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Abstract. Let n € N and let F,, be the free group on n generators. Let w be an
arbitrary word in F,, and let o be an n-cycle in S,,. We consider groups of the type
['(n, w) = F,/N, where N is the normal closure in F, of the “cycled words” w, o(w),
a?(w), ...,o" !(w), and solve, by means of classical algebraic number theory, the
following problems.

A. When is T'(n, w)® infinite?

B. When is I'(n, w) a perfect group?

0. Introduction. Let n € N and let F, be the free group on the n symbols

Y1, ..., Y, For later purposes it is convenient to introduce extra “dummy symbols™
Y (k € Z), such that Y, = Y; wherever k = [(mod n). Now let o be a permutation of
{1,...,n}.

The map Y;— Y,; (1 <i<mn) extends uniquely to an automorphism of F,
which we shall also denote by o, so that o(Y;) = Yo (1 <i<n).
Now let w € F),, and let o, be the n-cycle (12...n). Groups of the type

F'n,w)y=<Y,....Y, | o,(w),...,o"%w) >

(1, w) ! | (W) (W) 0.1
= n/N,

where N is the normal closure in F, of o,(w), ..., ol(w), are called cyclically-pre-

sented, and have been studied by various authors-see e.g. [2,4,6,7,10,11]. This paper
addresses certain problems relating to the structure of the abelianization T'(n, w)™ of
the typical cyclically-presented I'(n, w). In particular we consider the following
questions.

PROBLEM A. When is T'(n, w)* infinite?
PROBLEM B. When is T'(n, w) a perfect group; i.e. when is T(n, w)* trivial?

There is a standard procedure (see e.g. [7,8]) which reduces these problems to
questions about ideals in the (commutative) group ring ZC,, where C, is cyclic of
order n. We now briefly describe this.

For g € F, let g be the image of g under the natural epimorphism F, — F®. If
W= Y ... Yo, with the ¢; in Z, we introduce the polynomial f(x) = f,,(x) =

Y ¥ € Z[x].

Jj<n

The action of C, =< 0, >C Aut(F,) on F, makes F,jb into a left ZC,-module,
and indeed F,fb =~ 7C, as left ZC,-modules. Moreover I'(n, W)"b is also a left ZC,-
module, and we have an isomorphism

https://doi.org/10.1017/50017089599950383 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089599950383

158 R. W. K. ODONI

T(n, w)* = 7C,/f(c,)ZC, 0.2)

both as left ZC,-modules, and as Z-modules (if we use additive notation for the
group law in T'(n, w)®).

As we show in §1, I'(n, w)® is infinite if and only if f(o,) is a zero-divisor in ZC,,
and T(n, w)® is trivial if and only if f(c,) is a unit in ZC,. (In slightly disguised
notation, these results appear in [7,8].)

Our first main result concerns the case where f(x) € Z[x] is fixed and n varies in N.
Since, for each n, we may find (several) w € F, yielding our given f via the above pro-
cedure, the following theorem yields some useful information about Problems A and B.

)ab

THEOREM 1. Let f(x) € Z[x], degf>1 with f irreducible. For neN let
C, =< 0, > be a cyclic group of order n. Then
(1) f(oy) is a zero-divisor in ZC,, if and only if f(x) = £®,,(x) for some m|n;
(ii) there are infinitely many n € N such that f(o0,) is a unit in ZC, if and only if
f(x) = £x or £®,,(x) for some m > 1 not a prime-power. In the latter case,
f(0y) is a unit if and only if m|gcd(m, n) > 1 and is not a prime-power.

REMARKS. (1) In the above, for m € N, ®,,(x) is the minimum polynomial for
Lm = €™/ over Q; ®,,(x) is monic in Z[x] of degree ¢(m), where ¢ is Euler’s totient
function.

(ii) Since Z[x] is a unique factorisation domain, the results of Theorem 1 can be
easily modified to cover the case where f(x) is not irreducible. One simply notes that
f(o,) is a zero-divisor if and only if g(o,,) is a zero-divisor for some irreducible factor
g(x) of f(x) in Z[x], while f(o,) is a unit if and only if g(o,) is a unit for every irre-
ducible factor g of f.

The remainder of the paper is devoted to the complete solution of Problems A
and B for the case in which f(x) = x’ — x + 1, where ¢ > 2 and n > 1 are arbitrary.
We prove the following result.

THEOREM 2. For t,n € N, with t > 2,
(i) ol —o,+1 is a zero-divisor in ZC, if and only if n=0(mod 6) and
t = 2(mod 6);

(i) for ged(n, 6) = 1, o — 0, + 1 is a unit in ZC, if and only if t = 1 or 2(mod n);

(iii) for ged(n, 6) > 1, 0}, — 0, + 1 is a unit in ZC, if and only if t = 1(mod n).

The principal ingredients in our proof of Theorem 2 are classical results on units
in Z[¢,,], mostly due to Kronecker and Kummer.

I am indebted to Professor J. Howie (Heriot-Watt University) for drawing my
attention to Problems A and B.

1. Preliminary results. We begin with some simple properties of QC, and ZC,
(n € N). We consider QC,, as a (-algebra of dimension n.

For A € QC, let L(A) be the @-linear map « —Ax on QC,. The eigenvalues in C
of L(o,) are the 6 with 8" = 1, and for g(x) € Q[x], the eigenvalues of L(g(o,)) are the
g(0), (8" = 1), so that

det L(g(on) = [ ] 2(6) € Q.

=1
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Now let f(x) € Z[x]. Then f(o,) is a zero-divisor in ZC, if and only if it is a zero-
divisor in QC,, if and only if det L(f(0,)) = 0, if and only if ] f(6) = 0.
=1
Now suppose that f(x) € Z[x] but det L(f(0,,)) # 0.
Let M = L(f(oy)); it is a non-singular (-linear map on QC,,, while M(ZC,) is a
Z-submodule of ZC, of rank n =rank ZC,. By “elementary divisor theory”,
M(ZC,) has Z-module index in ZC, equal to | det M| or, equivalently,

ZC,/f(0)ZC, = |det M| = | [ [ /(). (1.1)

gr=1

We also see from the above that, for f'e Z[x], ZC,/f(0,)ZC, is infinite if and
only if [] f(6) =0, if and only if f(c,) is a zero-divisor in ZC,. Also, by (1.1), f(0,,)
gr=1
is a unit in ZC, if and only if ] f(6) = £1.
or=1
To summarise, we put

R(N=T]/® ez ((x)ezlx). (1.2)

=1
Then we have proved the following result.

LemMmA 1.1. ZC,/f(0,)ZC,, is infinite if and only if R,(f) =0, and has order 1 if
and only if R,(f) = £1.

We now turn to standard classical results from algebraic number theory needed for
the proofs of Theorems 1 and 2. Reference [9] is a convenient source for most of these.

LEMMA 1.2. (Kronecker). Let 8 = By be an algebraic integer, and let By, ..., Bx
be the conjugates of B over Q. Suppose that max|p;| < 1. Then either
Bi=...=pB=0 (and then k = 1), or B is a root of unity.

For a proof see [9, p.46]

LeEMMA 1.3. Let m € N, K = Q(¢,,), where &, = €2™/™. The roots of unity in K are
precisely the ¢ (k € 2).

For a proof see [9, p. 170]

LEMMA 1.4. Let teN, t>2, and let f(x) =x"—x+ 1€ Z[x]. Then f has a
(complex) zero A of absolute value 1 if and only if t =2(mod 6), in which case
A = £

Proof. Suppose that f(,) =0, where A € C has x| = 1. Then f(1) =0 while
A=Ai"lHenceA'=Ar—landr"=1""—1,sothat I=AA "= -1A'=1)=
2—x—2"!and so A> = A+ 1 =0. Thus A = % while 0 # A’ = A — 1 = A%. Hence
172 = 1. Since ¢ has order 6 in C* we see that ¢ = 2(mod 6).

Conversely if = 2(mod 6), then A = +¢, satisfies A’ =A% and A’ — A+ 1=
A2 —1+1=0,so that f(x) = x' —x+ 1 has f(A) =0 and || = 1.
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2. Proof of Theorem 1. We begin with an elementary calculation of R,(f).

LEMMA 2.1. Let f(x) € Z[x], degf = k > 1, and suppose that f(x) = ¢ [[(x — B)) in
J=<k

Clx], where 0 # ¢ € Z. Then R,(f) of (1.2) equals (—1)*¢)" [T} — D).

J=k
Proof. RN =]] {c []e- ﬂj)}

=1 J<k

=TI Te-8)
0 J
=) T ]6i-o
j oo
— Cn(_l)nk H(ﬁjﬂ _ 1)

Jj<k

Now suppose that f(x) is irreducible in Z[x], of degree k > 1, and that
R,(f) = %1, for all n € Ny, an infinite subset of N.

If £ = 1 then it is clear from Lemma 2.1 that ¢ = %1 and that f(x) = £(x — 8;)
with B € Z, so that g —1 = =1, for all n e Ny;ie. B =0 or 2, for all n e N;. If
B1 # 0, then B =2, for infinitely many », which is impossible since ) € Z. Thus
B1 =0, and so f(x) = £x and R,(f) = £1, foralln e N.

We may now assume that k > 2. Put @ = |¢| > 1. Then there is an infinite subset
N, of Ny such that

d'[[B -D=¢ (¥neN), 2.1)

Jj<k

where ¢ is some fixed choice of £1. We partition {1, ...k} into three parts (some of
them possible empty); thus let

A= 1Bl <1}, =i 181 =1}, C = {j; 18] > 1}.

We put i = [] |8;], with the convention that empty products equal 1. We shall first
jeC
show that C = @. If this is false, then 4 > 1 and so ah > 1. We shall rule out the
latter case.
Suppose, aiming for a contradiction, that ah > 1, given (2.1). Letting n — oo
through N, we have

]‘[(ﬁ; — 1)~ (=1)* while ]‘[ B} — 1] ~ K",

Jjed jeC
Applying (2.1), we have

[118 =11~ @™, (22)

jeB
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as n — oo through N;. As ah > 1 we immediately see that B # ¢. Then there is some
d > 0 in R and an infinite subset N3 of N, such that, for some r € B, we have

1B — 1] <e™ (Yne Ny). (2.3)

By Gel’fond’s theorem [5, p. 28], (2.3) is impossible unless B, is a root of unity.
(Recall that the g; are algebraic numbers.) Let B, be a primitive root of unity of order
m € N. Then ®,,(x) | f(x) in Z[x]. As both are irreducible, we have f(x) = +®,,(x).
Hence a = |c| = 1 and |Bj| = 1 for all j < k = ¢(m). This forces C =0 and h =1, so
that ah = 1, a contradiction.

It follows that ah <1 in (2.1). Since @ = |c| > 1 we have h < 1. Hence (2.1)
implies that e =1, h=1 and C =@, so that §,..., f; are algebraic integers with
m%cx |8jl <1, while the B, are the conjugates of B;. Since k> 2 this forces
i<

f(x) = £®,,(x) with ¢(m) = k > 2 and so m > 3.

If m > 3 is a prime-power, then £, — 1 generates a maximal ideal P in Z[¢,,], and
then Lemma 2.1 shows that R,(f) € P, for all n € N, a contradiction.

Finally suppose that m > 3 is not a prime-power. Then ¢,, — 1 is a unit in Z[,],
since ®,,(1) = 1, while

R ==]]@r -0, (24)

reV

where V' = {r € Z; 0 < r < m, ged(r, m) = 1}. But, for r € V, ¢/ is a primitive root of
unity of order m* = m/ gcd(m, n), so that ¢ —1 is a non-unit in Z[¢,~] unless
m* > 1 is not a prime power. If the latter fails to hold, then R,(f) is a non-unit in
Z[¢,+] and so cannot be +1. To complete the proof of Theorem 1 we have

Rn(f) = :tNK/@(gZz - 1)v (25)

where N/ q is the norm from K = Q(¢g,) to @, and so R,(f) = :l:{NL/@(gm* — 1)}g,
where g € N and L = Q(&,,).

(Here, as before, m* = m/ gcd(m, n).)

In particular R,(f) = %1 if and only if ¢, — 1 is a unit in Z[¢,+], and this cer-
tainly holds if m* > 1 is not a prime-power.

3. Proof of Theorem 2. Let 1 € N, ¢t > 2. Throughout this section f(x) will be
x'—x+1eZ[x].

We first dispose of the question of when R,(f) = £1; i.e. when f(0,,) is a unit in
ZC,. The condition R,(f) = %1 is clearly equivalent to

f(¢y) 1s a unit in Z[g,], (Vd | n), 3.1

and this formulation turns out to be very fruitful.

LemMa 3.1. Let n € N, ged(n, 6) = 1. Then f(g,) is a unit in Z[g,) if and only if
t=1 or 2 (mod n).
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Proof. The “if”” part is easy. For ¢ = 1(mod n) we have f({,) =¢, — ¢, + 1 =1,
while if 7 = 2(mod n) then f(¢,) = &2 — ¢, + 1 and moreover f(6) = 6> — 6 + | when-
ever 8" = 1, so that by Lemma 2.1 we have

R,(f)== l—[ (A — 1) = +£1 (since ged(n, 6) = 1).

M=i—1

In particular f(¢,) is a unit in Z[¢,] if t = 1 or 2(mod n)).

Suppose, conversely, that ged(n, 6) = 1, and that f(¢,) is a unit. The case n = 1 is
trivial (since f(1) = 1 is a unit for any ¢ > 2).

We may now suppose that n > 5. Let A = f(¢,) be a unit in Z[¢,]. Then so is A?
for all 0 € G := Gal(Q(¢,)/Q). Let T be complex-conjugation in G.

Since G is abelian, we have

o

W) = pnou’ = (upt)’ =1,
for all o € G, where = A"A~! is a unit in Z[o,,].
By Lemma 1.2, u is a root of unity in @(¢,), and thus has the form :I:{fj(k e 7).
Since = A"A~! and A = f(¢,), we have
-t R =5 - o ), (3.2)
where ¢ = ¢, and s = +1.

Case 1: s = —1. We shall rule this out, by the following argument. By (3.2) we
have that

Wi+ wr+ w3+ ws =21+ 22+ 23 + 24, (3.3)

where wy = ¢ wo =1, w3 = w, =K 21 =¢71, 2o =5 and z3 = 24, = 0.

Applying to (3.3) the elements ¢(+—¢" of G = GalQ(¢)/Q for r=1,2,3,4
(recalling that ged(n, 6) = 1), we see that

dDowi=Y "z (1<r<4. (3.4)

Jj<4 Jj<4

The classical Newton-Waring identities connecting symmetric power-sums and

elementary symmetric functions yield from (3.4) that the sets {wj,...,wy} and
{z1, ..., z4} coincide. However 0 € {zy, ..., z4} but 0 &€ {wy, ..., ws}, a contradiction.
Hence the case s = —1 cannot occur. We are left with Case 2.

Case 2: s = 1. Then we have

wi+wr+ w3y =2z + 20+ z3, (3.5)

where wy = ¢, wy =1, wy = K 2y = 71, 2 = 2, 2y = R
This time we apply to (3.5) the elements {+—¢" of G (r = 1, 2, 3) and find that

{é.—t, 1, §k+1} _ {é.—l’ sl Ck}~
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In particular 1 = &+ or ¢X, the case ¢~! = 1 being ruled out since ¢ = ¢" and
n>51f 1 =¢* then {¢/, 1) = {7, ¥} so that 72 =1 =¢", (=2 =1 and
t=2(mod n). If 1 = ¢¥, then {¢, ¢} ={¢7",¢'}, and so ' = ¢ or ¢

If ¢ = ¢/, then ¢}’ = 1, and, as n is odd, ¢’ = 1, in which case {1, ¢} = {¢7', 1},
clearly false. Hence we have ¢’ = ¢ and thus ¢ = 1(mod #n). This proves the lemma.

Before we proceed further we note a further property of R,(g) for ne N,
g € Z[x]. It is clear from (1.2) that

R.(g) € Ra(®)Z[¢1] (3.6)

whenever d|n. In particular if R,(g) #0, the Ry(g) #0 and we have that
R,(2)/ Ri(g) € QnZ[¢,] = Z, so that Ry(g) divides R,(g) in Z.

LEMMA 3.2. Let p = 2 or 3 and let n be a power of p. Then R,(f) = %1 if and only
if t = 1(mod n).

Proof. (1) If t=1(mod n) we have ' —6+1=1 whenever " =1 and so
Ru(f) =

(ii) We now prove by induction on k > 0 that if n = p* and R,(f) = %1 then
t = 1(mod n). For k = 0 this is vacuously true. For k =1 we have R,(f) = H 1(6).

If p=2 we have R,(f) = Ro(f) =f()f (=) =f(-1) =2+ (1) = £1 if and only
if t = 1(mod 2); i.e. t = 1(mod n) as n = 2 here.

If p =3 we have R,(/) = Ry(/) = (&) (&) = f(&) (&) = | /(&) = 0 and
R3(f) = =£1 if and only if ¢§ — ¢3 + 1 is a unit in Z[¢3]. This happens if and only if
t = 1(mod 3), since the units in Z[¢3] are the powers of .

This covers the case k = 1. Now suppose that k£ > 1 and that R,(f) = £1 if and
only if 1 = 1(mod p*) holds whenever 0 < 5 < k.

Suppose that Ry (f) £ 1. Then by (3.1), we have Ry(f)= so that
t = 1(mod p¥) and 1 = 1 + ¢p¥(mod p**1), for some ¢ € Z. We must show that cepZ.
We put ¢ = {1 and 0 = {,,, and let N(...) be the norm map from Q(¢) to Q(w).

We have f(¢) = {H‘p — ¢+ 1=¢w = 1)+ 1, and, as Ryn(f) = %1, f(§) is a
unit in Z[¢].

Since the characterlstlc polynomial for ¢ over Q(w) is X7 — o we see that
N(f©)=1—-ow(1 - ")” is a unit in Z[w]. As p =2 or 3, (w) is Q or an imaginary
quadratic field, and so Lemma 1.3 implies that

1 —o(l — oY =sw"(s ==+1,m e 2). (3.7)
If p =2, (3.7) gives
T+ (1= (=19 =s(=1)" = £1, (3.8)
and if ¢ were odd, we would have 1 + 2% = 41, which is impossible, so that ¢ is even

and ¢t = 1(mod 21, as required., If p = 3, (3.8) gives

1= s =51 — 25 (3.9)

If ¢ €37, then m || 1 — ¢§ in Z[¢3], where 7 is the prime 1 — &3, so that = (right-
hand side of (3.9)) But the left-hand side of (39 isoneof 1£1,1+£¢ 0rl+ 53,
none of which is exactly divisible by Pl (since k> 1). Hence ¢ € 3Z and so
t = 1(mod 3K*1), as required.
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LEMMA 3.3. Let p > 5 be prime. Then
Ry, (f) = £l if and only if t = 1(mod 2p)

and
R;,(f) = %1 if and only if t = 1(mod 3p).

Proof. Let ¢ =2 or 3. If R,,(f) = %1, then R,(f) = %1, so that ¢ = 1(mod g).
Also R,(f)= =1, so that t+=1 or 2(mod p). If = 1(2modp), then we have
t = 1(mod pgq), as required, and, conversely, if 1 = I(mod pgq), then f(6) = 1 when-
ever 0¥ =1, so that R,,(f)=%1. It remains to eliminate the possibility that
t = 1(mod ¢g) and ¢ = 2(mod p). Suppose that these congruences hold, and the
R,,(f) = £1; then f(6) must be a unit in Z[¢,,] whenever 6”7 = 1. In particular, for
every b € Z, f(,¢h) = (¢ — §,)¢) + 1 must be a unit, and hence so is ¢ — &, + ¢,

Case q =2. We see that { —¢ —1 must be a unit in Z[g] Let
g(X)=X>—X—1.Then g(1) = —1 and g(gp) 1s a unit in Z[Z,]; hence so is g(¢7), for
all o € Gal(@(g“p)/ Q). In particular, by Lemma 2.1,

1"[ g(0) = 1 = (A = H(A; - 1), (3.10)

o=

where A; > A are the zeros (1 £ +/5) of g.
Now p > 5is odd and A, = —A7!, so that (\f — 1)(A5 — 1) must be 1, by (3.10).
But A; >3 and so

L= = DeE— D= 04— 10 +47) > (-1,

a contradiction. Hence if ¢ =2 we must have ¢ = I(mod pg) if R,,(f)= %1, as
required.

Case g = 3. This time we have ;“ - +§3 is a unit, for all » € Z. Taking
b =0, 1,2 and multiplying these units together we see that 1 + ({ - g“p)3 must be a
unlt in Z[g,). Let A =1—1¢,. Then )LZ[Q,] is a maximal 1dea1 P in Z[¢,], and
PP = pZ[t,), while N(P) = #Z12,)/P =

Now, by hypothesis § = 1 + (g‘ - Cp)3 is a unit in Z[¢,], while

§=1—1*(mod P%). (3/11)

Let 7 € Gal(Q(¢z,)/Q) be complex-conjugation. Then P* =P and A" =1 — ;;1 =
—¢, ' so that

8" = (1 + A*)(mod P*). (3.12)

However 8" = 5{38 (s = 1,k € Z), by Lemmas 1.2 and 1.3, so that s§ (1—21%) =
1 + 23(mod P*) and hence v;“ —1 e P, Since L = l(mod P) we have s = 1(mod P).
As 2¢P we have s=1, and ) 81—4'8 and g —1eP If k¢pZ we have
P | g“ —landso§" =4.Buté =1 +k3(mod P4 by (3.12) and (3.13). From §* = 8
we see that 2 € P, a contradiction.
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Thus there is no unit § satisfying (3.12) and, in particular 1 + (;“12, — g“p)3 cannot
be a unit in Z[§,]. Hence R3,(f) cannot be &1 unless t = 1(mod 3p), as required.

We can now complete the proof of Theorem 2.

Let n e N. If n = 1, we have R,(f) = Ri(f) =1, for all > 2, and there is noth-
ing more to prove. Now write n = ab, where a = 2"3%(r, s > 0) and gcd(6, b) = 1. We
may assume that n = ab > 1.

If a=1 we use Lemma 3.1. If b =1 and ¢ > 1 we have from R,(f) = %1 that
Ry (f) = £1, so that t = 1(mod2"), and also R3(f) = =1, so that = 1(mod 3*).
Hence ¢t = 1(mod a); i.e. t = 1(mod n).

Finally, suppose that a, 5 > 1. From R,(f) = +1, we have R,(f) = £1, so that
t = (mod a), by the above. Also R,(f) must be +1, so that =1 or 2(mod b).

We rule out the case r = 2(mod b) as follows. Since ¢ > 1 and b > 1, n has a
divisor of the type pg, where ¢ =2 or 3 and p > 5 is a prime divisor of b.

We must have R,,(f)= =£1; hence = 1(mod p), by Lemma 3.3. Certainly
t # 2(mod b).

Since for every n € N we certainly have R,(f) = £1 whenever ¢t = 1(mod n), the
proof of Theorem 2 is completed.

4. Concluding remarks. (a) In place of the Gel’fond-Baker results, one may use
“Skolem’s p-adic method” [3, p. 67, 228] to obtain Theorem 1. For general f the
latter approach has various advantages, since explicit p-adic bounds for the n with
R,(f) = %1 can be obtained from Strassmann’s theorem [3, p. 62].

(b) The polynomial f(X) = X’ — X + 1 was chosen in Theorem 2 since the cor-
responding groups I'(n, w) have attracted a good deal of attention (see the references
in §0). However it is clear that the methods used in proving Theorem 2 will give
useful information for more general f, particularly if f has small height. (If
S(X) = ¢ X, the height of fis deg(f) + Z|c¢;|.)
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