hs = 0 to hs > 0). We consider the case of ‘just
sheltered’ and determine the attenuation parameter in the mean velocity profile based
on momentum balance, namely that the integrated distributed drag equals the drag
on the fully exposed frontal area of an individual roughness element (here we take
Af = wh, where w is the element width). We assume the latter to be CDHU2

hwh/2,
where CDH is the drag coefficient (assumed to be known) that expresses the total
drag on the element when using the tip velocity Uh as the velocity scale. In other
words, for a rectangular prism we can write∫

Af

CdU(z)2 dAf =CdU2
hwh

1
2a
[1− exp(−2a)] = 1

2
CDHU2

hwh, (3.11)

where for CDH we use the drag coefficient for a surface-mounted cube for which
data exist, and (again) Cd is assumed to be constant. It is known that approximately
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CDH ≈ 1.4 (Akins, Peterka & Cermak 1977; Hussain & Lee 1980; Curley & Uddin
2015). Essentially we are assuming that the drag coefficient CDH appropriate for an
unsheltered or ‘just sheltered’ cuboid in the array is equal to that of an isolated
element. Since we are using Cd = 1, from this equality we can find the attenuation
of the velocity profile. The condition for a for the ‘just sheltered’ condition is given
by

1
2a
[1− exp(−2a)] = CDH

2Cd
≈ 0.7. (3.12)

The solution is a≈0.4. As roughness elements are placed further distances apart (even
lower λf ), momentum balance (for fully rough conditions) implies that a is unchanged
and remains at 0.4. Thus, we refer to this value as amin = 0.4. Direct measurements
of the attenuation coefficient a characterizing the nearly exponential velocity profile
are presented in § 4, and the measurements confirm the numerical value amin ≈ 0.4
characterizing the limiting attenuation in the limit of small λf . As elements are placed
closer together leading to a sheltering effect, we expect a to increase above 0.4, since
the velocity profile will be increasingly attenuated to values smaller than Uh as z
decreases from z= h down towards the wall.

In order to determine the value of a that depends on the degree of sheltering, we
employ again the momentum balance as before. However, because CDH is measured
for unsheltered cubes, the momentum balance is only applied for the top portion
above the sheltered region for z > hs as if the element only protrudes a height hs

above the surface, thus neglecting the contribution of the sheltered region to drag.
The sheltering height hs depends on the expansion rate of the wake, as shown in
figure 10(b), and will be modelled later. For the momentum balance with sheltering
we obtain the condition∫ h

hs

CdU(z)2w dz= 1
2a
(1− exp[−2a(1− hs/h)])whCdU2

h =
1
2

CDHU2
hw(h− hs), (3.13)

leading to

1
2a(1− hs/h)

(1− exp[−2a(1− hs/h)])= 1
2amin
[1− exp(−2amin)]. (3.14)

The solution is simply

a= amin

1− hs/h
. (3.15)

Hence, knowing hs/h allows us to determine a. For unsheltered cases (hs = 0), we
use a= amin = 0.4.

Next, we discuss the determination of hs. Figure 10(b) sketches the volume within
the wake of a rectangular-prism element that has reduced-momentum fluid. Wake
expansion in the vertical direction can bring in fluid with high momentum; a reduction
in the volume of low-momentum fluid would thus be expected. Wake expansion in
the spanwise direction, on the other hand, expands the volume of low-momentum
fluid. This configuration is physical for near-wall roughness with aspect ratio h/w
not large. Naturally, we expect the wake be eaten up from the side if the roughness
geometry is ‘stick-like’, which is not captured by the configuration in figure 10(b).
The horizontal convective velocity in the roughness sublayer is of the order of Uh,
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Domain to search

Roughness element

y

z(a) (b)Flow direction

FIGURE 11. (a) Sketch of the size of the upstream search domain for roughness elements
that could shelter the roughness under consideration (black cube). To determine `, hmax is
the maximum height of all roughness on the wall, Uh/uτ is iterated. (b) Sketch of the
frontal area of the roughness under consideration. The rectangles i = 1–3 are sheltering
areas caused by three upstream roughness elements.

while the turbulent transport velocity scale in the vertical and spanwise directions is
of the order of the friction velocity uτ . As a result, we estimate the wake expansion
rate as

tan θ =Cθ

uτ
Uh
, (3.16)

where Cθ is a coefficient of order unity that may depend upon element geometry (and
in the case of rectangular prisms, the aspect ratio). Any portion of a downstream
roughness element that falls in this region of reduced momentum is considered to be
sheltered. Determination of hs thus proceeds by calculating the expansion rate using
(3.16), and using it to evaluate the area of the sheltered region As as the frontal area
of the closest downstream rectangular-prism roughness elements. For cases in which
sideways growth of the wake causes partial sheltering of the width, the momentum
argument presented above is equivalent to setting hs=As/w in (3.13) and thus in (3.15)
(a more precise definition is given in (3.21)).

Depending on roughness element placement on the surface, the calculation of
the sheltered area can be more or less involved. The most general procedure is
to, first, find all upstream roughness elements that could shelter the roughness
under consideration and, second, calculate the sheltered frontal area due to each
roughness element found in the first step. To ensure that no roughness interactions
are missed, a large enough upstream search domain of size ` × (2` + w) is used,
with ` = 3hmaxUh/uτ , as shown in figure 11(a). Multiple roughness elements could
shelter the roughness element under consideration, e.g. in figure 11(b), the roughness
element under consideration is sheltered by three upstream roughness elements. In
general, if n roughness elements upstream leave sheltering imprints on the roughness
under consideration, we denote each of the sheltering areas by Si(y) (i= 1, 2, 3 . . . n).
For example, in figure 11(b), S1(y) = h1[H (y − y1a) −H (y − y1b)], where H (·) is
the Heaviside function and y1a and y1b are the beginning and end locations for the
sheltering area of the i = 1 element. The combined sheltered area of the roughness
element under consideration is 1As =

∫ w
0 max[S1(y), S2(y), . . .] dy. It can be noticed

that in this way we do not double count the sheltering areas.
For simple cases, this procedure can be performed analytically. For example, in

aligned cube arrays, in which the interaction is limited to the roughness element under
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consideration and its nearest roughness element upstream (no need to search for a
large area), the entire width of the element under consideration is in the sheltered
region if sheltering occurs. Then, hs is simply given by

hs =max[h−Cθ(uτ/Uh)Lx, 0], (3.17)

where Lx is the horizontal distance between roughness elements. Substitution of (3.17)
into (3.15) leads to

a= 0.4 max
[

1,C−1
θ

h
Lx

Uh

uτ

]
, (3.18)

which, together with (3.7)–(3.10), determines the model. More generally, this
procedure of calculating the sheltering can be performed numerically (see appendix A).

Once hs is determined from such geometrical arguments, (3.15) provides the final
condition to determine the unknowns in (3.1). In the appendix, some other evaluations
of hs and a appropriate for some sample geometries considered later in this paper are
also provided (e.g. staggered cubes, non-uniform heights, etc.). These evaluations of
hs are only relevant for cases in which the spacing between elements is smaller than
Ls, and thus a> amin. We still have an as of yet undetermined parameter, Cθ .

3.3. The wake expansion rate
The wake expansion rate is expressed as tan θ = Cθuτ/Uh. We consider here
rectangular-prism roughness elements, allowing for different height/side/width ratios.
We recognize that the expansion rate can be different for different ratios. Consider
cubes and 2D transverse ribs as examples to be contrasted. Most data available on
rectangular roughness suggest that the region affected by sheltering is shorter for 3D
cubes than for 2D ribs. A similar trend is known to exist for recirculation regions
which are typically shorter for 3D objects compared with 2D obstructions (although
we clarify that the sheltering region is different from the recirculation region). Thus,
we expect stronger volumetric sheltering effects for 2D roughness compared with 3D
roughness elements, which is related to the relatively weaker spreading rate of the
sheltering region for 2D roughness elements.

To estimate the differing expansion rates tan θ for objects of different aspect ratios,
we consider the momentum balance for the case of ‘just sheltered’ but for various
aspect ratios w/h, as sketched in figure 12. The total drag on the element, CDHU2

hhw/2,
is equated to the vertical momentum flux in the rectangular area of length h/ tan θ and
width w+ 2h that is physically associated with wake expansion before the sheltering
region has been reduced vertically such that the wake ‘touches’ the ground (dashed
line in figure 12). The width 2h + w comes from the fact that the rate of the wake
being ‘eaten up’ from the top equals the rate at which the wake expands sideways,
and by the time the entire wake is ‘eaten away’ from the top (i.e. by a distance h),
the side expansion is then also h, on both sides. The vertical flux of momentum per
unit area is u2

τ . Thus, the balance can be written as

h
tan θ

(2h+w)u2
τ =

1
2

CDHhwU2
h . (3.19)

We replace tan θ =Cθ(uτ/Uh) and solve for Cθ to obtain

Cθ =
(

6
CDH

uτ
Uh

)(
1
3
+ 2h

3w

)
≈O(1)×

(
1
3
+ 2h

3w

)
= 1− 2

3

(
1− h

w

)
, (3.20)
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Flow direction

b

FIGURE 12. Top view of the rough wall. Consider the case of ‘just touching’. The
roughness is shown by the thick solid line. The roughness width is w, its length is b
and its height is h. The rectangular region enclosed by the dashed line is argued to carry
the vertical flux of momentum associated with the wake growth and vertical reduction of
the sheltered region.

where the prefactor O(1) arises because CDH = 0.7, and while the ratio (uτ/Uh)
depends on details of the flow and roughness configurations, in most cases it is of the
order of ∼O(10−1). Therefore, as a model for Cθ , we simply take Cθ = 1/3+ 2h/3w.
As a result, for a given ratio uτ/Uh the expansion rate for 2D bar roughness elements
(h � w) is predicted to be one-third of that for cubic roughness elements (h = w).
The validity of (3.20) is associated with the validity of the assumed sheltering region
shape in figure 10(b). Because such a shape is not physically reasonable for slender
‘stick-like’ roughness elements (e.g. a canopy of long wall-attached vertical cylinders
or tall buildings for which the sideways expansion should transition into an inward
reduction at some distance downstream), the use of (3.20) should be limited to
roughness elements of an aspect ratio h/w that does not exceed an upper threshold
(here we typically have h/w . 2).

This completes the description of the analytical roughness model for rectangular
prisms, since based solely on geometric considerations one may find Cθ , tan θ , hs and
thus a, followed by the roughness parameters z0, d, Uh and uτ .

3.4. Summary of the wall and sheltering model
We briefly summarize the rough-wall model and outline how it can be applied to
rough walls mounted with rectangular-prism roughness elements. First, an initial guess
for the attenuation coefficient a is made, e.g. a= amin= 0.4. Then, the four unknowns
Uh, friction velocity uτ , effective roughness height zo and zero-plane displacement d
are obtained by solving the constraint equations (3.2) and (3.4)–(3.6). With uτ and Uh
known, their ratio is used to determine the angle tan(θ) by means of (3.16) and (3.20).

The next iteration of the attenuation coefficient a is determined using (3.15), but this
expression requires the equivalent sheltered layer height, hs. A condition to find hs that
can be applied in general configurations of rectangular-prism roughness elements can
be written as ∫ hs

0
wt(z) dz= As, (3.21)

where As=
∑
1As is the total sheltered frontal area in a given region of interest and

wt(z) is the total flow direction projected width of roughness elements at height z,
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also over the same area of interest. Equation (3.21) reduces to hs=1As/w for single-
height single-aspect-ratio roughness. We need (3.21) mainly to account for roughness
elements with non-uniform height distribution. In such a case, in fact hs could be
larger than the height of some roughness elements.

The sheltered frontal area As needs to be calculated geometrically using the
sheltering model. The volumetric sheltering behind a cube was sketched in figure 10,
and the wake expansion rate is given by (3.16) and (3.20), i.e. tan(θ) = [1/3 +
2h/3w](uτ/Uh), where h is the height of the rectangular roughness and w is its width.
When the surface contains elements with different aspect ratios, tan(θ) is calculated
for each roughness element aspect ratio. That is to say, while the ratio (uτ/Uh) is an
averaged quantity, tan(θ) is dependent on each individual element.

The steps to implement the sheltering model are as follows.

(i) Begin with an initial guess for uτ/Uh (e.g. 0.1) and use it as an initial guess of
tan(θ).

(ii) For every roughness element under consideration, identify all upstream
roughness elements that could shelter it.

(iii) Calculate the area sheltered by each element identified in step (ii) and for all
elements under consideration to obtain As.

(iv) Calculate the sheltering height hs with (3.21).
(v) Use (3.15) and (3.21) to obtain a. (Note that a> amin = 0.4.)

(vi) Solve for Uh, uτ , d, zo using (3.2) and (3.4)–(3.6).
(vii) Obtain corrected uτ/Uh and repeat previous steps until convergence.

Typically this procedure leads to convergence in just a few iterations.
The model parameters are the von Karman constant κ = 0.4, the sectional drag

coefficient Cd= 1 (for rectangular prisms), the outer-wake correction strength Π = 0.2
and the minimum attenuation coefficient amin = 0.4. The model inputs include the
boundary layer height δ, the free-stream velocity U0 and the geometric information
about the surface roughness elements and their positioning. As it turns out, the
predictions on zo and d are independent of δ and U0, while uτ and Uh do depend on
these outer-flow conditions.

4. Applications
In this section, we report results of LES of flow over (1) aligned and staggered

cube arrays, (2) 2D transverse ribs, (3) rectangular roughness with bimodal height
distribution and (4) rectangular roughness with Gaussian height distribution. The
purposes of this section are twofold: first, we provide data on roughness distributions
that have not been fully studied; second, we compare measurements of zo, d, uτ and
Uh from LES with the predictions from the sheltering model.

4.1. Aligned and staggered cubic arrays
In this subsection the model predictions are compared with relatively recent
experimental and numerical datasets from Hall, Macdonald & Walker (1996), Cheng
et al. (2007), Hagishima et al. (2009) and Leonardi & Castro (2010) as well as the
results from the current LES. The LES code has already been described in § 2. The
types of roughness considered in this section are the aligned/staggered arranged cubic
roughness elements with various surface coverage densities (see § 2, set I).

The mean velocity profile within and above the roughness canopy is obtained
by averaging over one repeating tile (for staggered arrays) or two repeating tiles
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FIGURE 13. Mean velocity profile above the roughness elements (z/h > 1) from LES,
and the log-law fits. The measured friction velocity uτ , displacement height d and
hydrodynamic roughness height zo are listed in table 1.

(for aligned arrays) centred around x = 9δ0 for all cases (x = 0 corresponds to the
inlet location). The form drag leading to the wall stress from the roughness elements
(denoted as τw) is measured within the simulation at each time step by integrating the
pressure over the immersed boundary. The friction velocity is uτ =√τw/ρ. We have
neglected the contribution from viscous skin friction, which in all simulated cases is
very small. We have checked from the integral wall model (which includes viscous
wall stress at the wall as part of the model) that the contributions are in all cases
less than 2 % of the form drag on the roughness elements.

Having available the friction velocity uτ , we take the mean velocity profiles above
the roughness elements and fit a logarithmic law determining the hydrodynamic
roughness height zo and displacement d from the regression, as done also in Cheng
& Castro (2002) and Kanda, Moriwaki & Kasamatsu (2004). It should be noted that
in figure 13 the logarithmic scaling extends down to almost z = h (the first points
shown in the plots correspond to the heights of the first LES grid points above z= h).
In order to provide fits that are least affected by possible deviations from logarithmic
scaling near the roughness elements, the log laws are fitted between z = 1.5h to
z = 2.5h. A value of κ = 0.4 is used in this procedure. Comparisons between
the simulated mean profile above the cubic roughness (z/h > 1) and the resulting
logarithmic fits (dashed lines) are shown in figure 13. As can be seen, the profiles
obtained from the LES follow the log law quite well. We also observe that close to
the roughness height any wake correction is negligible, and it is therefore valid to
neglect the wake term in (3.4). Finally, we recall that the attenuation coefficient a
has been obtained by performing an exponential profile regression on the measured
mean velocity profile in the range of heights 0.5< z/h< 1.

Table 1 lists the relevant quantities determined for each case. The attenuation
parameter a for all cases is plotted against λf in figure 14. It is observed that
a → 0.4 for λf → 0, providing empirical evidence for the result presented in the
previous section that for unsheltered conditions amin ≈ 0.4.

Next, the analytical model is applied to these cases. We mainly study the
dependence of various quantities on the solidity λf . The boundary layer thickness is
kept constant in the model, δ/δ0 = 1.3 (a typical value for the boundary thickness
listed in table 1), and h = 0.25. A moderate wake correction of Π = 0.2 is added
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FIGURE 14. Measured attenuation coefficient from fits to the LES results plotted against
the packing density for all cases. Solid symbols are for aligned cases and hollow symbols
are for staggered cases.

Case a δ/δ0 uτ/U0 Uh/U0 zo/δ0 d/δ0

L03A 0.40 1.31 0.066 0.54 0.0047 0.14
L03S 0.40 1.30 0.065 0.54 0.0042 0.15
L06A 0.47 1.34 0.076 0.47 0.0099 0.14
L06S 0.50 1.38 0.076 0.43 0.0113 0.16
L11A 0.58 1.19 0.088 0.41 0.0153 0.17
L11S 0.70 1.23 0.089 0.36 0.0175 0.18
L25A 1.11 1.26 0.088 0.30 0.0151 0.18
L25S 1.83 1.15 0.099 0.31 0.0194 0.16

TABLE 1. List of the relevant quantities for each case for cubic roughness of staggered or
aligned arrangement. Normalization is via the boundary layer thickness at the inlet and the
free-stream velocity. The friction velocity uτ is obtained directly in the simulations. The
roughness height is h = 0.25δ0. The boundary layer thickness δ is measured at x = 9δ0
downstream of the simulation inlet.

(Castro 2007). The von Karman constant κ is set to κ = 0.4, and Cd = 1 throughout.
A comparison of the model-predicted zo and d with the experimental and numerical
data is shown in figures 15 and 16. It is noted that the data in the literature exhibit
high scatter. Compared with relatively early experiments, for example Hall et al.
(1996) (which Macdonald (2000) and Coceal & Belcher (2004) have used for model
calibration), the hydrodynamic roughness lengths reported by more recent experiments
and simulations (Cheng et al. 2007; Jiang et al. 2008) tend to be smaller. We follow
the usual convention and examine the behaviour of zo and d as functions of the
packing density and compare with the data available from the prior studies. Moreover,
model predictions for Uh and uτ are compared with LES data in figure 17. Since they
are typically not reported in the literature, only data from the present LES study are
included. The model predictions and overall trends agree well with the experimental
and simulation data, considering the scatter in the data. The model-predicted zo

and d are independent of the boundary layer thickness, following the ‘fully rough’
assumption, yet uτ and Uh depend on δ. The dominant dependence is on the solidity,
and dependence on δ is very weak.
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FIGURE 15. (a) Comparison of the hydrodynamic roughness length zo predicted by the
new model with experimental and simulation data from Hall et al. (1996), Cheng et al.
(2007), Hagishima et al. (2009) and Leonardi & Castro (2010), and with LES data from
this study (upright triangles), for cubic roughness. Solid symbols, aligned arrangement;
empty symbols, staggered arrangement. The thick and thin lines are the model predictions
for the aligned and staggered arrangements respectively. (b) Comparison of the model
prediction for zo with (solid line) and without (dashed line) the correction based on the
drag partition by Raupach (1992), for the aligned arrangement (see appendix B).
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FIGURE 16. The same as figure 15 but for the zero-plane displacement d.

Figure 18 compares the present model with the roughness wall models of
Macdonald (2000) and Coceal & Belcher (2004). Because these prior models are
insensitive to the relative arrangement of roughness elements, and the parameters were
chosen to fit the data for staggered cube arrays, we compare only the predictions for
staggered arrays. The comparison shows that all models give quite similar predictions,
but comparison with figure 15 shows that the present model yields significantly
smaller values of z0 for the aligned cases, consistent with the data (solid symbols in
figure 15).

Finding experimental and simulation data for λf > 0.4 is challenging, but the model
prediction in densely packed regions can be assessed via asymptotic behaviours. It is
expected that when λf → 1, the flow becomes entirely skimming over the roughness
elements, approaching an elevated flat-plate turbulent boundary layer. Hence, zo must
reduce to 0, while the displacement height d→ h. Those behaviours can indeed be
observed in figure 16. The expected independence of zo and d with respect to δ and
Uo is also satisfied.
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FIGURE 17. Comparison of model-predicted (a) velocity Uh at the top of the cubic
roughness and (b) friction velocity uτ with LES data. Solid symbols, aligned arrangement;
empty symbols, staggered arrangement. The thick and thin lines are the model predictions
for the aligned and staggered arrangements respectively.
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FIGURE 18. A comparison of various model predictions for zo, for the case of staggered
arrays at different λf . It should be noted that the models of Macdonald (2000) and Coceal
& Belcher (2004) do not depend on the relative arrangement of roughness elements, only
on λf .

4.2. Transverse 2D ribs
In this subsection, the model is applied to transverse (2D) ribs, which, as is well
known, can exhibit very different behaviour from 3D roughness elements. The height
of the ribs is 0.25δ0. The roughness solidity studied includes λf = 0.125 and 0.25. The
computational domain is of size 16δ0× 4δ0× 4δ0 and the mesh size is 256× 64× 64.
The velocity profile is averaged over one repeating tile centred around 8δ0 downstream
of the inlet. Drag is measured within the simulation, and zo and d are fitted from the
measured profile.

Sample instantaneous and mean streamwise velocity fields are shown in figure 19. A
comparison between the simulated mean profile above the cubic roughness (z/h> 1)
and the log fit is shown in figure 20. Qualitatively, it can be seen that the vertical
rate at which the sheltered region is decreasing downstream between the 2D bars
appears to be slower than downstream of 3D cubic objects (comparing, e.g., with
figure 3). This trend is consistent with the discussion of expansion rates as a function
of roughness element aspect ratio in § 3.3.
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FIGURE 19. (Colour online) Sample instantaneous (a) and mean (b) streamwise velocity
field at z/h = 0.5 for boundary layer flow over transverse square ribs. The velocity is
normalized with the free-stream velocity. This case corresponds to λf = 0.25.
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FIGURE 20. Symbols: mean velocity profile above (z/h> 1) the transverse rib roughness
elements from LES. Lines: log-law fit plotted with fitted displacement heights and
roughness lengths. The displacement heights are 0.13δ0 and 0.17δ0, the friction velocities
are 0.12 and 0.11 (normalized by the free-stream velocity), and the hydrodynamic
roughness lengths are 0.053δ0 and 0.030δ0, for the λ= 0.125 and 0.25 cases respectively.
The rib height is 0.25δ0.

Following prior practice, results are first compared as a function of the distance
between the centres of two transverse square ribs, λ=Lx/h+1. Results are shown as a
function of the additive constant B in the expression U(z)/uτ = 1/κ log[(z− d)/h] +B.
Figure 21 shows the comparison between the model and extensive datasets.

In order to provide a comparison with the results for cubic roughness elements, in
figure 22 the model prediction for 2D ribs is compared with the model predictions for
aligned and staggered cubes, shown before in figure 15. Overall, the shape and order
of magnitude of the results is comparable, although the peak occurs at lower λf for
the 2D ribs (sheltering effects still occur at larger distances between the elements, i.e.
smaller λf , due to the decreased spreading rate in the 2D case).
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FIGURE 21. Comparison of the additive constant B from the model prediction (B =
κ−1 ln(h/zo)) and from experiments and numerical simulations (Cui et al. 2000; Leonardi
et al. 2003; Coleman et al. 2007; Ikeda & Durbin 2007), for transverse ribs. Two points
are from the LES of this study. The height of the transverse square rib is ≈1/5 of the
boundary layer height.
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FIGURE 22. Comparison of the roughness length zo from the model prediction for aligned
and staggered cubes, as well as 2D ribs.

4.3. Rectangular roughness with non-uniform bimodal height distributions
The cases presented in the previous sections considered roughness elements of
uniform height. The next level of complexity is to consider roughness elements
with non-uniform height distributions. Varying-height distributions were studied in
experiments as described in Cheng & Castro (2002), Hagishima et al. (2009) and
Zaki et al. (2011). Jiang et al. (2008) studied the behaviour of the hydrodynamic
roughness length zo by systematically varying the degree of roughness height
non-uniformity while keeping the solidity λf = 0.11. The results showed that
zo increases monotonically with the standard deviation of the roughness height
distribution, although it is not known whether this trend would hold for roughness at
a different solidity, or with different roughness arrangements.

The goals of this subsection are twofold. First, to provide LES data on rectangular-
prism roughness with non-uniform heights for various solidities and different
arrangements (staggered and aligned). For each case the hydrodynamic roughness
length zo and friction velocity uτ are measured from the LES. Second, we aim to
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Flow direction

(a)

(b) (c)

(d )

FIGURE 23. Repeating tiles for the cases considered. Here, L stands for λf , the two
digits following represent 100λf , the last letter S is for ‘staggered’ and A is for ‘aligned’:
(a) L06S, (b) L11S, (c) L11A, (d) L25S. The roughness is coloured with black/grey. Black
is for elements of height hh = hm + σh and grey is for height hl = hm − σh. The subscript
‘h’ stands for ‘high’, ‘l’ stands for ‘low’ and the mean height is hm = (hh + hl)/2.

Std 0.00 0.125 0.250 0.375 0.500 0.625 0.750

d 0.619 0.619 0.652 0.701 0.760 0.834 0.923
zo 0.037 0.048 0.058 0.070 0.088 0.096 0.109
uτ 0.069 0.073 0.077 0.079 0.085 0.087 0.091
Uh 0.427 0.463 0.471 0.474 0.475 0.478 0.483

TABLE 2. Displacement height d (from model), hydrodynamic roughness length zo, friction
velocity uτ and velocity at the top of the roughness canopy U(z = hh) for case Lf06S.
Here, Std stands for the standard deviation, length is normalized with hm and velocity is
normalized with the free-stream velocity U0.

compare the measured values with the predictions from the analytical model described
in § 3. As a first step in considering non-uniform heights, we consider bimodal height
distributions in which the mean height hm of the elements is kept constant but
the spread around it, quantified using the standard deviation of the element height,
is varied. It should be noted that the roughness height is either hh = hm + σh or
hl= hm− σh. The results of roughness with Gaussian height distribution are presented
in § 4.4. The set-up for these cases (denoted as LXXS/A-StdXX) was already
described in § 2. The repeating tiles for the rough walls are presented in figure 23.

The mean velocity profile above the roughness is obtained via averaging the
temporally averaged flow field in the spanwise y direction, and in the streamwise
direction x between two repetitive tiles starting from x = 4δ0. Figure 24 shows
the resulting set of velocity profiles for all cases. The log law is fitted between
z= hh + 0.5hm and z= hh + 2hm. To reduce the uncertainty in the log-law fitting, we
use the displacement height determined from the rough-wall model ((3.6), and note
that in this case Af is not a constant but a function of the wall normal distance). The
values obtained from the model are listed in tables 2–5. Figure 25 shows the velocity
profiles in a log-linear scale. The measured (fitted) values for the hydrodynamic
roughness length zo, friction velocity uτ and velocity at the top of the roughness
canopy Uh =U(z= hh) are listed in tables 2–5.

We then compare the LES results with the model predictions. The analytical model
requires careful evaluation of hs (to obtain a, etc.), and some intermediate results of
the geometric calculations are shown in appendix A. Figure 26 shows a comparison
of the values of zo, Uh and uτ predicted by the analytical model with those measured
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FIGURE 24. The mean velocity profiles for all of the cases: (a) Lf06S, (b) Lf11S,
(c) Lf11A, (d) Lf25S. The indicated standard deviation of the roughness elements is
normalized with the mean roughness height.

Std 0.00 0.125 0.250 0.375 0.500 0.625 0.750

d 0.638 0.633 0.664 0.705 0.763 0.836 0.924
zo 0.066 0.077 0.099 0.118 0.146 0.157 0.181
uτ 0.077 0.080 0.085 0.089 0.095 0.099 0.102
Uh 0.348 0.394 0.398 0.403 0.3960 0.393 0.393

TABLE 3. The same as table 2 for case Lf11S.

Std 0.00 0.125 0.250 0.375 0.500 0.625 0.750

d 0.638 0.633 0.664 0.705 0.763 0.836 0.924
zo 0.066 0.075 0.100 0.123 0.142 0.164 0.190
uτ 0.077 0.079 0.085 0.089 0.093 0.098 0.103
Uh 0.348 0.392 0.393 0.392 0.388 0.392 0.385

TABLE 4. The same as table 2 for case Lf11A.

from LES. We observe that the analytical model captures the measured results quite
well over a significant range of parameters.

Several observations can be made about the model. First, both zo and uτ increase
with the standard deviation of the roughness height. An up to threefold increase in
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FIGURE 25. The log-law-fitted velocity profile for all of the cases: (a) Lf06S, (b) Lf11S,
(c) Lf11A, (d) Lf25S. Only data above z> hh + 0.5hm are shown. The standard deviation
of the roughness elements is normalized with the mean roughness height.

Std 0.00 0.125 0.250 0.375 0.500 0.625 0.750

d 0.704 0.675 0.680 0.712 0.768 0.840 0.925
zo 0.096 0.114 0.158 0.210 0.249 0.275 0.311
uτ 0.083 0.089 0.098 0.104 0.110 0.115 0.119
Uh 0.227 0.304 0.304 0.287 0.283 0.283 0.275

TABLE 5. The same as table 2 for case Lf25S.

zo can be observed for Lf25S from std(h/hm) = 0 to std(h/hm) = 1. Second, while
zo and uτ increase steadily for Lf06S and Lf11S as std(h/hm) increases, for Lf25S a
faster increase in zo and uτ is observed at low std(h/hm). A similar rate of increase
with the standard deviation is observed at high standard roughness deviation for all
three sets of cases considered. Third, an increase in Uh is observed at low standard
deviation of roughness height, and then the value stays almost constant, although the
exact value varies from case to case. The increase in Uh at low std(h/hm) could due
to the fact that we have defined Uh at U(z = h). Because of height non-uniformity,
at hh the planar area density λp is only half of that for the case when roughness has
uniform height.

Next, a qualitative explanation is attempted to elucidate the trends in the changing
slopes of z0 and d as functions of std(h/hm). It is postulated that the change in
behaviour indicates a change in roughness regime, changing from ‘d’-type roughness
to ‘k’-type roughness at larger std(h/hm). Consider figure 27, which shows several
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FIGURE 26. Comparison of the analytical model predictions of zo, d, Uh and uτ as a
function of the height standard deviation (line) with the LES measurements (symbols). The
LES measurements are denoted with symbols: L06S, solid squares; L11S, empty squares;
L11A, empty circles; L25S, solid circles. The lines are model predictions: L06S, solid
line; L11S/A, dashed line (no difference is observed in the model predictions for L11S
and L11A for this roughness configuration); L25S, dot-dashed line.

vertical plane cuts from cases L06S-Std00, L06S-Std50, L25S-Std00 and L25S-Std50.
A d-type roughness behaviour is observed in L25S-Std00. For ‘d’-type roughness,
the flow above the roughness skims over the roughness elements and as a result less
drag is generated. As the standard deviation in the roughness height increases, the
roughness for L25S clearly changes from ‘d’-type roughness to ‘k’-type roughness
(figure 27d), allowing the flow above to impinge some of the roughness elements.
This transition in flow regime is consistent with a more rapid increase in uτ and zo
at low std(h/hm). Once std(h/hm) is above some value (for the cases studied here it
seems to be approximately std(h/hm)∼ 0.3), the increase is less rapid since the entire
behaviour follows ‘k’-type behaviour without the rapid increase in drag associated
with the transition from ‘d’-type to ‘k’-type roughness. For low initial solidities, even
the cases with uniform roughness height are already in the ‘k’-type regime and thus
display a more uniform increase with standard deviation.

4.4. Rectangular roughness with Gaussian distribution
In this subsection, the model predictions are compared with the LES measurements
of rectangular roughness with Gaussian distribution (set II in § 2.2). Both the mean
roughness height and the surface coverage (11 %) are kept constant. The standard
deviation in roughness height is varied according to values σh/h= 0.24, 0.35 and 0.50.
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FIGURE 27. (Colour online) Vertical plane cuts of the averaged streamwise velocity from
(a) L06S-Std00, (b) L06S-Std50, (c) L25S-Std00 and (d) L25S-Std50 through the middle
plane of the roughness.
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FIGURE 28. The mean streamwise velocity profile for std(h/hm)= 0.24, 0.35, 0.50 (a–c).
For each σh, four LES consisting of four realizations of randomly generated surfaces are
conducted.

For each σh, four realizations of rough walls are randomly generated for the LES runs.
The LES set-up has been described in § 2.1.

The temporally averaged velocity is further averaged within a streamwise section
of length 6hm centred at x = 24hm to obtain the mean velocity profile. Figure 28
shows the mean profiles for all of the cases considered in this subsection. Very little
difference is observed between cases with the same roughness height distribution. The
log law is fitted between z = 1.5hm + σh and z = 2.5hm + σh using the displacement
d from the rough-wall model (see below) and the von Karman constant κ = 0.4. The
measured values of zo, uτ and the boundary layer thickness δ are listed in table 6.
Figure 29 compares the log law and the fitted profiles.

Next, to obtain the model predictions for zo, d, uτ and Uh, we generate 512
realizations (sufficiently many to obtain converged statistics) of rough surfaces for a
large range of roughness height variances std(h/hm) between 0 and 0.5. We apply
the sheltering model to each surface. Geometrically computing the sheltered frontal
area is non-trivial for such complex surfaces, and therefore in this case we must
use a numerical code to obtain As. The method is as described in more detail in
appendix A. Figure 30 is a graphical visualization of the modelled sheltering regions
for one particular realization with σh = 0.5h. We then average the model predictions
for zo, d, uτ and Uh and plot the results as solid lines in figure 31.
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FIGURE 29. A comparison of the log law and the fitted mean streamwise velocity profile
for all cases. From (a–c) std(h/hm)= 0.24, 0.35, 0.50.

std24-1 std24-2 std24-3 std24-4

zo(hm) 0.108 0.106 0.098 0.098
d(hm) 0.630 0.629 0.630 0.629
uτ (U0) 0.090 0.090 0.087 0.087
δ(hm) 6.31 6.35 6.34 6.37

std35-1 std35-2 std35-3 std35-4

zo(hm) 0.116 0.128 0.103 0.129
d(hm) 0.651 0.650 0.650 0.648
uτ (U0) 0.093 0.095 0.087 0.950
δ(hm) 6.34 6.36 6.44 6.36

std50-1 std50-2 std50-3 std50-4

zo(hm) 0.139 0.142 0.135 0.130
d(hm) 0.681 0.680 0.680 0.679
uτ (U0) 0.098 0.097 0.097 0.093
δ(hm) 6.35 6.56 6.38 6.50

TABLE 6. Hydrodynamic roughness height zo, displacement height d, friction velocity uτ
and 99 % boundary layer thickness δ for roughness with different height variations. Here,
zo, d and δ are normalized with the mean roughness height hm and the friction velocity
is normalized with the free-stream velocity U0.

Figure 31 compares the model predictions and the mean values from the four
LES realizations for each value of std(h). The boundary layer thickness is set to be
δ = 6.4hm in the model, and a wake correction of Π = 0.5 is used. As can be seen,
the model predictions agree well with the LES data. The uncertainty in zo and us due
to the randomness in the roughness height distribution is not strong. We observe that
with an increase in the roughness height variation, zo increases considerably, while
uτ and Uh increase but only by a small amount.

5. Conclusions

In this study, the mean velocity distribution within the roughness layer of turbulent
boundary layer flow over arrays of rectangular prisms is examined. It is found that
for a wide range of element placement morphologies, a generic exponential velocity
profile with respect to the wall normal distance is a very good description of the
mean velocity within the upper 70–80 % portion of the roughness layer. To model
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xy
z

FIGURE 30. Visualization of the sheltering regions among the roughness elements with
Gaussian height distribution in a realization, with σh = 0.5hm. Periodicity is assumed in
the spanwise (y) and streamwise (x) directions.
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FIGURE 31. A comparison of the model predictions and the LES measurements. Here,
Mdl stands for model and the symbols stand for LES results. For each symbol, the largest
deviation from the mean value observed in the four LES with the same std(h/hm) is shown
as the extension on either side of the error bar.

the hydrodynamic effects of rough walls, a shape function for the velocity profile
is proposed as a replacement for a mixing-length closure and integration of the
temporally/spatially averaged momentum equation. There are five unknowns in the
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shape function: the hydrodynamic roughness length zo, the displacement height d,
the friction velocity uτ , the velocity at the top of the canopy Uh and an attenuation
coefficient a. Four constraints, including the momentum balance, are available from
first principles. In addition, a geometric sheltering model is developed to provide the
fifth condition. Moreover, the drag coefficient Cd is set to unity and the sheltering
expansion rate is set to Cθuτ/Uh, with a coefficient Cθ that is dependent on the
roughness element aspect ratio. Differently from earlier analytical roughness models,
the model developed in this study is responsive to the roughness distribution because
the model is coupled with a geometric sheltering model. The model is applied to
cubic roughness distributions of various solidities, to the case of arrays of transverse
2D square ribs and to roughnesses with non-uniform height distributions. The model
predictions compare well with experimental and numerical datasets from other authors,
and with the LES results from this study. Correct asymptotic behaviours are obtained
at both λf → 1 and λf → 0 (in the latter case including a correction via drag partition
described in appendix B). The sheltering model developed here can also be responsive
to additional variations in the spatial roughness distribution. Comparisons of the model
predictions with rectangular roughnesses oriented at angles (i.e. non-frontal) with the
flow, or different incident flow directions and arrays with elements displaced in the
spanwise direction for arbitrary distances will be presented in a separate report.

The analytical model is, for now, restricted to roughness with rectangular-prism
shape, since the sheltering region within the wake of such objects can be clearly
related to the frontal cross-section of the object. For more general shapes, such
as surfaces covered with LEGO blocks (Placidi & Ganapathisubramani 2015;
Vanderwel & Ganapathisubramani 2015), as well as with as cones, semi-hemispheres,
frustums, etc., where the flow separation point may not be easily identified, further
generalizations and detailed comparisons with data are required to establish wider
generality and applicability of the basic ingredients of the model. Moreover, inclusion
of spatially changing roughness configurations and effects of non-equilibrium
conditions (Schultz, Schatzmann & Leitl 2005) would be of considerable interest.
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Appendix A. Further examples of sheltered area evaluations

We have already considered aligned cube arrays in § 3.2. Here, we provide an
additional two examples of calculating the sheltered area analytically for regular
simple roughness arrangements. Then, we briefly discuss how to implement a simple
numerical code to perform this geometrical calculation for more complicated cases.

First, we consider fully staggered cube arrays. Because all roughness elements will
be equally sheltered, we only need to consider one element. We begin by identifying
the upstream elements that could shelter the particular element under consideration.
Figure 32 sketches the interactions that need to be considered. The sheltering due to
B1 is SB1A=hB1A[H (y)−H (y−w)], where hB1A=max[0,h− lx tan(θ)], lx=2h/

√
λf −

h, w = h. The sheltered area due to B2 is SB2A = hB2A[H (y) −H (y − w2)], where
hB2A=max[0, h− tan(θ)(lx− h)/2], w2=max[tan(θ)(lx− h)/2− ly, 0], ly= h/

√
λf − h.
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FIGURE 32. (a) A sketch of the roughness interaction in fully staggered cube arrays. Cube
A can be sheltered by B1, B2 and B3. (b) A sketch of the frontal area of A.

Because of symmetry, the sheltering due to B3 is SB3A= hB2A[H (y−w+w2)−H (y−
w)]. The sheltered area of A is then determined by As,A=

∫ w
0 max[SB1A, SB2A, SB3A] dy=

(w− 2w2)hB1A + 2w2hB2A.
Second, we consider roughness with staggered bimodal height distribution. The

interactions that need to be considered are sketched in figure 33(a). This time,
we need to calculate the sheltered area for both the lower-rising and higher-rising
elements separately. For the higher-rising elements A1, these could be sheltered by the
lower-rising roughness upstream B2 and by the higher-rising element further upstream
A3, as well as by the one that is diagonally upstream A2. One can notice that the
interactions among A1, A2 and A3 are quite like the interactions among the staggered
arrays. The interactions between B2, A1 and A2, B1, on the other hand, are just like
aligned cubes.

The flow sheltering in the canopy layer is sketched in figure 33(b). The sheltered
projected frontal area in the example sketched in figure 33 is Af ,s/AT = λf (hBw +
hs,Aw)/(hBw + hAw), where hA = hm + std(h), hB = hm − std(h), and hs,B and hs,A are
the heights of the sheltered areas for the low- and high-rising roughness respectively.
The height of the equivalent sheltered layer hs is then simply hs = (hs,A + hB)/2.

In general, the equivalent sheltered layer height is

hs=H

(
hs,A + hs,B

2
− hB

)
(hs,A+ hs,B− hB)+

[
1−H

(
hs,A + hs,B

2
− hB

)]
hs,A + hs,B

2
.

(A 1)
To determine hs,B and hs,A, the wake interaction among the roughness elements
needs to be considered. In general, the higher-roughness–higher-roughness, higher-
roughness–lower-roughness and lower-roughness–lower-roughness interactions need to
be considered, but since lower-roughness elements are separated by higher-roughness
ones, there is no need to consider lower-roughness–lower-roughness interactions. With
uτ/Uh known as a function of a, hs is expressed with a via (A 1). Equation (3.15)
can be then used to solve a. With a known, Uh, uτ , zo and d can again be solved
via (3.2) and (3.4)–(3.6).

For more complex cases, such as the example with a Gaussian distribution of
heights, the geometric calculations must be performed by a code. The method is
based on discretizing the upstream and downstream edges of the base of roughness
elements. A sketch is provided in figure 34. Because of the rectangular shape of
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Flow direction(a)

(b)

FIGURE 33. (a) Sketch of the interaction among roughness elements for roughness
of bimodal height distribution. Here, Ai, i = 1, 2, 3, are higher-rise roughnesses and
Bi, i = 1, 2, 3, are lower-rise roughnesses. (b) Sketch of the wake interaction among
roughness elements. In the case shown, the roughness of height hl is completely sheltered
from the wake behind the roughness of height hh and no sheltering occurs among the
higher-roughness elements. However, parts of the higher-roughness elements are sheltered
by the lower-roughness elements. Because the numbers of roughnesses of height hh and
roughnesses of height hl are the same, the equivalent sheltered layer height is given by
hs = (hs,A + hB)/2.

the roughness, only the base plane needs to be considered. First, for all rectangular
roughness elements, the windward faces are identified, i.e. their projection on the
ground, a segment of line. These lines will be called ‘receivers’ (because they receive
sheltering). The height h of the receiver element is associated with it in order to
make sure that sheltering does not go beyond the height of the sheltered roughness.
Second, we identify all leeward faces, and group their projections on the ground into
an ‘emitters’ set. We also keep track of their heights to calculate the sheltering height
to any downstream roughness element (if the downstream (receiver) element is δx
downstream, the sheltering height on the receiver segment is hs= h− δx tan(θ)). Both
receiver and emitter lines are discretized (here we use 100 points per line).

The task now is to loop through all points in each member of the ‘receivers’ set and
calculate how it is sheltered by each member in the set of ‘emitters’. To calculate how
a particular ‘emitter’ member S is sheltering a particular point P in a line that belongs
to the ‘receiver’ set, we take the minimum between the height of the volumetric
sheltering of S at P and the height of element P. This height is then compared among
sheltering by all ‘emitter’ members and the maximum value of the sheltering height
at P is the sheltering height at P. By doing this, the sheltering height for each of the
‘receiver points’ can be calculated and an integral of sheltering height at each point
across the receiver line leads to As.

For example, consider the point P in figure 34. Within the searching domain
(the domain enclosed by the dashed box which is 3hmaxUh/uτ upstream and on
both sides), there are four ‘sender’ members, 1–4. Element 2 cannot shelter P
because tan(θ2,P) > tan(θ2), where tan(θ2) is the wake expansion rate of roughness
2. Element 1 cannot shelter P because xP − xS1 > h1/tan(θ1), where xP and xS1
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P

FIGURE 34. A sketch of the rough wall with rectangular roughness elements. Each
element is indicated by a rectangle and given a number (from 1 to 6). The ‘senders’ are
highlighted with thick lines and the ‘receivers’ with thick dotted lines. The point P of
the ‘receiver’ of element 5 is under consideration. The domain to search for roughness
elements that could shelter P is enclosed by dashed lines. It is 3hmaxUh/uτ upstream and
on both sides. Here, hmax is the height of the highest roughness element. The sheltering
of the ‘senders’ within the search domain is indicated by thin solid lines.

are the streamwise coordinates of point P and the ‘sender’ of element 1. Both
elements 4 and 3 can shelter P. Their sheltering heights at P can be calculated:
S4,P=min[h4− (xP− xS4) tan(θ4), h5], S3,P=min[h3− (xP− xS3) tan(θ3), h5], where Si,P
is the sheltering from i to P, hi is the height of element i and i is 3, 4 or 5. The
sheltered height of P is hP =max[h4,P, h3,P].

Appendix B. Including surface friction drag for λf → 0

A conceptual difficulty occurs in the model for d as λf→ 0, namely that d does not
tend to 0. This difficulty arises because we assumed the bottom surface to be smooth,
and we have made the assumption of a fully rough flow regime in which friction
drag is entirely neglected. As λf → 0 viscous friction drag on the smooth portions
of the surface must become comparatively relevant. Therefore, we must consider
how the drag is partitioned between roughness elements and the underlying surface
(Raupach 1992).

We describe the contribution of the bottom surface and the top of the roughness
elements (i.e. the planform surfaces) to the overall momentum loss as coming from
either ‘unresolved roughness’ form drag or viscous drag on the bottom surface. We
assume that the hydrodynamic roughness height of that unresolved roughness, z′o, is
known a priori, or in the case of viscous drag it can be determined iteratively as
z′o = ν/uτ exp(−κB0) (where B0 = 5 is the usual offset of the smooth-wall log law
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and uτ is part of the solution). The force on the overall planform surface is modelled
as Fs = CsU2

hAT , with Cs = [κ/ ln(h/z′0)]2. Moreover, the force on the frontal surface
is modelled according to FR = CHDU2

hAf /2 = CRU2
hλf AT , with CR = CDH/2, valid for

low coverage fraction according to the derivation presented in § 3.2. Thus, the ratio
of forces is

Fs

FR
= 1
λfβ

, (B 1)

where β = CR/Cs = 2[κ/ln(h/z′0)]2/CDH , with CDH = 1.4 as before. This simple
estimate of the force or stress partition derivation is valid for low packing densities.
In fact, a similar estimate to (B 1) can be justified also for higher packing ratios since
then sheltering reduces both the numerator and the denominator in a similar fashion
(Raupach 1992). The momentum balance (3.2) is then augmented by considering
u2
τAT = FR(Fs/FR + 1)= FR(1+ βλf )/(βλf ), i.e.

u2
τAT = 1+ βλf

βλf

∫
Af

CdU2 dA. (B 2)

Equation (3.6) can also be corrected as

d= βλf

1+ βλf

∫
Af

CdU2z dA∫
Af

CdU2 dA
. (B 3)

Equations (3.4) and (3.5) remain unaffected provided that the corrected values of z0
and d are used.

For illustration purposes, consider for example that the underlying surface includes
an unresolved roughness with element height h′= 0.02h. The typical rule of thumb is
z′o∼ 0.06h′ (Grimmond & Oke 1999), leading to Cs= 0.00357. With CR= 1.4 the ratio
is, in this case, β= 196. The predictions of the model with drag partition correction in
this case are plotted in figures 15(b) and 16(b). It is observed that with this correction,
limλf→0 d= 0, limλf→0 zo = z′o, while this correction is negligible for packing densities
λf > 0.1 where the fully rough condition is more closely reproduced.
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