THE PACKING OF SPHERES IN THE SPACE l_p by JANE A. C. BURLAK, R. A. RANKIN and A. P. ROBERTSON (Received 4th June, 1958)

1. Introduction. A point x in the real or complex space l_p is an infinite sequence $(x_1, x_2, x_3, ...)$ of real or complex numbers such that $\sum_{r=1}^{\infty} |x_r|^p$ is convergent. Here $p \ge 1$ and we write

$$||\mathbf{X}|| = \left\{\sum_{r=1}^{\infty} |x_r|^p\right\}^{1/p}.$$

The unit sphere S consists of all points $\mathbf{x} \in l_p$ for which $\|\mathbf{x}\| \leq 1$. The sphere of radius $a \geq 0$ and centre y is denoted by $S_a(\mathbf{y})$ and consists of all points $\mathbf{x} \in l_p$ such that $\|\mathbf{x} - \mathbf{y}\| \leq a$. The sphere $S_a(\mathbf{y})$ is contained in S if and only if $\|\mathbf{y}\| \leq 1 - a$, and the two spheres $S_a(\mathbf{y})$ and $S_a(\mathbf{z})$ do not overlap if and only if

$$\|\mathbf{y} - \mathbf{z}\| \ge 2a$$

The statement that a finite or infinite number of spheres $S_a(\mathbf{y})$ of fixed radius a can be packed in S means that each sphere $S_a(\mathbf{y})$ is contained in S and that no two such spheres overlap.

In a recent paper [3] the packing of spheres $S_a(\mathbf{y})$ in S was considered for the case p=2. It is the object of the present paper to extend this work to all $p \ge 1$. The results obtained are of a different character according as $p \le 2$ or p>2, and in the latter case are somewhat surprising.

We write

$$\lambda_p = \{1 + 2^{1-1/p}\}^{-1}, \quad \mu_p = \{1 + 2^{1/p}\}^{-1}.$$

Observe that $\lambda_2 = \mu_2$ and that $\lambda_p < \mu_p$ when p > 2. As usual, δ_{nr} is 1 or 0 according as n = r or $n \neq r$.

THEOREM 1. If $1 \le p \le 2$, an infinity of spheres $S_a(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \le \lambda_p$. If (i) $a \le \lambda_p$, the spheres may be centred at the points $\mathbf{y}_n = (y_{n1}, y_{n2}, y_{n3}, ...)$, where $y_{nr} = (1-a)\delta_{nr}$ $(n \ge 1, r \ge 1)$. If (ii) $\lambda_p < a \le 1$, the maximum number of spheres $S_a(\mathbf{y})$ which can be packed in S does not exceed $L_p(a)$, where $L_1(a) = 1$, and

$$L_{p}(a) = \left\{1 - \frac{1}{2} \left(\frac{1-a}{a}\right)^{p/(p-1)}\right\}^{-1} \quad (1$$

THEOREM 2. If p > 2, an infinity of spheres $S_a(\mathbf{y})$ of fixed radius a can be packed in S if and only if $a \leq \lambda_p$. If (i) $a \leq \lambda_p$, the spheres may be centred at the points $\mathbf{y}_n = (y_{n1}, y_{n2}, y_{n3}, ...)$, where $y_{nr} = (1-a)\delta_{nr}$ $(n \geq 1, r \geq 1)$. If (ii) $\lambda_p < a \leq \mu_p$, any finite number, no matter how large, of spheres $S_a(\mathbf{y})$ can be packed in S, but an infinite number cannot. If (iii) $\mu_p < a \leq 1$, the maximum number of spheres $S_a(\mathbf{y})$ which can be packed in S does not exceed

$$M_{p}(a) = \left\{1 - \frac{1}{2}\left(\frac{1-a}{a}\right)^{p}\right\}^{-1}.$$

2. The case $1 \le p \le 2$. Suppose that *m* spheres $S_a(\mathbf{y}_j)$ $(1 \le j \le m)$ can be packed in *S*, where $m \ge 1$, $a \le 1$. By a simple extension of Lemma 1 of [2] from *n*-dimensional Euclidean space to l_x , we find that

PACKING OF SPHERES IN l_p

$$\sum_{i=1}^{m} ||\mathbf{y}_{i}||^{p} \ge 2^{p-1} m^{2-p} (m-1)^{p-1} a^{p},$$

where the right-hand side denotes zero when m = p = 1. Hence, for at least one sphere $S_a(\mathbf{y}_j)$,

$$||\mathbf{y}_{i}|| \ge a \left\{ 2 \left(1 - \frac{1}{m}\right) \right\}^{1 - 1/2}$$

and so

If infinitely many spheres $S_a(\mathbf{y})$ can be packed in S it follows that $1 \ge a(1+2^{1-1/p})$; i.e. $a \le \lambda_p$.

If $\lambda_p < a \leq 1$ and 1 , we deduce from (1) that

$$\frac{1}{m} \ge 1 - \frac{1}{2} \left(\frac{1-a}{a}\right)^{p/(p-1)}$$

and, since the right-hand side is positive, $m \leq L_p(a)$. If p = 1, (1) shows that $m = 1 = L_1(a)$, because of the convention stated above; for otherwise we should have $a \leq \frac{1}{2} = \lambda_1$.

Finally, part (i) of Theorem 1 follows since, for $a \leq \lambda_p$ and $j \neq k$,

$$||\mathbf{y}_{j} - \mathbf{y}_{k}|| = 2^{1/p}(1-a) \ge 2a,$$

and $||\mathbf{y}_k|| = 1 - a$. Thus no two of the spheres $S_a(\mathbf{y}_k)$ overlap and they are all contained in S. This completes the proof of Theorem 1.

3. The case p>2. Suppose that m spheres $S_a(\mathbf{y}_j)$ $(1 \le j \le m)$ can be packed in S, where $m \ge 1, a \le 1$. By a simple extension of Lemma 2 of [1] (with $\beta = p, c_j = 1$), we find that

$$\sum_{j=1}^m ||\mathbf{y}_j||^p \ge 2(m-1)a^p,$$

so that, for at least one sphere $S_a(\mathbf{y}_i)$,

$$||\mathbf{y}_j|| \ge a \left\{ 2 \left(1 - \frac{1}{m}\right) \right\}^{1/p}.$$

Hence

$$1 \ge a + ||\mathbf{y}_j|| \ge a \left[1 + \left\{2\left(1 - \frac{1}{m}\right)\right\}^{1/p}\right],$$

from which we deduce that

$$\frac{1}{m} \ge 1 - \frac{1}{2} \left(\frac{1-a}{a}\right)^p. \tag{2}$$

The right-hand side of (2) is positive if $\mu_p < a \leq 1$, so that we then obtain $m \leq M_p(a)$, which proves part (iii) of Theorem 2.

Part (i) of Theorem 2 can be proved as in §2. To prove part (ii) we suppose that $\lambda_p < a \le \mu_p$ and take any positive integer m. For $1 \le j \le m$ and $n \ge 1$ put

$$y_{jn} = \varepsilon_{jn} 2^{(1-m)/p} (1-a) = \varepsilon_{jn} b \quad (n \leq 2^{m-1}), \quad y_{jn} = 0 \quad (n > 2^{m-1}),$$

where ε_{jn} is 1 or -1 according as the integral part of $(n-1)2^{j-m}$ is even or odd. Then

 $\mathbf{y}_j = (y_{j_1}, y_{j_2}, y_{j_3}, \dots) \in l_p$. For example, when m = 4 the first 8 components of $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ and \mathbf{y}_4 are as follows :

b	b	b	b	b	b	b	b
b	b	b	b	-b	- b	- b	- b
b	b	- b	- b	b	b	- b	- b
b	- b	b	-b	b	-b	b	- b

Clearly $\|\mathbf{y}_i\| = 1 - a$ for $1 \leq j \leq m$ and, for $1 \leq j < k \leq m$,

$$\|\mathbf{y}_{j} - \mathbf{y}_{k}\| = 2^{1-1/p}(1-a) \ge 2a,$$

so that the *m* spheres $S_a(\mathbf{y}_i)$ are packed in *S*. Since *m* can be any positive integer this proves part (ii).

It remains to prove that if an infinity of spheres $S_a(\mathbf{y})$ can be packed in S, then $a \leq \lambda_p$. We therefore suppose that the spheres $S_a(\mathbf{y}_n)$ (n=1, 2, 3, ...) can be packed in S, where $\mathbf{y}_n = (y_{n1}, y_{n2}, y_{n3}, ...)$. By considering each coordinate y_{nr} (r=1, 2, 3, ...) in turn, picking out convergent subsequences, and renumbering the spheres, we may suppose that, for each fixed $r \geq 1$, $y_{nr} \rightarrow y_r$, say, as $n \rightarrow \infty$.

Since, for every positive integer N and all $n \ge 1$,

$$\sum_{r=1}^{N} |y_{nr}|^{p} \leq ||\mathbf{y}_{n}||^{p} \leq (1-a)^{p},$$

we have

$$\sum_{r=1}^N |y_r|^p \leqslant (1-a)^p,$$

and it follows that $\mathbf{y} = (y_1, y_2, y_3, \dots) \in l_p$ and

$$\|\mathbf{y}\| \leq 1-a.$$

Now take any positive integer n and any $\varepsilon > 0$ and choose an integer N, depending on n and ε , such that

$$\sum_{r>N} |y_{nr}|^p < \varepsilon^p.$$

Then, for m > n, since $S_a(\mathbf{y}_m)$ and $S_a(\mathbf{y}_n)$ do not overlap,

$$(2a)^{p} \leq \sum_{r=1}^{\infty} |y_{mr} - y_{nr}|^{p}$$
(3)

Now by Minkowski's inequality,

$$\left\{\sum_{r>N} |y_{mr} - y_{nr}|^p\right\}^{1/p} \leq \left\{\sum_{r>N} |y_{mr}|^p\right\}^{1/p} + \left(\sum_{r>N} |y_{nr}|^p\right)^{1/p}$$
$$\leq (1-a) + \varepsilon.$$

Hence, by (4),

$$(2a)^p - (1-a+\varepsilon)^p \leqslant \sum_{r=1}^N |y_{mr} - y_{nr}|^p.$$

24

If we let $m \to \infty$ in this inequality, we obtain

$$(2a)^p - (1-a+\varepsilon)^p \leqslant \sum_{r=1}^N |y_r - y_{nr}|^p \leqslant \sum_{r=1}^\infty |y_r - y_{nr}|^p,$$

from which, since ε is arbitrary, we deduce that

We now apply to (5) an argument similar to that applied to (3). For any $\varepsilon > 0$, choose a positive integer N, depending on ε , such that

$$\sum_{r>N} |y_r|^p < \varepsilon^p.$$

In place of (4) we have

$$(2a)^{p} - (1-a)^{p} \leqslant \sum_{r=1}^{N} |y_{r} - y_{nr}|^{p} + \sum_{r>N} |y_{r} - y_{nr}|^{p}$$
$$\leqslant \sum_{r=1}^{N} |y_{r} - y_{nr}|^{p} + (1-a+\varepsilon)^{p}.$$

On letting $n \to \infty$ we get, since ε is arbitrary,

$$(2a)^p \leqslant 2(1-a)^p$$

which is equivalent to $a \leq \lambda_{a}$. This completes the proof of Theorem 2.

4. The case $p = \infty$. In this case S can be interpreted as the "cube" consisting of points $\mathbf{x} = (x_1, x_2, x_3, ...)$ for which $|x_r| \leq 1$ for r = 1, 2, 3, ..., and similarly for $S_a(\mathbf{y})$. It is clear that for $\frac{1}{2} < a \leq 1$, only one cube $S_a(\mathbf{y})$ can be packed in S, while, for $a \leq \frac{1}{2}$, infinitely many can; for we may take their centres at the points $(\pm \frac{1}{2}, \pm \frac{1}{2}, \pm \frac{1}{2}, ...)$.

REFERENCES

1. R. A. Rankin, On sums of powers of linear forms I, Ann. of Math., 50 (1949), 691-698.

2. R. A. Rankin, On sums of powers of linear forms II, Ann. of Math., 50 (1949), 699-704.

3. R. A. Rankin, On packings of spheres in Hilbert space, Proc. Glasgow Math. Assoc., 2 (1955), 145-146.

THE UNIVERSITY GLASGOW