
SOME DIOPHANTINE PROBLEMS ARISING FROM THE
THEORY OF CYCLICALLY-PRESENTED GROUPS

R. W. K. ODONI
Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

(Received 30 March, 1995; revised 26 August, 1998)

Abstract. Let n 2 N and let Fn be the free group on n generators. Let w be an
arbitrary word in Fn, and let � be an n-cycle in Sn. We consider groups of the type
ÿ�n;w� � Fn=N, where N is the normal closure in Fn of the ``cycled words'' w, ��w�,
�2�w�; . . . ; �nÿ1�w�, and solve, by means of classical algebraic number theory, the
following problems.

A. When is ÿ�n;w�ab in®nite?
B. When is ÿ�n;w� a perfect group?

0. Introduction. Let n 2 N and let Fn be the free group on the n symbols
Y1; . . . ;Yn. For later purposes it is convenient to introduce extra ``dummy symbols''
Yk �k 2 Z�, such that Yk � Yl wherever k � l�mod n�. Now let � be a permutation of
1; . . . ; nf g.

The map Yi 7!ÿ Y��i� �1 � i � n� extends uniquely to an automorphism of Fn,
which we shall also denote by �, so that ��Yi� � Y��i� �1 � i � n�.

Now let w 2 Fn, and let �n be the n-cycle �12 . . . n�. Groups of the type

ÿ�n;w� �< Y1; . . . ;Yn j �n�w�; . . . ; �nn�w� >
� Fn=N;

�0:1�

where N is the normal closure in Fn of �n�w�; . . . ; �nn�w�, are called cyclically-pre-
sented, and have been studied by various authors-see e.g. [2,4,6,7,10,11]. This paper
addresses certain problems relating to the structure of the abelianization ÿ�n;w�ab of
the typical cyclically-presented ÿ�n;w�. In particular we consider the following
questions.

Problem A. When is ÿ�n;w�ab in®nite?

Problem B. When is ÿ�n;w� a perfect group; i.e. when is ÿ�n;w�ab trivial?

There is a standard procedure (see e.g. [7,8]) which reduces these problems to
questions about ideals in the (commutative) group ring ZCn, where Cn is cyclic of
order n. We now brie¯y describe this.

For g 2 Fn let �g be the image of g under the natural epimorphism Fn ! Fab
n . If

�w � �Ycc
0 . . . �Ycnÿ1

nÿ1 , with the ci in Z, we introduce the polynomial f�x� � fw�x� �P
j<n

cjx
j 2 Z�x�.

The action of Cn �< �n >� Aut�Fn� on Fn makes Fab
n into a left ZCn-module,

and indeed Fab
n � ZCn as left ZCn-modules. Moreover ÿ�n;w�ab is also a left ZCn-

module, and we have an isomorphism

Glasgow Math. J. 41 (1999) 157±165. # Glasgow Mathematical Journal Trust 1999. Printed in the United Kingdom

https://doi.org/10.1017/S0017089599950383 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599950383


ÿ�n;w�ab � ZCn=f��n�ZCn �0:2�

both as left ZCn-modules, and as Z-modules (if we use additive notation for the
group law in ÿ�n;w�ab�.

As we show in x1, ÿ�n;w�ab is in®nite if and only if f ��n� is a zero-divisor in ZCn,
and ÿ�n;w�ab is trivial if and only if f��n� is a unit in ZCn. (In slightly disguised
notation, these results appear in [7,8].)

Our ®rst main result concerns the case where f�x� 2 Z�x� is ®xed and n varies in N.
Since, for each n, we may ®nd (several) w 2 Fn yielding our given f via the above pro-
cedure, the following theorem yields some useful information about Problems A andB.

Theorem 1. Let f �x� 2 Z�x�, deg f � 1 with f irreducible. For n 2 N let
Cn �< �n > be a cyclic group of order n. Then

(i) f��n� is a zero-divisor in ZCn if and only if f�x� � ��m�x� for some mjn;
(ii) there are in®nitely many n 2 N such that f ��n� is a unit in ZCn if and only if

f�x� � �x or ��m�x� for some m > 1 not a prime-power. In the latter case,
f��n� is a unit if and only if mjgcd�m; n� > 1 and is not a prime-power.

Remarks. (i) In the above, for m 2 N;�m�x� is the minimum polynomial for
�m � e2�i=m over Q; �m�x� is monic in Z�x� of degree ��m�, where � is Euler's totient
function.

(ii) Since Z�x� is a unique factorisation domain, the results of Theorem 1 can be
easily modi®ed to cover the case where f�x� is not irreducible. One simply notes that
f��n� is a zero-divisor if and only if g��n� is a zero-divisor for some irreducible factor
g�x� of f�x� in Z�x�, while f��n� is a unit if and only if g��n� is a unit for every irre-
ducible factor g of f.

The remainder of the paper is devoted to the complete solution of Problems A
and B for the case in which f �x� � xt ÿ x� 1, where t � 2 and n � 1 are arbitrary.
We prove the following result.

Theorem 2. For t; n 2 N, with t � 2,
(i) �tn ÿ �n � 1 is a zero-divisor in ZCn if and only if n � 0�mod 6� and

t � 2�mod 6�;
(ii) for gcd�n; 6� � 1, �tn ÿ �n � 1 is a unit in ZCn if and only if t � 1 or 2�mod n�;
(iii) for gcd�n; 6� > 1, �tn ÿ �n � 1 is a unit in ZCn if and only if t � 1�mod n�.

The principal ingredients in our proof of Theorem 2 are classical results on units
in Z��m�, mostly due to Kronecker and Kummer.

I am indebted to Professor J. Howie (Heriot-Watt University) for drawing my
attention to Problems A and B.

1. Preliminary results. We begin with some simple properties of QCn and ZCn

�n 2 N�. We consider QCn as a Q-algebra of dimension n.
For � 2 QCn let L��� be the Q-linear map � 7!ÿ �� on QCn. The eigenvalues in C

of L��n� are the � with �n � 1, and for g�x� 2 Q�x�, the eigenvalues of L�g��n�� are the
g���, ��n � 1�, so that

detL�g��n�� �
Y
�n�1

g��� 2 Q:
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Now let f�x� 2 Z�x�. Then f��n� is a zero-divisor in ZCn if and only if it is a zero-
divisor in QCn, if and only if detL�f��n�� � 0, if and only if

Q
�n�1

f��� � 0.

Now suppose that f�x� 2 Z�x� but detL�f ��n�� 6� 0.
Let M � L�f ��n��; it is a non-singular Q-linear map on QCn, while M�ZCn� is a

Z-submodule of ZCn of rank n � rank ZCn. By ``elementary divisor theory'',
M�ZCn� has Z-module index in ZCn equal to j detMj or, equivalently,

ZCn=f��n�ZCn � j detMj � j
Y
�n�1

f ���j: �1:1�

We also see from the above that, for f 2 Z�x�, ZCn=f ��n�ZCn is in®nite if and
only if

Q
�n�1

f ��� � 0, if and only if f��n� is a zero-divisor in ZCn. Also, by (1.1), f��n�
is a unit in ZCn if and only if

Q
�n�1

f��� � �1.
To summarise, we put

Rn� f � �
Y
�n�1

f��� 2 Z �f �x� 2 Z�x��: �1:2�

Then we have proved the following result.

Lemma 1.1. ZCn=f��n�ZCn is in®nite if and only if Rn� f � � 0, and has order 1 if
and only if Rn� f � � �1.

We now turn to standard classical results from algebraic number theory needed for
the proofs of Theorems 1 and 2. Reference [9] is a convenient source for most of these.

Lemma 1.2. (Kronecker). Let � � �1 be an algebraic integer, and let �1; . . . ; �k
be the conjugates of � over Q. Suppose that max

j
j�jj � 1. Then either

�1 � . . . � �k � 0 (and then k � 1), or � is a root of unity.

For a proof see [9, p.46]

Lemma 1.3. Let m 2 N, K � Q��m�, where �m � e2�i=m. The roots of unity in K are
precisely the ��km�k 2 Z�.

For a proof see [9, p. 170]

Lemma 1.4. Let t 2 N, t � 2, and let f�x� � xt ÿ x� 1 2 Z�x�. Then f has a
(complex) zero � of absolute value 1 if and only if t � 2�mod 6�, in which case
� � ��6.

Proof. Suppose that f ��� � 0, where � 2 C has j�j � 1. Then f� ��� � 0 while
�� � �ÿ1. Hence �t � �ÿ 1 and �ÿt � �ÿ1 ÿ 1, so that 1 � �t�ÿt � ��ÿ 1���ÿ1 ÿ 1� �
2ÿ �ÿ �ÿ1, and so �2 ÿ �� 1 � 0. Thus � � ��6 while 0 6� �t � �ÿ 1 � �2. Hence
�tÿ2 � 1. Since ��6 has order 6 in C� we see that t � 2�mod 6�.

Conversely if t � 2�mod 6�, then � � ��6 satis®es �t � �2 and �t ÿ �� 1 �
�2 ÿ �� 1 � 0, so that f�x� � xt ÿ x� 1 has f��� � 0 and j�j � 1.
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2. Proof of Theorem 1. We begin with an elementary calculation of Rn� f �.

Lemma 2.1. Let f �x� 2 Z�x�, deg f � k � 1, and suppose that f �x� � c
Q
j�k
�xÿ �j� in

C�x�, where 0 6� c 2 Z. Then Rn� f � of (1.2) equals ��ÿ1�kc�n
Q
j�k
��nj ÿ 1�.

Proof. Rn� f � �
Y
�n�1

c
Y
j�k
�� ÿ �j�

( )

� cn
Y
�

Y
j

�� ÿ �j�

� cn�ÿ1�nk
Y
j

Y
�

��j ÿ ��

� cn�ÿ1�nk
Y
j�k
��nj ÿ 1�:

Now suppose that f�x� is irreducible in Z�x�, of degree k � 1, and that
Rn� f � � �1, for all n 2 N1, an in®nite subset of N.

If k � 1 then it is clear from Lemma 2.1 that c � �1 and that f �x� � ��xÿ �1�
with � 2 Z, so that �n1 ÿ 1 � �1, for all n 2 N1; i.e. �

n
1 � 0 or 2, for all n 2 N1. If

�1 6� 0, then �n1 � 2, for in®nitely many n, which is impossible since �1 2 Z. Thus
�1 � 0, and so f�x� � �x and Rn� f � � �1, for all n 2 N.

We may now assume that k � 2. Put a � jcj � 1. Then there is an in®nite subset
N2 of N1 such that

an
Y
j�k
��nj ÿ 1� � � �8n 2 N2�; �2:1�

where � is some ®xed choice of �1. We partition 1; . . . kf g into three parts (some of
them possible empty); thus let

A � j; j�jj < 1
� 	

; � � j; j�jj � 1
� 	

;C � j; j�jj > 1
� 	

:

We put h � Q
j2C
j�jj, with the convention that empty products equal 1. We shall ®rst

show that C � ;. If this is false, then h > 1 and so ah > 1. We shall rule out the
latter case.

Suppose, aiming for a contradiction, that ah > 1, given (2.1). Letting n!1
through N2 we haveY

j2A
��nj ÿ 1� � �ÿ1�A while

Y
j2C
j�nj ÿ 1j � hn:

Applying (2.1), we have Y
j2B
j�nj ÿ 1j � �ah�ÿn; �2:2�
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as n!1 through N2. As ah > 1 we immediately see that B 6� ;. Then there is some
d > 0 in R and an in®nite subset N3 of N2 such that, for some r 2 B, we have

j�nr ÿ 1j � eÿnd �8n 2 N3�: �2:3�

By Gel'fond's theorem [5, p. 28], (2.3) is impossible unless �r is a root of unity.
(Recall that the �j are algebraic numbers.) Let �r be a primitive root of unity of order
m 2 N. Then �m�x� j f �x� in Z�x�. As both are irreducible, we have f�x� � ��m�x�.
Hence a � jcj � 1 and j�jj � 1 for all j � k � ��m�. This forces C � ; and h � 1, so
that ah � 1, a contradiction.

It follows that ah � 1 in (2.1). Since a � jcj � 1 we have h � 1. Hence (2.1)
implies that a � 1, h � 1 and C � ;, so that �1; . . . ; �k are algebraic integers with
max
j�k
j�jj � 1, while the �j are the conjugates of �1. Since k � 2 this forces

f�x� � ��m�x� with ��m� � k � 2 and so m � 3.
If m � 3 is a prime-power, then �m ÿ 1 generates a maximal ideal P in Z��m�, and

then Lemma 2.1 shows that Rn� f � 2 P, for all n 2 N, a contradiction.
Finally suppose that m � 3 is not a prime-power. Then �m ÿ 1 is a unit in Z��m�,

since �m�1� � 1, while

Rn� f � � �
Y
r2V
��rnm ÿ 1�; �2:4�

where V � r 2 Z; 0 < r < m; gcd�r;m� � 1
� 	

. But, for r 2 V, �rnm is a primitive root of
unity of order m� � m= gcd�m; n�, so that �rmm ÿ 1 is a non-unit in Z��m� � unless
m� > 1 is not a prime power. If the latter fails to hold, then Rn� f � is a non-unit in
Z��m� � and so cannot be �1. To complete the proof of Theorem 1 we have

Rn� f � � �NK=Q��nm ÿ 1�; �2:5�

where NK=Q is the norm from K � Q��m� to Q, and so Rn� f � � � NL=Q��m� ÿ 1�� 	g
,

where g 2 N and L � Q��m� �:
(Here, as before, m� � m= gcd�m; n�.)
In particular Rn� f � � �1 if and only if �m� ÿ 1 is a unit in Z��m� �, and this cer-

tainly holds if m� > 1 is not a prime-power.

3. Proof of Theorem 2. Let t 2 N, t � 2. Throughout this section f�x� will be
xt ÿ x� 1 2 Z�x�.

We ®rst dispose of the question of when Rn� f � � �1; i.e. when f��n� is a unit in
ZCn. The condition Rn� f � � �1 is clearly equivalent to

f ��d� is a unit in Z��d�; �8d j n�; �3:1�

and this formulation turns out to be very fruitful.

Lemma 3.1. Let n 2 N, gcd�n; 6� � 1. Then f ��n� is a unit in Z��n� if and only if
t � 1 or 2 �mod n�.
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Proof. The ``if'' part is easy. For t � 1�mod n� we have f��n� � �tn ÿ �n � 1 � 1,
while if t � 2�mod n� then f��n� � �2n ÿ �n � 1 and moreover f��� � �2 ÿ � � 1 when-
ever �n � 1, so that by Lemma 2.1 we have

Rn� f � � �
Y

�2��ÿ1
��n ÿ 1� � �1 �since gcd�n; 6� � 1�:

In particular f��n� is a unit in Z��n� if t � 1 or 2�mod n��.
Suppose, conversely, that gcd�n; 6� � 1, and that f��n� is a unit. The case n � 1 is

trivial (since f �1� � 1 is a unit for any t � 2).
We may now suppose that n � 5. Let � � f��n� be a unit in Z��n�. Then so is ��

for all � 2 G :� Gal�Q��n�=Q�. Let � be complex-conjugation in G.
Since G is abelian, we have

j��j2 � ����� � ������ � 1;

for all � 2 G, where � � ���ÿ1 is a unit in Z��n�.
By Lemma 1.2, � is a root of unity in Q��n�, and thus has the form ��kn�k 2 Z�.
Since � � ���ÿ1 and � � f��n�, we have

�ÿt ÿ �ÿ1 � 1 � s�k��t ÿ � � 1�; �3:2�

where � � �n and s � �1.

Case 1: s � ÿ1. We shall rule this out, by the following argument. By (3.2) we
have that

w1 � w2 � w3 � w4 � z1 � z2 � z3 � z4; �3:3�

where w1 � �ÿt, w2 � 1, w3 � �k�t, wt � �k, z1 � �ÿ1, z2 � �k�1, and z3 � z4 � 0.
Applying to (3.3) the elements � 7!ÿ �r of G � GalQ���=Q for r � 1; 2; 3; 4

(recalling that gcd�n; 6� � 1), we see thatX
j�4

wr
j �

X
j�4

zrj �1 � r � 4�: �3:4�

The classical Newton-Waring identities connecting symmetric power-sums and
elementary symmetric functions yield from (3.4) that the sets w1; . . . ;w4f g and
z1; . . . ; z4f g coincide. However 0 2 z1; . . . ; z4f g but 0 62 w1; . . . ;w4f g, a contradiction.
Hence the case s � ÿ1 cannot occur. We are left with Case 2.

Case 2: s � 1. Then we have

w1 � w2 � w3 � z1 � z2 � z3; �3:5�

where w1 � �ÿt, w2 � 1, w3 � �k�1, z1 � �ÿ1, z2 � �k�2, z3 � �k.
This time we apply to (3.5) the elements � 7!ÿ �r of G �r � 1; 2; 3� and ®nd that

�ÿt; 1; �k�1
� 	 � �ÿ1; �k�t; �k

� 	
:
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In particular 1 � �k�t or �k, the case �ÿ1 � 1 being ruled out since � � �n and
n � 5. If 1 � �k�t, then �ÿt; �k�1

� 	 � �ÿ1; �k
� 	

so that �k�2 � 1 � �k�t, �tÿ2 � 1 and
t � 2�mod n�. If 1 � �k, then �ÿt; �

� 	 � �ÿ1; �t
� 	

, and so �t � �ÿt or �.
If �t � �ÿt, then �2tn � 1, and, as n is odd, �t � 1, in which case 1; �f g � �ÿ1; 1

� 	
,

clearly false. Hence we have �t � � and thus t � 1�mod n�. This proves the lemma.
Before we proceed further we note a further property of Rn�g� for n 2 N,

g 2 Z�x�. It is clear from (1.2) that

Rn�g� 2 Rd�g�Z��n� �3:6�

whenever d jn. In particular if Rn�g� 6� 0, the Rd�g� 6� 0 and we have that
Rn�g�= Rd�g� 2 Q\Z��n� � Z, so that Rd�g� divides Rn�g� in Z.

Lemma 3.2. Let p � 2 or 3 and let n be a power of p. Then Rn� f � � �1 if and only
if t � 1�mod n�.

Proof. (i) If t � 1�mod n� we have �t ÿ � � 1 � 1 whenever �n � 1 and so
Rn� f � � �1.

(ii) We now prove by induction on k � 0 that if n � pk and Rn� f � � �1 then
t � 1�mod n�. For k � 0 this is vacuously true. For k � 1 we have Rp� f � �

Q
�p�1

f���.
If p � 2 we have Rp� f � � R2� f � � f�1�f�ÿ1� � f�ÿ1� � 2� �ÿ1�t � �1 if and only
if t � 1�mod 2�; i.e. t � 1�mod n� as n � 2 here.

If p � 3 we have Rp� f � � R3� f � � f �1�f��3�f ��23� � f ��3�f� ��3� � j f��3�j2 � 0 and
R3� f � � �1 if and only if �t3 ÿ �3 � 1 is a unit in Z��3�. This happens if and only if
t � 1�mod 3�, since the units in Z��3� are the powers of �6.

This covers the case k � 1. Now suppose that k > 1 and that Rps� f � � �1 if and
only if t � 1�mod ps� holds whenever 0 � s � k.

Suppose that Rpk�1� f � � 1. Then by (3.1), we have Rpk � f � � �1, so that
t � 1�mod pk� and t � 1� cpk�mod pk�1�, for some c 2 Z. We must show that c 2 pZ.
We put � � �pk�1 and ! � �p, and let N�. . .� be the norm map from Q��� to Q�!�.

We have f ��� � �1�cpk ÿ � � 1 � ��wc ÿ 1� � 1, and, as Rpk�1� f � � �1, f��� is a
unit in Z���.

Since the characteristic polynomial for � over Q�!� is Xpk ÿ ! we see that
N� f���� � 1ÿ !�1ÿ !c�pk is a unit in Z�!�. As p � 2 or 3, Q�!� is Q or an imaginary
quadratic ®eld, and so Lemma 1.3 implies that

1ÿ !�1ÿ !c�pk � s!m�s � �1;m 2 Z�: �3:7�
If p � 2, (3.7) gives

1� �1ÿ �ÿ1�c�2k � s�ÿ1�m � �1; �3:8�
and if c were odd, we would have 1� 22

k � �1, which is impossible, so that c is even
and t � 1�mod 2k�1�, as required., If p � 3, (3.8) gives

1ÿ s�m3 � �3�1ÿ �c3�3
k

: �3:9�

If c 62 3Z, then � k 1ÿ �c3 in Z��3�, where � is the prime 1ÿ �3, so that �3
k k (right-

hand side of (3.9)) But the left-hand side of (3.9) is one of 1� 1, 1� �3 or 1� �23,
none of which is exactly divisible by �3

k

(since k � 1). Hence c 2 3Z and so
t � 1�mod 3k�1�, as required.
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Lemma 3.3. Let p � 5 be prime. Then

R2p � f � � �1 if and only if t � 1�mod 2p�
and

R3p � f � � �1 if and only if t � 1�mod 3p�:

Proof. Let q � 2 or 3. If Rpq� f � � �1, then Rq� f � � �1, so that t � 1�mod q�.
Also Rp� f � � �1, so that t � 1 or 2�mod p�. If t � 1�2modp�, then we have
t � 1�mod pq�, as required, and, conversely, if t � 1�mod pq�, then f��� � 1 when-
ever �pq � 1, so that Rpq� f � � �1. It remains to eliminate the possibility that
t � 1�mod q� and t � 2�mod p�. Suppose that these congruences hold, and the
Rpq� f � � �1; then f ��� must be a unit in Z��pq� whenever �pq � 1. In particular, for
every b 2 Z, f��p�bq� � ��2p ÿ �p��bq � 1 must be a unit, and hence so is �2p ÿ �p � �ÿbq .

Case q � 2. We see that �2p ÿ �p ÿ 1 must be a unit in Z��p�. Let
g�X� � X2 ÿ Xÿ 1. Then g�1� � ÿ1 and g��p� is a unit in Z��p�; hence so is g���p �, for
all � 2 Gal�Q��p�=Q�. In particular, by Lemma 2.1,Y

�p�1
g��� � �1 � ���p1 ÿ 1���p2 ÿ 1�; �3:10�

where �1 > �2 are the zeros
1
2 �1�

���
5
p � of g.

Now p � 5 is odd and �2 � ÿ�ÿ11 , so that ��p1 ÿ 1���p2 ÿ 1� must be 1, by (3.10).
But �1 >

3
2 and so

1 � ��p1 ÿ 1���p2 ÿ 1� � ��p1 ÿ 1�1� �ÿp1 � > 3
2

ÿ �5ÿ1;
a contradiction. Hence if q � 2 we must have t � 1�mod pq� if Rpq� f � � �1, as
required.

Case q � 3. This time we have �2p ÿ �p � �ÿb3 is a unit, for all b 2 Z. Taking
b � 0; 1; 2 and multiplying these units together we see that 1� ��2p ÿ �p�3 must be a
unit in Z��p�. Let � � 1ÿ �p. Then �Z��p� is a maximal ideal P in Z��p�, and
Ppÿ1 � pZ��p�, while N�P� � #Z��p�=P � p.

Now, by hypothesis � � 1� ��2p ÿ �p�3 is a unit in Z��p�, while

� � 1ÿ �3�mod P4�: �3=11�

Let � 2 Gal�Q��p�=Q� be complex-conjugation. Then P� � P and �� � 1ÿ �ÿ1p �
ÿ�ÿ1p � so that

�� � �1� �3��mod P4�: �3:12�

However �� � s�kp� �s � �1; k 2 Z�, by Lemmas 1.2 and 1.3, so that s�kp�1ÿ �3� �
1� �3�mod P4� and hence s�kp ÿ 1 2 P3. Since �p � 1�mod P� we have s � 1�mod P�.
As 2 62 P we have s � 1, and so �� � �kp� and �kp ÿ 1 2 P3. If k 62 pZ we have
P k �kp ÿ 1 and so �� � �. But �� � 1� �3�mod P4� by (3.12) and (3.13). From �� � �
we see that 2 2 P, a contradiction.
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Thus there is no unit � satisfying (3.12) and, in particular 1� ��2p ÿ �p�3 cannot
be a unit in Z��p�. Hence R3p� f � cannot be �1 unless t � 1�mod 3p�, as required.

We can now complete the proof of Theorem 2.
Let n 2 N. If n � 1, we have Rn� f � � R1� f � � 1, for all t � 2, and there is noth-

ing more to prove. Now write n � ab, where a � 2r3s�r; s � 0� and gcd�6; b� � 1. We
may assume that n � ab > 1.

If a � 1 we use Lemma 3.1. If b � 1 and a > 1 we have from Rn� f � � �1 that
R2r� f � � �1, so that t � 1�mod2r�, and also R3s � f � � �1, so that t � 1�mod 3s�.
Hence t � 1�mod a�; i.e. t � 1�mod n�.

Finally, suppose that a; b > 1. From Rn� f � � �1, we have Ra� f � � �1, so that
t � �mod a�, by the above. Also Rb� f � must be �1, so that t � 1 or 2�mod b�.

We rule out the case t � 2�mod b� as follows. Since a > 1 and b > 1, n has a
divisor of the type pq, where q � 2 or 3 and p � 5 is a prime divisor of b.

We must have Rpq� f � � �1; hence t � 1�mod p�, by Lemma 3.3. Certainly
t 6� 2�mod b�.

Since for every n 2 N we certainly have Rn� f � � �1 whenever t � 1�mod n�, the
proof of Theorem 2 is completed.

4. Concluding remarks. (a) In place of the Gel'fond-Baker results, one may use
``Skolem's p-adic method'' [3, p. 67, 228] to obtain Theorem 1. For general f the
latter approach has various advantages, since explicit p-adic bounds for the n with
Rn� f � � �1 can be obtained from Strassmann's theorem [3, p. 62].

(b) The polynomial f�X� � Xt ÿ X� 1 was chosen in Theorem 2 since the cor-
responding groups ÿ�n;w� have attracted a good deal of attention (see the references
in x0). However it is clear that the methods used in proving Theorem 2 will give
useful information for more general f, particularly if f has small height. (If
f�X� � �cjX

j, the height of f is deg� f � ��jcjj:�
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