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Degeneracy of 2-Forms and 3-Forms

L. M. Fehér, A. Némethi and R. Rimányi

Abstract. We study some global aspects of differential complex 2-forms and 3-forms on complex man-

ifolds. We compute the cohomology classes represented by the sets of points on a manifold where such

a form degenerates in various senses, together with other similar cohomological obstructions. Based

on these results and a formula for projective representations, we calculate the degree of the projec-

tivization of certain orbits of the representation Λk
C

n.

1 Introduction

1.1 2-Forms

Let ω be a generic complex differential 2-form on a complex manifold M. Then
we can stratify M according to the corank of ωx at x ∈ M by the subsets Si :=
{x ∈ M | corank ωx = i}, which are clearly empty when n − i is odd. Our goal is

the understanding of the cohomological obstructions to
⋃

i≥r Si = ∅, for any r. That
is, we want to describe the cohomological obstructions to the existence of a 2-form
which everywhere drops rank by less than r. This set of obstructions consists of those
cohomology classes which are “universally supported” [FP98, Ch. 4] on the locus

Sr . These classes form an ideal OΣ<r in the Chern classes of the manifold. They were
studied originally in [Pra88] in the context of polynomials universally supported on
skew-symmetric degeneracy loci, where a certain explicit description of the ideal was
given using Schur P-polynomials, see also [FP98, Ch. 4], [PR96]. In Theorem 3.1

we give another explicit description of this ideal, using Schur determinants and fewer
generators than in [Pra88].

To put the result of this theorem in context, let us suppose that ω is a non-
degenerate 2-form on an even dimensional manifold M, i.e., one for which S0 = M.
Then ω yields an isomorphism between TM and T∗M, so ci(TM) = ci(T∗M) =

(−1)ici(TM), that is ci(TM) = 0 for i odd. We will find that these classes generate
OΣ<1 . This is, of course, not surprising. The question is how it generalizes to greater r.
In Theorem 3.1 we will show that OΣ<r is generated by Schur polynomials in Chern
classes indexed by partitions of type odd > even > odd > · · · .
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1.2 3-Forms

Our goal is a similar analysis for 3-forms. If ω is a generic k-form on a complex
n-manifold M, then we can stratify M according to the orbits of the representation of
GLn(C) on Λ

k(Cn). It is known that this representation has finitely many orbits only
in the cases covered by 1.1 and in the (new) cases k = 3, n = 6, 7, 8.

For example, in the case of 3-forms on complex 6-manifolds there are 5 orbits
of the action of GL6(C) on Λ

3(C6): σ0, σ1, σ5, σ10 and σ20 (indices being the codi-

mensions of the orbits). The corresponding ideals have a large number of generators
which cannot be organized as nicely as in case 1.1. Notice also that in the geomet-
ric applications those homogeneous elements of the ideal whose degrees are higher
than the dimension of the manifold are not relevant. Therefore, for n = 6, we list

only those homogeneous generators of the obstruction ideals which have degree not
greater than 6. They appear only in the ideals σ0, σ0 ∪ σ1. The first ideal is thus
the collection of characteristic classes which are obstructions to the existence of a
3-form on a 6-manifold which is everywhere generic (these forms are called stable in

[Hit01]). The other ideal is the collection of obstructions to the existence of a 3-form
which is only “mildly” degenerate.

For n = 7 and n = 8, we compute the ideal of σ0 only. In the same spirit we
describe the obstructions to the existence of a complex Spin7 structure on complex
8-manifolds.

1.3 In both cases, the elements of the obstruction ideals have geometric meanings. The
most straightforward is the meaning of the least degree element, cf. Theorem 2.1(3).

These polynomials are called universal classes of degeneracy loci in algebraic geometry,
or Thom polynomials in singularity theory.

In the case of 2-forms, the least degree element of OΣ<r is the Poincaré dual or the
Thom polynomial of Sr . In this way, for 2-forms, we recover the results of [FR, HT84,
JLP81, Pra90].

The other elements of the obstruction ideal are called derived Thom polynomials

by Kazarian [Kaz97]. They also carry geometric meanings. In the case of 2-forms,

these interpretations are slightly artificial, and we do not discuss them here. But we
provide a geometric characterization of a higher degree element in the case k = 3
and n = 6 (Theorem 4.5 and Remark 4.6).

2 Review on Thom Polynomials and Obstruction Ideals of Group
Actions

In this section we review the notions of Thom polynomials and obstruction ideals
for group actions from [FR] (the theory of Thom polynomials is strongly motivated
by [Kaz97]).

Let G act on the vector space V with finitely many orbits.

If η is an invariant closed variety of V , one defines the Thom polynomial Tp(η)
of η as the Poincaré dual of the fundamental class of η in the equivariant cohomology
H∗

G(V ; Z).
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Similarly, let τ be a union of orbits, usually an open one. Then the obstruction
ideal Oτ ⊂ H∗

G(V ; Z) = H∗(BG; Z) of τ is defined as

Oτ = ker
(

H∗
G(V ; Z) → H∗

G(τ ; Z)
)

,

where the morphism is induced by the inclusion τ ⊂ V .

This “innocent” definition has many advantages. First of all, it is geometric: ele-
ments in this ideal restrict to 0 on τ , hence are supported on the complement of τ . In

particular, for a bundle whose structure group is G and fiber is V , the G-characteristic
classes from Oτ are obstructions to the existence of a section everywhere inside τ .
Second, this ideal in many cases is computable (cf. the first two parts of the next the-
orem) provided that one can identify the corresponding stabilizer subgroups. But, in

fact, the main point is that it contains all the information about Thom polynomials
(modulo a sign, see the last part of the next theorem), which are in general hardly
computable. This also explains the role of the next result.

Theorem 2.1

(1) If τ is an orbit, then Oτ = ker(H∗(BG; Z) → H∗(BGτ ; Z)), where Gτ is the stabi-

lizer (isotropy) subgroup of any point in τ ;

(2) if the orbit stratification of V satisfies the Euler condition (see below), then Oτ1∪τ2
=

Oτ1
∩ Oτ2

;

(3) If τ is the complement of the closure of an orbit η, then H<codim η(BG; Z) ∩ Oτ = 0
and Hcodim η(BG, Z) ∩ Oτ is generated by the Thom polynomial of η.

The stratification satisfies the Euler condition if the equivariant Euler class of any
orbit η is not a zero-divisor in H∗(BGη ; Z). This condition appeared in [AB83] as

a sufficient condition for G-perfectness. The Euler condition will hold for all the
representations we consider in this paper.

Theorem 2.1 shows that in order to carry out the calculations we need to deter-
mine the stabilizer subgroups only up to homotopy equivalence (e.g., we can work
with Un instead of GLn(C)).

3 Degeneracy of 2-Forms

In this section consider the representation Λ
2(Cn) of GLn := GLn(C). It is well known

that the orbits are characterized by the corank r, i.e., every 2-form can be identified
with one of the following matrices n−r

2
H ⊕ 0r×r , where H =

(

0 −1
1 0

)

. Let the orbit

with corank r be called Σ
r . Its codimension is

(

r
2

)

if r ≥ 2 and is 0 if r = 0 (n even)
or r = 1 (n odd).

Theorem 3.1 Let ∆λ denote the Schur polynomial associated with the partition λ as

in [FP98, (1.5)], evaluated at the universal Chern classes of BGLn, and let n − r be
even. Then, in H∗(BGLn; Q) one has

(1) OΣ<r = 〈∆ir−1,ir−2,...,i2,i1
|ir−1 > ir−2 > · · · > i1, iodd is odd, ieven is even〉;

(2) Tp(Σr) = ∆r−1,r−2,...,2,1, if r ≥ 2 (otherwise it is 1).
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Proof First we apply Theorem 2.1(1) for the orbit τ = Σ
s for some s with n − s

even. The stabilizer subgroup of a representative from Σ
s, e.g., the one given above,

is clearly Gs = Sp(n−s)/2 × GLs (modulo homotopy equivalence), with H∗BGs =

Z[pi , a j], where i = 1, . . . , (n−s)/2 is the index set of the characteristic (Pontryagin)
classes of Sp(n−s)/2 and j = 1, . . . , s of the Chern classes of GLs. Let us use the
convention c0 = a0 = p0 = 1. From the inclusion Gs ⊂ G := GLn we can also

read off the induced ring homomorphism H∗(BG) = Z[c1, . . . , cn] → H∗(BGs) =

Z[pi , a j]:

(1) ck 7→
(n−s)/2
∑

j=0

p jak−2 j .

It is convenient to codify this homomorphism in the form

n
∑

k=0

cktk
=

(

s
∑

i=0

ait
i
)(

(n−s)/2
∑

j=0

p jt
2 j

)

,

where t is a free variable. We shorten this into c(t) = a(t) · p(t). Obviously, one

can consider the morphism ϕ : Cs × C(n−s)/2 → Cn given by ((ai)
s
i=1, (p j)

(n−s)/2

j=1 ) 7→
(ck)n

k=1, where ck is given by (1) (and c0 = a0 = p0 = 1). Then ϕ induces a ho-

momorphism ϕ∗ : C[c] → C[a, p], which is the complexification of the previous
homomorphism H∗(BG) → H∗(BGs).

Let K be the kernel of ϕ∗, and I = In,s be the ideal in C[c] generated by the Schur
polynomials ∆is+1,is,...,i1

, where is+1 > is > · · · > i1, and iodd is odd, ieven is even. Our

first goal is to prove that K = I in C[c].

Step 1:
√

I = K.

If V (J) denotes the zero set of an ideal J, then clearly Im ϕ = V (K).
Let us analyze first

Im ϕ =
{

(c0, . . . , cn) : c0 = 1, c(t) = a(t)p(t)

for some a(t) and p(t) with a0 = p0 = 1
}

.

Eliminating p(t) from the equations c(t) = a(t)p(t) and c(−t) = a(−t)p(t), one

gets

(E) c(t)a(−t) = c(−t)a(t),

which is equivalent to the system of equations

(Sn,s) C · a = 0,

where C = Cn,s = (c2i− j)i=1,..., n+s

2
; j=1,...,s+1, and a = ((−1) j a j−1) j=1,...,s+1.

If the system (Sn,s) has a non-zero solution a, then clearly all the maximal minors
of C vanish. These minors are the Schur polynomial ∆is+1,...,i1

introduced above.
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Conversely, if all these minors vanish, then (Sn,s) has a solution a 6= 0, or equivalently,
(E) has a non-zero solution a(t). First we show that this solution a(t) can be replaced

by another solution a ′(t) of (E) which additionally satisfies a ′(0) 6= 0 (hence by
normalization a ′(0) = 1). Indeed, write a(t) = tm · a ′(t) with a ′(0) 6= 0 (since
a 6= 0, this is possible). Analyzing the coefficient of tm in (E), one gets that m is even.
Then dividing the equation (E) by tm, we get that a ′ itself satisfies (E). So, we replace

a by a ′.
Next, we verify that this new a(t) can be replaced by another solution a ′(t) of (E)

which has the property that p(t) := c(t)/a ′(t) is a polynomial. Set a∗(t) := a(−t).
Let d(t) be the greatest common divisor in C[t] of a(t) and a∗(t). Notice that 1±tα | a

if and only if 1 ∓ tα | a∗, hence d(t) ∈ C[t2]. Therefore, if a ′(t) := a(t)/d(t), then
a ′(t) satisfies (E) as well, a ′(0) 6= 0, and a ′(t) and a ′(−t) are relative prime. Then
from (E) one gets that a ′(t) | c(t)a ′(−t), hence a ′(t) | c(t). Take p(t) := c(t)/a ′(t),
then again (E) (applied for a ′) guarantees that p is an even polynomial. Let the degree

of p be 2l. In fact, it can happen that 2l > n − s. Set r := (2l − n + s)/2 and let q

be the product of r distinct factors of p of type 1 + αt2. Then replace the pair (a ′, p)
by (a ′q, p/q). Clearly, their product is still c(t), they have the right degrees, and the
second one is even.

In conclusion, for any c ∈ V (I), we can find (a, p) such that ϕ(a, p) = c. In other
words, Im ϕ = V (I). In particular, Im(ϕ) is closed and V (I) = V (K). Since K is
reduced, one gets

√
I = K. Moreover (since the source of ϕ is irreducible) we get

that
√

I is prime.

In fact, one can analyze very precisely the set ϕ−1(c) for any fixed c ∈ V (I): one
has to consider all the possible factorizations of the fixed c(t) in the form c(t) =

a(t)p(t) with the additional restrictions about the degrees of a and p, and p should
be even. Here there is some freedom to switch some of the roots of a and p, but

clearly ϕ−1(c) is finite for any c, e.g., ϕ−1(0) = (0, 0) (1 = c(t) = a(t)p(t) clearly
implies a(t) = p(t) = 1). Hence, ϕ is quasi-finite.1

Since ϕ is quasi-finite:

(2) codim(Im ϕ ⊂ C
n) = (n − s)/2.

Step 2:
√

I = I.
Consider the “general” matrix X with free variables (xi j)i=1,...,(n+s)/2; j+1,...,s+1. Let J

be the ideal generated by all the minors of X of rank s + 1. From [CDP80] one has:

codim(V (J) ⊂ C
(s+1)(s+n)/2) = (n − s)/2;(3)

J ⊂ C[xi j] is prime and C[xi j]/J is Cohen–Macaulay.(4)

Consider the space Cn (with coordinates ck) introduced in Step 1. Then

C
n ⊂ C

(s+1)(s+n)/2

1In fact, ϕ is (a) weighted homogeneous, (b) finite (which follows from (a) and ϕ−1(0) = 0), proper,
birational (isomorphism above the set of those c(t)’s of degree n, for which gcd(a, a∗) = 1); but we will
not need these facts.
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can be realized by (s+1)(s+n)/2−n hyperplane sections {Hα}. Equations (2) and (3)
guarantee that {Hα} is an M-sequence in C[xi j]/J. Hence, by the general theory of

Cohen–Macaulay rings, we get that C[x]/(J + C〈Hα〉) = C[c]/I is Cohen–Macaulay.
Since

√
I is prime, we get that I is a primary ideal associated with

√
I.

Since C[c]/I has no embedded components, the equality I =
√

I can be tested in
any point P ∈ V (I): If in a local ring C{ci − ci(P)}i=1,...,n one has IP =

√
IP, then

I =
√

I.
We will consider a special point P. First assume that n > s + 2. It is not difficult to

show that there exists a point P such that the matrix C evaluated at P has the following

property: if one deletes its last row and column, then the remaining matrix has rank s.
For example, if one takes for a(t) a polynomial (with a0 = 1) of degree s such that
a(t) and a(−t) have no common zeros, and p(t) ≡ 1, then c(t) = c(t)p(t) = a(t)
provides a point P ∈ V (I) with this property.

Now, we wish to analyze by induction (over n) the ideal In,s at the point P, and
conclude (In,s)P =

√

(In,s)P. Recall that In,s is the ideal generated by the (s + 1)-mi-
nors of Cn,s. We distinguish two types of minors. The first group consists of minors
which do not involve the last row. The ideal generated by them is denoted by I∗n,s ⊂
C[c1, . . . , cn]. The others are exactly those which involve the last row of Cn,s. Recall
that this last row has the form (0, . . . , 0, cn, cn−1).

We consider the ideal In,s + 〈cn〉 at P. Any minor of the second type, modulo
cn = 0, has the form cn−1 · δ, where δ is an s-minor of Cn,s not involving the last row

and column. At the point P, one of the minors δ is invertible (because of the choice
of P). Hence

(In,s + 〈cn〉)P = (I∗n,s + 〈cn, cn−1〉)P.

Notice that I∗n,s + 〈cn, cn−1〉 ⊂ C[c1, . . . , cn] can be identified with

In−2,s ⊂ C[c1, . . . , cn−2].

Now, we can conclude that (In,s)P =
√

(In,s)P by induction. Indeed, by the inductive
step, we can assume that (In,s + 〈cn〉)P is reduced. Notice that dim C[c]/In,s + 〈cn〉 =

dim C[c]/In,s −1, hence cn is not a zero divisor in (C[c]/In,s)P. This, and the fact that

(In,s + 〈cn〉)P is reduced, imply that (In,s)P itself is reduced.
In order to run the induction, we have to verify that if n = s + 2 then the Cohen–

Macaulay variety C[c]/Is+2,s is reduced. We proceed as above. We fix a point P such
that the determinant of the matrix obtained from C by deleting its last row and col-

umn is non-zero at P. Then clearly (I + 〈cn〉)P = 〈cn, cn−1〉, i.e., it is smooth. Since
dim C[c]/I + 〈cn〉 = dim C[c]/I − 1, one gets that IP is reduced.

In conclusion, I = K in C[c]. By standard argument, I = K over Q as well. In
other words (cf. Theorem 2.1(1)), one has:

OΣs = 〈∆is+1,is,...,i2,i1
| is+1 > is > · · · > i1; iodd is odd, ieven is even〉.

Clearly, if s1 > s2 then OΣs1 ⊂ OΣs2 , so according to Theorem 2.1(2), we have

OΣ<r =

⋂

s<r

OΣs = OΣr−2

= 〈∆ir−1,ir−2,...,i2,i1
| ir−1 > ir−2 > · · · > i1; iodd is odd, ieven is even〉.

https://doi.org/10.4153/CMB-2005-050-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-050-9


Degeneracy of 2-Forms and 3-Forms 553

The proof of the first statement is complete.

According to Theorem 2.1(3), the Thom polynomial of Σ
r is a least degree gen-

erator of the ideal just computed, i.e., it is a constant times ∆r−1,...,2,1. The constant
can be set by applying the so-called “principal equation” for Thom polynomials, see
[FR, Theorem 3.5]; details are left to the reader.

Corollary 3.2 Let ω be a generic 2-form on a complex manifold M with complex

cotangent bundle T∗M. Set ci := ci(T∗M). Then the cohomology class represented

by the set Sr of points x where ωx drops rank by at least r is ∆r−1,r−2,...,2,1. If any element

in the ideal above is not 0 then the set Sr can not be empty.

Remark 3.3 The second part of Theorem 3.1 has already been known, see [FR,
HT84, JLP81]. Another description of the ideal using Schur P-polynomials and more
generators was given in [Pra88], see also [PR96], [FP98, Ch.4].

4 Degeneracy of 3-Forms on 6-Manifolds

Now let us turn to the representation Λ
3(C6) of GL6 = GL6(C). The description of

the orbits were known by Segre; for a modern account see [Don77].

Theorem 4.1 Let e1, . . . , e6 form a basis of C6. The representation Λ
3(C6) of GL6 has 5

orbits σ0, σ1, σ5, σ10, σ20 (where the indices are the codimensions), with representatives

ω0 = e123 + e456, ω1 = e126 + e135 + e234, ω5 = e1 ∧ (e23 + e45),

ω10 = e123, ω20 = 0,

where ei j··· means ei ∧ e j ∧ · · · .

In order to apply Theorem 2.1, we need to know (at least up to embedded ho-

motopy equivalence) the stabilizer subgroups Gc (where c = 0, 1, 5, 10, 20) of these
representatives. The case ω0 is clarified in [Hit00], the other cases are standard (and
their verification is left to the reader). Below, S3 denotes the permutation group of
three elements.

Theorem 4.2 The following groups are (modulo embedded homotopy equivalence) the

stabilizer subgroups of the above representatives

(1) G0 = (SL3 × SL3) ⋊ Z2 [Hit00]. The two SL3’s act on e1, e2, e3 and e4, e5, e6

respectively, and Z2 interchanges these two C3’s.

(2) G1 = U 3
1 ⋊S3. For α, β, γ ∈ U 3

1 the action is via the diagonal matrices (α, β, γ, β̄γ̄,
γ̄ᾱ, ᾱβ̄). The symmetric group S3 permutes e1, e2, e3 and e4, e5, e6 simultaneously.

(3) G5 = U 2
1 × Sp2. For (α, β) ∈ U 2

1 the action is (α, ᾱ, 1, ᾱ, 1, β). Sp2 acts on the

e2, e3, e4, e5 the standard way.

(4) G10 = SL3 × GL3. The group SL3 acts on e1, e2, e3 and GL3 acts on the remaining

coordinates.

(5) G20 = GL6.
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Remark 4.3 One has the following test to check whether we found all the symme-
tries (cf. [AB83]). The orbit stratification of Λ

3(C6) induces a filtration of this vector

space, which yields a spectral sequence converging to H∗(BGL6). Since the stratifi-
cation is GL6-perfect, this spectral sequence degenerates at E

∗,∗
1 , hence we must have

(cf. also with [FR, Sect. 10]):

dim Hi(BGL6) =

∑

j∈{0,1,5,10,20}

dim Hi− j(BG j).

Now we have all the input to compute the obstruction ideals. In fact, as we already
explained in the introduction, we will consider only their truncation modulo all the

homogeneous generators of degree > 6. Notice that ≤ 6 degree generators appear
only in the cases σ0 and σ0 ∪ σ1 (because of Theorem 2.1(3), and the fact that the
degree of Tp(η) is the codimension of η).

Theorem 4.4 Using rational coefficients, the obstruction ideals of σ0 and σ0 ∪ σ1,

modulo terms of degree > 6, are the following:

(1) Oσ0
= 〈c1〉,

(2) Oσ0∪σ1
= 〈q5, q6〉, where q5 = c5

1 + c1c2
2 + 2c2

1c3 − 4c1c4 and q6 = c3
1c3 + c1c2c3 +

2c2
1c4 − c4

1c2 − 2c1c5 − c2
1c2

2 .

Proof The ideal Oσ0
is the kernel of the homomorphism H∗BGL6 → H∗BG0.

This homomorphism, according to the description above, is Q[c1, c2, c3, c4, c5, c6] →
Q[a2, a3, b2, b3], where

c1 7→ 0, c2 7→ a2 + b2, c3 7→ a3 + b3,

c4 7→ a2b2, c5 7→ a2b3 + a3b2, c6 7→ a3b3.

The kernel of this homomorphism is the ideal 〈c1, c2
3c4 − c2c3c5 + c2

5 + c2
2c6 − 4c4c6〉,

which proves the first statement. (Here and in other concrete algebraic calculations
we used the computer algebra package Macaulay2 [GS]). To prove the second state-
ment we need to intersect this ideal with the kernel of the map

Q[c1, c2, c3, c4, c5, c6] → Q[a, b, c]S3 ,

given by mapping ci to the i-th elementary symmetric polynomial of a, b, c,−b −
c,−c − a,−a − b. Computation shows that this intersection is generated by degree
5, 6, 7, 10 polynomials, the first two being q5 and q6.

Above we used rational coefficients because of the Z2 factor in the first stabilizer
group. The disadvantage of this fact is that the above theorem identifies the Thom
polynomials of σ̄1 and σ̄5 (as the least degree elements of corresponding obstruction
ideals, cf. Theorem 2.1) only as rational multiples of c1 and q5. But these rational

multiples can be determined using the so called “principal equation” of [FR, (3.5)]:
Tp(σ̄1) = 2c1, Tp(σ̄5) = q5.

The next theorem provides a geometric interpretation of the “derived Thom poly-
nomial” q6.
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Theorem 4.5 Let ω be a generic 3-form on a complex 6-manifold M. Then the set

S ⊂ M of points where ω is equivalent to the normal form ω5 (see above) is a smooth

Riemann surface. Then {v ∈ T∗
x M | x ∈ S, v ∧ ωx = 0} → S is a line bundle, whose

degree is q6(c(T∗M)).

Proof The bundle Λ
3(T∗M) has structure group GL6 over M. However, when we

restrict this bundle to S the structure group reduces to G5 = U 2
1 × Sp2, with different

characteristic classes. For instance, this restricted bundle has two degree 2 character-
istic classes a and b corresponding to the two copies of U1. Notice also that the next
orbit σ̄10 comes in codimension 10, hence the genericity of ω implies that only types
ωc, c = 0, 1, 5 can appear, and S is smooth. Therefore, we can consider the (Gysin)

push-forward of any linear combination of a and b. These will clearly be in the degree
6 part of Oσ0∪σ1

, i.e., in Q · c1q5 + Q · q6. (In fact, the spectral sequence, Remark 4.3,
shows that they will span it.)

So we need to compute i !a and i !b for i : BG5 ⊂ BGL6. We will use an extension
of the method of “restriction equations” of [FR] by restricting the equation i !a =

α · c1q5 +β ·q6 to BG5. If we use the notation H∗(Sp2) = Z[k, l]D4 (D4 is generated by

k ↔ −k, l ↔ −l, k ↔ l) then the Chern classes restrict to the elementary symmetric
polynomials of a, k−a,−k, l−a,−l, b. This gives the restriction of the left-hand side.
To compute the restriction of the right-hand side we determine the normal direction
of the orbit of ω5 at ω5: e246, e256, e346, e356, e456. So the left-hand side restricts to

i∗ i !1, a = a · i∗ i !1 = a ·e where e is the equivariant Euler class of the normal space to
ω5, i.e., e = (l+k−2a+b)(−l+k−a+b)(−k+l−a+b)(−k−l+b)(−a+b). If we write this
out, it is a system of linear equations in α and β with the only solution α = 0, β = 1.
So we obtain that i !a = q6. (Similarly we would obtain that i !b = c1q5 + q6.) Since

a is the first Chern class of the line bundle over S corresponding to the e1 direction,
and this e1 direction can be characterized as {v | v ∧ ω5 = 0}, the theorem follows.

Remark 4.6 (a) Theorem 4.5 shows geometrically that q6 is indeed in the ideal
Oσ0∪σ1

, just like q5, for which q5(c(T∗M)) = Poincaré dual([S]) ∈ H5(M). The extra
information in the description of the ideal is that these two generators are enough.

(b) At this point it is appropriate to explain/exemplify via q6 the meaning of “de-
rived Thom polynomial”. For this, consider a 6-manifold, for which the class q5 van-

ishes but the class q6 not. Then we obtain that for this manifold every 3-form must
have σ5-points, although the σ5-points represent a 0-homologous cycle, hence ho-
mologically cannot be detected. For more on derived Thom polynomials, see [SS99].

5 3-Forms on 7-Manifolds and 8-Manifolds

In this section we present some obstructions to the existence of certain forms on
7-manifolds and 8-manifolds. They fit naturally with the earlier results, and also
have some relevance in the theory of manifolds with special holonomy [Joy00].
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Stable 3-Forms on 7-Manifolds

The representation Λ
3(C7) of GL7 has finitely many orbits, in particular there is an

open orbit σ0. As a consequence, it makes sense to talk about 3-forms on a closed
7-manifold which are generic everywhere (stable 3-forms [Hit01]). In particular, the
elements of the obstruction ideal of σ0 (evaluated at the Chern classes of the complex
cotangent bundle) are obstructions to the existence of stable 3-forms on a complex

7-manifold M7.

Theorem 5.1 Using rational coefficients, the obstruction ideal of the open orbit of the

representation Λ
3(C7) of GL7 is Oσ0

= 〈c1, c3, c5, c7, c2
2 − 4c4〉.

Proof It is well known that the stabilizer subgroup of a generic 3-form on C7 is the
exceptional Lie group G2 × Z3 [Her83], where G2 acts by the representation with

highest weight 2·short root+long root, see [FH91, 22.3]. So the sought obstruction
ideal is the kernel of the map from Q[c1, c2, c3, c4, c5, c6, c7] to Q[a, b] mapping ci to
the i-th elementary symmetric polynomial of the roots of this representation, i.e., of
0, a,−a, b + a,−b − a, b + 2a,−b − 2a. The kernel is the ideal above.

Corollary 5.2 The elements of this ideal evaluated at the Chern classes of the cotangent

bundle of M7 are obstructions to the existence of a (complex) G2-structure on M7. (On

G2-structure on M7 we mean a reduction of the structure group of TM to G2.)

Stable 3-Forms on 8-Manifolds

There are finitely many orbits of the representation Λ
3(C8) of GL8, so there is an

open orbit here, too. The computation is as above with the only difference that we
need to use the adjoint representation corresponding to the root system A2. Since the

stabilizer subgroup, here PSL2, is not simply connected, we only get the result with
rational coefficients.

Theorem 5.3 Using rational coefficients the obstruction ideal of the open orbit of the

representation Λ
3(C8) of GL8 is Oσ0

= 〈c1, c3, c5, c7, c8, c2
2 − 4c4〉.

Spin7 Structure on Complex 8-Manifolds

The existence of a complex Spin7 structure on an 8-manifold M8 is equivalent to the
existence of a certain degenerated 4-form on M8 with stabilizer subgroup Spin7, see
[Joy, 1.3]. Here the representation of Spin7 is the one whose highest weight is the long
root of the root system B3. The weights of this representation are γ, β − γ, α − β +

γ,−α + γ and their opposites. So the obstruction ideal is the kernel of the map from
Z[c1, c2, c3, c4, c5, c6, c7, c8] to Z[α, β, γ] mapping ci to the i-th elementary symmetric
polynomial of the above 8 weights. So we obtain

Theorem 5.4 The obstruction ideal of the orbit of Ω0 of [Joy, 1.3] in the representation

Λ
4(C8) of GL8 is OΩ0

= 〈c1, c3, c5, c7, c4
2 − 8c2

2c4 + 16c2
4 − 64c8〉.
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Corollary 5.5 The elements of this ideal evaluated at the Chern classes of the cotangent

bundle of M8 are obstructions to the existence of a complex Spin7-structure on M8.

6 Projective Thom Polynomials and Degree Calculations

If a group G acts linearly on a vector space V then this action ρ induces an action
Pρ of G on the projective space PV . If the image of ρ contains the scalars then there

is a bijection between the orbits of Pρ and the non zero orbits of ρ. Assume that
η is an invariant subset of ρ with complex codimension d, and let Pη be the corre-
sponding invariant subset of Pρ. Then the projective Thom polynomial Tp(Pη) (i.e.,

the Poincaré dual of [Pη]) is an element in H2d
G (PV ; Z) ∼= H2d(BG; Z)[ξ]/

∏

ξ − βi ,
where βi are the weights of the representation ρ. In particular, Tp(Pη) can be written
as

∑

piξ
i for some pi ∈ H2(d−i)(BG; Z). It is easy to see that p0 is the “affine” Thom

polynomial Tp(η) and pd is the degree of the closure of Pη in PV :

(5) p0 = Tp(η), pd = deg(Pη).

In fact, one of the main applications of the projective Thom polynomial is that by
their help one can calculate the degree of certain varieties.

The above description suggests that (strangely enough) the projective Thom poly-

nomial formally contains more informations than the affine one. The main general
result of this section is that this is not the case: a simple substitution into the affine
Thom polynomial Tp(η) provides the projective Thom polynomial.

To state the result we need to give names to the generators of H∗(BG). Let

m : U n
1 → G be a (coordinatized) maximal torus of G and let αi are the correspond-

ing roots. Hence, by the Borel theorem (or splitting principle) Tp(η) is a polynomial
in the roots αi and Tp(Pη) is a polynomial in the roots αi and ξ. We assume that the
image of ρ contains the scalars, i.e., there is a homomorphism ϕ : GL1 → G and a

non zero integer q such that ρ ◦ ϕ(λ) = λqv for all v ∈ V , λ ∈ GL1. We assume that
Im m ⊃ Im ϕ|U1

so we have a homomorphism ϕ̃ : U1 → U n
1 such that ϕ|U1

= m ◦ ϕ̃.
The homomorphism ϕ̃ is necessarily of the form ϕ̃(t) = (tw1 , . . . , twn ) where t ∈ U1

and wi are integers. Notice that the choice of ϕ is not unique.

Theorem 6.1 Let ρ : G → GL(V ) be a representation of the Lie group G such that the

image of ρ contains the scalars. Let αi , q, wi be as above and let η be an invariant subset

of ρ. Then

Tp(Pη)(α1, . . . , αn, ξ) = Tp(η)(α1 +
w1

q
ξ, . . . , αn +

wn

q
ξ).

Proof The idea of the proof is that we relate the projective Thom polynomial to an
affine Thom polynomial for a different group. Let G̃ = GL × G and ρ̃ = hom(ρ1, ρ)

acting on hom(C,V ) (where ρ1 denotes the standard representation of GL1 on C).
Since hom(C,V ) is naturally isomorphic to V we can think G̃ acting on V . Moreover
the invariant subsets of ρ̃ are the same as of ρ. We have a map Q : H∗(BG̃; Z) →
H∗

G(PV ; Z) induced by the classifying map of the ρ̃-bundle hom(τ , BGV ) → BGPV .
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Here BG denotes the Borel construction, i.e., BGPV = EG×G PV , τ is the tautological
line bundle, and with some abuse of notation we denote by BGV the pull back of the

universal ρ-bundle. It is easy to see that H∗(BG̃; Z) ∼= H∗(BG; Z)[ξ] and Q is simply
the factorization with the relation

∏

ξ − βi .

Below TpH (respectively Tpρ) denotes the (affine or projective) Thom polynomial
associated with the action of the group H (via the representation ρ).

Using the above notations, one has:

Proposition 6.2 For any invariant subset η of ρ

Q(TpG̃(η)) = TpG(Pη).

Proof The bundle hom(τ , BGV ) has a canonical section σ, coming from the inclu-
sion of the fiber of the tautological bundle into the vector space V . The set of points
in BGPV where σ hits an η-point in the fiber can be identified with BGPη. Therefore,
the claim reduces to the definition of TpG(Pη).

Hence we can concentrate on calculating TpG̃(η). To do that we choose the maximal
torus of G̃ of the form m̃(t0, t1, . . . , tn) = (t0, m(t1, . . . , tn)). The key observation is
that restricted to these maximal tori the representation ρ̃ “almost” factors through ρ.
We define a homomorphism κ : U n+1

1 → U n
1 :

κ(t0, t1, . . . , tn) := (tw1

0 t
q
1 , . . . , twn

0 tq
n) = ϕ̃(t0)(t

q
1 , . . . , tq

n).

Then ρ ◦ κ(t0, t1, . . . , tn) = ρ(ϕ̃(t0)(t
q
1 , . . . , t

q
n)) = ρ(ϕ̃(t0)ρ(t

q
1 , . . . , t

q
n)) = (t0 ·

ρ(t1, . . . , tn))q
= (ρ̃ ◦ m̃(t0, t1, . . . , tn))q.

Now we use the following general fact:

Proposition 6.3 Let h : K → G be a homomorphism of Lie groups and σ := ρ ◦ h.

Then

(1) if η ⊂ V is ρ-invariant, then η is σ-invariant, too.

(2) Tpσ(η) = (Bh)∗ Tpρ(η) where Bh : BK → BG is induced by h.

Proposition 6.3 is an obvious consequence of the fact that the universal σ-bundle is

the pull back of the universal ρ-bundle via Bh (you may consider this as the definition
of Bh).

Applying Proposition 6.3 twice finishes the proof of Theorem 6.1. Indeed, first if
h = κ, then (Bh)∗(αi) = qαi + wiξ, then if h(x) = xq, then (Bh)∗(αi) = qαi .

Corollary 6.4 Let deg(Pη) be the degree of Pη in PV . Using the notation of Theo-

rem 6.1, one has:

deg(Pη) = Tp(η)(w1/q, . . . , wn/q).

In other words, knowing the Thom polynomial of an (affine) orbit, we can calculate the

degree of the projectivized orbit by substituting wi/q into the Chern roots.
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Example 6.5 Consider the action of GLn × GLp on Hom(Cn, Cp), given by (A, B) ·
X := BXA−1. Then orbits correspond to coranks. The projectivized orbit of corank r

matrices is exactly the so-called corank-r determinantal variety. The Thom polyno-
mial of Σ

r is given by the so-called Giambelli–Thom–Porteous formula, and one
can choose q = 1, wi = 0, 0, . . . , 0, 1, 1, . . . , 1 (or q = 1, wi = (−1,−1, . . . ,
−1, 0, 0, . . . , 0)). Thus our theorem recovers the formula for the degree of deter-

minantal varieties given in [Ful98, 14.4.14].

Example 6.6 All the Thom polynomial computations of this paper can be trans-
lated into degree calculations. In particular we can recover the calculations of [HT84]
(about an inaccuracy of that paper see [FP98, p.78]) for the degree of the degeneracy
loci S̄r . For simplicity, we provide the details only in the following two cases.

Proposition 6.7

(i) If n is even then the dual of the Grassmannian Gr2(Cn) in P(Λ2Cn) has codimen-

sion 1 and degree n/2 [Las81, Hol79].

(ii) If n is odd then the dual of the Grassmannian Gr2(Cn) in P(Λ2Cn) has codimen-

sion 3 and degree n(n + 1)(n − 1)/24 (for small values of n see [Hol79]).

Proof The cone over the Grassmannian (via the Plücker embedding) is the smallest
stratum, i.e., Σ

n−2, so the cone over its dual is the largest stratum, i.e., Σ
2 if n even

and Σ
3 if n is odd. The Thom polynomials of these are ∆1 = c1 and ∆2,1 = c1c2 − c3

respectively. Their degrees give the complex codimensions of the dual of the Grass-

mannians: 1 and 3 respectively. According to Corollary 6.4 we get the degrees if we
substitute 1/2 into the Chern roots. Hence if n is even then the degree is 1

2
+ · · · + 1

2

(n terms) = n/2, while if n is odd then degree is

det









(

n

2

)

1

4

(

n

3

)

1

8

1 n
1

2









= n(n + 1)(n − 1)/24.
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[Kaz97] M. É. Kazarian, Characteristic classes of singularity theory. In: The Arnold-Gelfand
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