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Abstract
This paper studies estimation of the conditional mean squared error of prediction, conditional on what is
known at the time of prediction. The particular problem considered is the assessment of actuarial reserving
methods given data in the form of run-off triangles (trapezoids), where the use of prediction assessment
based on out-of-sample performance is not an option. The prediction assessment principle advocated here
can be viewed as a generalisation of Akaike’s final prediction error. A direct application of this simple
principle in the setting of a data-generating process given in terms of a sequence of general linear models
yields an estimator of the conditional mean squared error of prediction that can be computed explicitly
for a wide range of models within this model class. Mack’s distribution-free chain ladder model and the
corresponding estimator of the prediction error for the ultimate claim amount are shown to be a special
case. It is demonstrated that the prediction assessment principle easily applies to quite different data-
generating processes and results in estimators that have been studied in the literature.

Keywords: Mean squared error of prediction; reserving methods; ultimate claim amount; claims development result; chain
ladder method

1. Introduction
Actuarial reserving amounts to forecasting future claim costs from incurred claims that the insurer
is unaware of and from claims known to the insurer that may lead to future claim costs. The
predictor commonly used is an expectation of future claim costs computed with respect to a para-
metric model, conditional on the currently observed data, where the unknown parameter vector
is replaced by a parameter estimator. A natural question is how to calculate an estimate of the con-
ditional mean squared error of prediction, MSEP, given the observed data, so that this estimate is
a fair assessment of the accuracy of the predictor. The main question is how the variability of the
predictor due to estimation error should be accounted for and quantified.

Mack’s seminal paper Mack (1993) addressed this question for the chain ladder reserving
method. Given a set of model assumptions, referred to as Mack’s distribution-free chain lad-
der model, Mack justified the use of the chain ladder reserve predictor and, more importantly,
provided an estimator of the conditional MSEP for the chain ladder predictor. Another signifi-
cant contribution to measuring variability in reserve estimation is the paper England and Verrall
(1999), which introduced bootstrap techniques to actuarial science. For more on other approaches
to assess the effect of estimation error in claims reserving, see, for example, Buchwalder et al.
(2006), Gisler (2006), Wüthrich and Merz (2008b), Röhr (2016), Diers et al. (2016) and the
references therein.
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Even though Mack (1993) provided an estimator of conditional MSEP for the chain ladder
predictor of the ultimate claim amount, the motivation for the approximations in the derivation
of the conditional MSEP estimator is somewhat opaque – something commented upon in, for
example, Buchwalder et al. (2006). Moreover, by inspecting the above references it is clear that
there is no general agreement on how estimation error should be accounted for when assessing
prediction error.

Many of the models underlying commonly encountered reserving methods, such as Mack’s
distribution-free chain ladder model, have an inherent conditional or autoregressive structure.
This conditional structure will make the observed data not only a basis for parameter estima-
tion, but also a basis for prediction. More precisely, expected future claim amounts are functions,
expressed in terms of observed claim amounts, of the unknown model parameters. These func-
tions form the basis for prediction. Predictors are obtained by replacing the unknown model
parameters by their estimators. In particular, the same data are used for the basis for prediction
and parameter estimation. In order to estimate prediction error in terms of conditional MSEP, it
is necessary to account for the fact that the parameter estimates differ from the unknown param-
eter values. As demonstrated in Mack (1993), not doing so will make the effect of estimation error
vanish in the conditional MSEP estimation.

We start by considering assessment of a prediction method without reference to a specific
model. Given a random variable X to be predicted and a predictor X̂, the conditional MSEP,
conditional on the available observations, is defined as

MSEPF0 (X, X̂) :=E
[
(X − X̂)2 |F0

]
(1)

=Var(X |F0)+E
[
(X̂ −E[X |F0])2 |F0

]
The variance term is usually referred to as the process variance and the expected value is
referred to as the estimation error. Notice that MSEPF0 (X, X̂) is the optimal predictor of the
squared prediction error (X − X̂)2 in the sense that it minimises E[((X − X̂)2 −V)2] over all
F0-measurable random variables V having finite variance. However, MSEPF0 (X, X̂) typically
depends on unknown parameters. In a time-series setting, we may consider a time series (St)
depending on an unknown parameter vector θ and the problem of assessing the accuracy of a pre-
dictor X̂ of X = St for some fixed t > 0 given that (St)t≤0 has been observed. The claims reserving
applications we have in mind are more involved and put severe restrictions on the amount of data
available for prediction assessment based on out-of-sample performance.

Typically, the predictor X̂ is taken as the plug-in estimator of the conditional expectation E[X |
F0]: if X has a probability distribution with a parameter vector θ , then we may write

h(θ ;F0) :=E[X |F0], X̂ := h(̂θ ;F0)

where z �→ h(z;F0) is anF0-measurable function and θ̂ is anF0-measurable estimator of θ . (Note
that this definition of a plug-in estimator, i.e. the estimator obtained by replacing an unknown
parameter θ with an estimator θ̂ of the parameter, is not to be confused with the so-called plug-in
principle, see e.g. Efron and Tibshirani (1994: Chapter 4.3), where the estimator is based on the
empirical distribution function.) Since the plug-in estimator of

E
[
(X̂ −E[X |F0])2 |F0

]= (h(̂θ ;F0)− h(θ ;F0))2 ≥ 0 (2)

is equal to 0, it is clear that the plug-in estimator of MSEPF0 (X, X̂) coincides with the plug-in
estimator of Var(X |F0),

MSEPF0 (X, X̂)(̂θ)=Var(X |F0)(̂θ)

which fails to account for estimation error and underestimates MSEPF0 (X, X̂). We emphasise
that MSEPF0 (X, X̂) and Var(X |F0) can be seen as functions of the unknown parameter θ and
MSEPF0 (X, X̂)(̂θ) and Var(X |F0)(̂θ) are to be interpreted as the functions

z �→MSEPF0 (X, X̂)(z) and z �→Var(X |F0)(z)
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evaluated at z = θ̂ . This notational convention will be used throughout the paper for other
quantities as well.

In the present paper, we suggest a simple general approach to estimate conditional MSEP. The
basis of this approach is as follows. Notice that (1) may be written as

MSEPF0 (X, X̂) :=E
[
(X − h(̂θ ;F0))2 |F0

]
whose plug-in estimator, as demonstrated above, is flawed. Consider a random variable θ̂

∗ such
that θ̂ ∗ and X are conditionally independent, given F0. Let

MSEP∗
F0

(X, X̂) :=E
[
(X − h(̂θ ∗;F0)2 |F0

]
=Var(X |F0)+E

[
(h(̂θ ∗;F0)− h(θ ;F0)2 |F0

]
.

The definition of MSEP∗
F0

(X, X̂) is about disentangling the basis of prediction z �→ h(z;F0) and
the parameter estimator θ̂ that together form the predictor X̂. Both are expressions in terms of
the available noisy data generatingF0, the “statistical basis” in the terminology of Norberg (1986).

The purpose of this paper is to demonstrate that a straightforward estimator of MSEP∗
F0

(X, X̂)
is a good estimator of MSEPF0 (X, X̂) that coincides with estimators that have been proposed in
the literature for specific models and methods, with Mack’s distribution-free chain ladder method
as the canonical example. If θ̂

∗ is chosen as θ̂
⊥, an independent copy of θ̂ , independent of F0,

thenMSEP∗
F0

(X, X̂) coincides with Akaike’s final prediction error (FPE) in the conditional setting;
see, for example, Remark 1 for details. Akaike’s FPE is a well-studied quantity used for model
selection in time-series analysis; see Akaike (1969), Akaike (1970), and further elaborations and
analysis in Bhansali andDownham (1977) and Speed and Yu (1993). θ̂ ∗ should be chosen to reflect
the variability of the parameter estimator θ̂ . Different choices of θ̂

∗ may be justified and we will
in particular consider choices that make the quantityMSEP∗

F0
(X, X̂) computationally tractable. In

Diers et al. (2016), “pseudo-estimators” are introduced as a key step in the analysis of prediction
error in the setting of the distribution-free chain ladder model. Upon identifying the vector of
“pseudo-estimators” with θ̂

∗, the approach in Diers et al. (2016) and the one presented in the
present paper coincide in the setting of the distribution-free chain ladder model. Moreover, the
approaches considered in Buchwalder et al. (2006) are compatible with the general approach of
the present paper for the special case of the distribution-free chain ladder model when assessing
the prediction error of the ultimate claim amount.

When considering so-called distribution-free models, that is, models only defined in terms of
a set of (conditional) moments, analytical calculation of MSEP∗

F0
(X, X̂) requires the first-order

approximation

h(̂θ ∗;F0)≈ h(θ ;F0)+ ∇h(θ ;F0)′(̂θ
∗ − θ)

where ∇h(θ ;F0) denotes the gradient of z �→ h(z;F0) evaluated at θ . However, this is the only
approximation needed. The use of this kind of linear approximation is very common in the lit-
erature analysing prediction error. For instance, it appears naturally in the error propagation
argument used for assessing prediction error in the setting of the distribution-free chain ladder
model in Röhr (2016), although the general approach taken in Röhr (2016) is different from the
one presented here.

Before proceeding with the general exposition, one can note that, as pointed out above, Akaike’s
original motivation for introducing FPEwas as a device formodel selection in autoregressive time-
seriesmodelling. In section 4, a class of conditional, autoregressive, reservingmodels is introduced
for which the question of model selection is relevant. This topic will not be pursued any further,
but it is worth noting that the techniques and methods discussed in the present paper allow for
“distribution-free” model selection.
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In section 2, we present in detail the general approach to estimation of conditionalMSEP briefly
summarised above. Moreover, in section 2, we illustrate how the approach applies to the situation
with run-off triangle-based reserving when we are interested in calculating conditional MSEP for
the ultimate claim amount and the claims development result (CDR). We emphasise the fact that
the conditional MSEP given by (1) is the standard (conditional) L2 distance between a random
variable and its predictor. The MSEP quantities considered inWüthrich et al. (2009) in the setting
of the distribution-free chain ladder model are not all conditional MSEP in the sense of (1).

In section 3, we put the quantities introduced in the general setting in section 2 in the specific
setting where data emerging during a particular time period (calendar year) form a diagonal in a
run-off triangle (trapezoid).

In section 4, development-year dynamics for the claim amounts are given by a sequence
of general linear models. Mack’s distribution-free chain ladder model is a special case but the
model structure is more general and include, for example, development-year dynamics given by
sequences of autoregressive models. Given the close connection between our proposed estima-
tor of conditional MSEP and Akaike’s FPE, our approach naturally lends itself to model selection
within a set of models.

In section 5, we show that we retrieve Mack’s famous conditional MSEP estimator for the ulti-
mate claim amount and demonstrate that our approach coincides with the approach in Diers et al.
(2016) to estimation of conditional MSEP for the ultimate claim amount for Mack’s distribution-
free chain ladder model. We also argue that conditional MSEP for the CDR is simply a special
case, choosing CDR as the random variable of interest instead of, for example, the ultimate claim
amount. In section 5, we show agreement with certain CDR expressions obtained in Wüthrich
et al. (2009) for the distribution-free chain ladder model, while noting that the estimation pro-
cedure is different from those used in, for example, Wüthrich et al. (2009) and Diers et al.
(2016).

AlthoughMack’s distribution-free chain ladder model and the associated estimators/predictors
provide canonical examples of the claim amount dynamics and estimators/predictors of the kind
considered in section 4, analysis of the chain ladder method is not the purpose of the present
paper. In section 6, we demonstrate that the general approach to estimation of conditional MSEP
presented here applies naturally to non-sequential models such as the overdispersed Poisson chain
ladder model. Moreover, for the overdispersed Poisson chain ladder model we derive a (semi-)
analytical MSEP-approximation which turns out to coincide with the well-known estimator from
Renshaw (1994).

2. Estimation of Conditional MSEP in a General Setting
Wewill now formalise the procedure briefly described in section 1. All random objects are defined
on a probability space (�,F , P). Let T = {t, t + 1, . . . , t} be an increasing sequence of integer
times with t < 0< t and 0 ∈ T representing current time. Let ((St , S⊥

t ))t∈T be a stochastic pro-
cess generating the relevant data. (St)t∈T and (S⊥

t )t∈T are independent and identically distributed
stochastic processes, where the former represents outcomes over time in the real world and the
latter represents outcomes in an imaginary parallel universe. Let (Ft)t∈T denote the filtration gen-
erated by (St)t∈T . It is assumed that the probability distribution of (St)t∈T is parametrised by an
unknown parameter vector θ . Consequently, the same applies to (S⊥

t )t∈T . The problem consid-
ered in this paper is the assessment of the accuracy of the prediction of a random variable X, that
may be expressed as some functional applied to (St)t∈T , given the currently available information
represented by F0. The natural object to consider as the basis for predicting X is

h(θ ;F0) :=E[X |F0] (3)
which is an F0-measurable function evaluated at θ . The corresponding predictor is then obtained
as the plug-in estimator

X̂ := h(̂θ ;F0) (4)
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where θ̂ is an F0-measurable estimator of θ . We define

MSEPF0 (X, X̂) :=E
[
(X − X̂)2 |F0

]
=Var(X |F0)+E

[
(X̂ −E[X |F0])2 |F0

]
and notice that

MSEPF0 (X, X̂)=Var(X |F0)+E
[
(h(̂θ ;F0)− h(θ ;F0))2 |F0

]
(5)

=Var(X |F0)(θ)+ (h(̂θ ;F0)− h(θ ;F0))2

We write

H(θ ;F0) :=MSEPF0 (X, X̂)

to emphasise that MSEPF0 (X, X̂) can be seen as an F0-measurable function of θ . Consequently,
the plug-in estimator of MSEPF0 (X, X̂) is given by

H(̂θ ;F0)=Var(X |F0)(̂θ)+ 0

which coincides with the plug-in estimator of the process variance leading to a likely underesti-
mation of MSEPF0 (X, X̂). This problem was highlighted already in Mack (1993) in the context of
prediction/reserving using the distribution-free chain ladder model. The analytical MSEP approx-
imation suggested for the chain ladder model in Mack (1993) is, in essence, based on replacing the
second term on the right-hand side in (5), relating to estimation error, by another term based on
certain conditional moments, conditioning on σ -fields strictly smaller thanF0. These conditional
moments are natural objects and straightforward to calculate due to the conditional structure of
the distribution-free chain ladder claim-amount dynamics. This approach to estimate conditional
MSEP was motivated heuristically as “average over as little as possible”; see Mack (1993: 219). In
the present paper, we present a conceptually clear approach to quantifying the variability due to
estimation error that is not model specific. The resulting conditional MSEP estimator for the ulti-
mate claim amount is found to coincide with that found in Mack (1993) for the distribution-free
chain laddermodel; see section 5. This is further illustrated by applying the same approach to non-
sequential, unconditional, models; see section 6, where it is shown that the introducedmethod can
provide an alternative motivation of the estimator from Renshaw (1994) for the overdispersed
Poisson chain ladder model.

With the aim of finding a suitable estimator of MSEPF0 (X, X̂), notice that the predictor
X̂ := h(̂θ ;F0) is obtained by evaluating the F0-measurable function z �→ h(z;F0) at θ̂ . The cho-
sen model and the stochastic quantity of interest, X, together form the function z �→ h(z;F0) that
is held fixed. This function may be referred to as the basis of prediction. However, the estimator
θ̂ is a random variable whose observed outcome may differ substantially from the unknown true
parameter value θ . In order to obtain a meaningful estimator of theMSEPF0 (X, X̂), the variability
in θ̂ should be taken into account. Towards this end, consider the random variable θ̂

∗ which is not
F0-measurable, which is constructed to share key properties with θ̂ . Based on X̂∗ := h(̂θ ∗;F0), we
will introduce versions of conditional MSEP from which estimators of conditional MSEP in (5)
will follow naturally.

Assumption 2.1. θ̂
∗ and X are conditionally independent, given F0.

Definition 2.1. DefineMSEP∗
F0

(X, X̂) by

MSEP∗
F0

(X, X̂) :=E[(X − h(̂θ ∗;F0))2 |F0]
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Definition 2.1 and Assumption 2.1 together immediately yield

MSEP∗
F0

(X, X̂)=Var(X |F0)(θ)+E[(h(̂θ ∗;F0)− h(θ ;F0))2 |F0]

In general, evaluation of the second term on the right-hand side above requires full knowledge
about the model. Typically, we want only to make weaker moment assumptions. The price paid is
the necessity to consider the approximation

h(̂θ ∗;F0)≈ h(θ ;F0)+ ∇h(θ ;F0)′(̂θ
∗ − θ)= : h∇ (̂θ ∗;F0)

where ∇h(θ ;F0) denotes the gradient of z �→ h(z;F0) evaluated at θ .
Notice that if E[ θ̂ ∗ |F0]= θ and Cov (̂θ ∗ |F0) exists finitely a.s., then

E[(h∇ (̂θ ∗;F0)− h(θ ;F0))2 |F0]= ∇h(θ ;F0)′E[(̂θ
∗ − θ)(̂θ ∗ − θ)′ |F0]∇h(θ ;F0)

= ∇h(θ ;F0)′ Cov (̂θ
∗ |F0)∇h(θ ;F0)

Assumption 2.2. E[ θ̂ ∗ |F0]= θ and Cov (̂θ ∗ |F0) exists finitely a.s.

Definition 2.2. DefineMSEP∗,∇
F0

(X, X̂) by

MSEP∗,∇
F0

(X, X̂) :=Var(X |F0)(θ)+ ∇h(θ ;F0)′ Cov (̂θ
∗ |F0)∇h(θ ;F0)

Notice that MSEP∗
F0

(X, X̂)=MSEP∗,∇
F0

(X, X̂) if h∇ (̂θ ∗;F0)= h(̂θ ∗;F0).

Remark 1. Akaike presented, in Akaike (1969, 1970), the quantity FPE (final prediction error) for
assessment of the accuracy of a predictor, intended for model selection by rewarding models that
give rise to small prediction errors. Akaike demonstrated the merits of FPE when used for order
selection among autoregressive processes.

Akaike’s FPE assumes a stochastic process (St)t∈T of interest and an independent copy (S⊥
t )t∈T

of that process. Let F0 be the σ -field generated by (St)t∈T ,t≤0 and let X be the result of applying
some functional to (St)t∈T such that X is not F0-measurable. If (St)t∈T is one-dimensional, then
X = St , for some t > 0, is a natural example. Let h(θ ;F0) :=E[X |F0] and let h(̂θ ;F0) be the
corresponding predictor of X based on the F0-measurable parameter estimator θ̂ . Let F⊥

0 , X⊥,
h(θ ;F⊥

0 ) and θ̂
⊥ be the corresponding quantities based on (S⊥

t )t∈T . FPE is defined as

FPE (X, X̂) :=E
[
(X⊥ − h(̂θ ;F⊥

0 ))2
]

and it is clear that the roles of (St)t∈T and (S⊥
t )t∈T may be interchanged to get

FPE (X, X̂)=E
[
(X⊥ − h(̂θ ;F⊥

0 ))2
]

=E
[
(X − h(̂θ⊥;F0))2

]
Naturally, we may consider the conditional version of FPE which gives

FPEF0 (X, X̂)=E
[
(X⊥ − h(̂θ ;F⊥

0 ))2 |F⊥
0
]

=E
[
(X − h(̂θ⊥;F0))2 |F0

]
Clearly, θ̂ ∗ = θ̂

⊥ gives

MSEP∗
F0

(X, X̂) :=E
[
(X − h(̂θ ∗;F0))2 |F0

]= FPEF0 (X, X̂)
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If h∇ (̂θ ∗;F0)= h(̂θ ∗;F0), then choosing θ̂
∗ = θ̂

⊥ gives

MSEP∗,∇
F0

(X, X̂) := Var(X |F0)(θ)+ ∇h(θ ;F0)′ Cov (̂θ
∗ |F0)∇h(θ ;F0)

= Var(X |F0)(θ)+ ∇h(θ ;F0)′ Cov (̂θ)∇h(θ ;F0)
= FPEF0 (X, X̂)

Since Cov (̂θ ∗ |F0) is an F0-measurable function of θ , we may write

MSEP∗,∇
F0

(X, X̂)=Var(X |F0)+ ∇h(θ ;F0)′�(θ ;F0)∇h(θ ;F0) (6)

where

�(θ ;F0) :=Cov (̂θ ∗ |F0)

We write

H∗(θ ;F0) :=MSEP∗
F0

(X, X̂), H∗,∇(θ ;F0) :=MSEP∗,∇
F0

(X, X̂)

to emphasise that MSEP∗
F0

(X, X̂) and MSEP∗,∇
F0

(X, X̂) are F0-measurable functions of θ .
The plug-in estimator H∗(̂θ ;F0) of MSEP∗

F0
(X, X̂) may appear to be a natural estimator of

MSEPF0 (X, X̂). However, in most situations there will not be sufficient statistical evidence to
motivate specifying the full distribution of θ̂

∗. Therefore,H∗(̂θ ;F0) is not likely to be an attractive
estimator of MSEPF0 (X, X̂). The plug-in estimator H∗,∇ (̂θ ;F0) of MSEP∗,∇

F0
(X, X̂) is more likely

to be a computable estimator ofMSEPF0 (X, X̂), requiring only the covariancematrix�(θ ;F0) :=
Cov (̂θ ∗ |F0) as a matrix-valued function of the parameter θ instead of the full distribution of θ̂

∗.
We will henceforth focus solely on the estimator H∗,∇ (̂θ ;F0).

Definition 2.3. The estimator of the conditional MSEP is given by

M̂SEPF0 (X, X̂) :=Var(X |F0)(̂θ)+ ∇h(̂θ ;F0)′�(̂θ ;F0)∇h(̂θ ;F0) (7)

We emphasise that the estimator we suggest in Definition 2.3 relies on one approximation and
onemodelling choice. The approximation refers to

h(z;F0)≈ h(θ ;F0)+ ∇h(θ ;F0)′(z − θ)

and no other approximations will appear. The modelling choice refers to deciding on how
the estimation error should be accounted for in terms of the conditional covariance structure
Cov (̂θ ∗ | F0), where θ̂

∗ satisfies the requirement E[ θ̂ ∗ |F0]= θ .
Before proceeding further with the specification of θ̂

∗, one can note that in many situations it
will be natural to structure data according to, for example, accident year. In these situations, it will
be possible to express X as X =∑i∈I Xi and consequently also h(θ ;F0)=∑i∈I hi(θ ;F0). This
immediately implies that the estimator (7) of conditional MSEP can be expressed in a way that
simplifies computations.

Lemma 2.1. Given that X =∑i∈I Xi and h(θ ;F0)=∑i∈I hi(θ ;F0), the estimator (7) takes the
form

M̂SEPF0 (X, X̂)=
∑
i∈I

M̂SEPF0 (Xi, X̂i)

+ 2
∑

i,j∈I ,i<j

(
Cov (Xi, Xj |F0)(̂θ)+Qi,j(̂θ ;F0)

)
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where
M̂SEPF0 (Xi, X̂i) :=Var(Xi |F0)(̂θ)+Qi,i(̂θ ;F0)

Qi,j(̂θ ;F0) := ∇hi(̂θ ;F0)′�(̂θ ;F0)∇hj(̂θ ;F0)

The proof of Lemma 2.1 follows from expanding the original quadratic form in the obvious
way; see Appendix C. Even though Lemma 2.1 is trivial, it will be used repeatedly in later sections
when the introduced methods are illustrated using, for example, different models for the data-
generating process.

Assumption 2.3. E[ θ̂]= θ and Cov (̂θ) exist finitely.

Given Assumption 2.3, one choice of θ̂
∗ is to choose θ̂

∗ as an independent copy θ̂
⊥, based

entirely on (S⊥
t )t∈τ , of θ̂ , independent of F0. An immediate consequence of this choice is

E[ θ̂ ∗ |F0]= θ , Cov (̂θ ∗ |F0)=Cov (̂θ)= :�(θ), θ̂
∗ := θ̂

⊥

Since the specification θ̂
∗ := θ̂

⊥ implies that Cov (̂θ ∗ |F0) does not depend onF0, we refer to θ̂
⊥

as the unconditional specification of θ̂
∗. In this case, as described in Remark 1, MSEP∗

F0
(X, X̂)

coincides with Akaike’s FPE in the conditional setting. Moreover,

M̂SEPF0 (X, X̂)=Var(X |F0)(̂θ)+ ∇h(̂θ ;F0)′�(̂θ)∇h(̂θ ;F0)
For somemodels for the data-generating process (St)t∈T , such as the conditional linear models

investigated in section 4, computation of the unconditional covariance matrix Cov (̂θ) is not fea-
sible. Moreover, it may be argued that observed data should be considered also in the specification
of θ̂

∗ although there is no statistical principle justifying this argument. The models investigated
in section 4 are such that θ = (θ1, . . . , θp) and there exist nested σ -fields G1 ⊆ . . . Gp ⊆F0 such
that E[ θ̂k | Gk]= θk for k= 1, . . . , p and θ̂k is Gk+1-measurable for k= 1, . . . , p− 1. The canon-
ical example of such a model within a claims reserving context is the distribution-free chain
ladder model from Mack (1993). Consequently, Cov (̂θ j, θ̂k | Gj, Gk)= 0 for j = k. If further the
covariance matrices Cov (̂θk | Gk) can be computed explicitly, as demonstrated in section 4, then
we may choose θ̂

∗ := θ̂
∗,c such that E[ θ̂∗

k |F0]=E[ θ̂k | Gk], Cov (̂θ∗
k |F0)=Cov (̂θk | Gk) for

k= 1, . . . , p and Cov (̂θ∗
j , θ̂

∗
k |F0)= 0 for j = k. These observations were used already in Mack’s

original derivation of the conditional MSEP; see Mack (1993). Since the specification θ̂
∗ := θ̂

∗,c

implies that Cov (̂θ ∗ |F0) depends on F0, we refer to θ̂
∗,c as the conditional specification of θ̂

∗.
In this case,

M̂SEPF0 (X, X̂)=Var(X |F0)(̂θ)+ ∇h(̂θ ;F0)′�(̂θ ;F0)∇h(̂θ ;F0)

Notice that if θ̂∗,u := θ̂
⊥ and θ̂

∗,c denote the unconditional and conditional specifications of θ̂
∗,

respectively, then covariance decomposition yields

Cov (̂θ∗,u
k |F0)=Cov (̂θk)

=E[Cov (̂θk | Gk)]+Cov (E[ θ̂k | Gk])
=E[Cov (̂θk | Gk)]
=E[Cov (̂θ∗,c

k |F0)]
Further, since

Cov (̂θ∗,u |F0)=E[Cov (̂θ∗,c |F0)] (8)

it directly follows that Cov (̂θ∗,c |F0) is an unbiased estimator of Cov (̂θ∗,u |F0).
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The estimators of conditional MSEP for the distribution-free chain ladder model given in
Buchwalder et al. (2006) and, more explicitly, in Diers et al. (2016) are essentially based on the
conditional specification of θ̂

∗. We refer to section 5 for details.

2.1 Selection of estimators of conditional MSEP
As noted in the Introduction, MSEPF0 (X, X̂) is the optimal predictor of the squared predic-
tion error (X − X̂)2 in the sense that it minimisesE[((X − X̂)2 −V)2] over allF0-measurable ran-
dom variables V having finite variance. Therefore, given a set of estimators V̂ of MSEPF0 (X, X̂),
the best estimator is the one minimising E[((X − X̂)2 − V̂)2]. Write V :=MSEPF0 (X, X̂) and
V̂ := V + �V and notice that

E[((X − X̂)2 − V̂)2]=Var((X − X̂)2)+E[(X − X̂)2]2 − 2E[(X − X̂)2(V + �V)]
+E[(V + �V)2]

Since
E[(X − X̂)2]=E[E[(X − X̂)2 |F0]]

=E[V]
E[(X − X̂)2�V]=E[E[(X − X̂)2�V |F0]]

=E[E[(X − X̂)2 |F0]�V]
=E[V�V]

we find that
E[((X − X̂)2 − V̂)2]=Var((X − X̂)2)+E[V]2 − 2

(
E[V2]+E[(X − X̂)2�V]

)
+E[V2]+E[�V2]+ 2E[V�V]

=Var((X − X̂)2)−Var(V)+E[�V2]
Recall from (5) that

V =Var(X |F0)+ (h(̂θ ;F0)− h(θ ;F0))2

and from (7) that
V̂ =Var(X |F0)(̂θ)+ ∇h(̂θ ;F0)′�(̂θ ;F0)∇h(̂θ ;F0)

Recall also that �(θ ;F0)=Cov (̂θ ∗ |F0) depends on the specification of θ̂
∗. Therefore, we

may in principle search for the optimal specification of θ̂
∗. However, it is unlikely that any spec-

ifications will enable explicit computation of E[�V2]. Moreover, for so-called distribution-free
models defined only in terms of certain (conditional) moments, the required moments appearing
in the computation of E[�V2] may be unspecified.

We may consider the approximations

V =MSEPF0 (X, X̂)≈Var(X |F0)+ ∇h(θ ;F0)′(̂θ − θ)(̂θ − θ)′∇h(θ ;F0)
V̂ ≈MSEPF0 (X, X̂)

∗,∇ =Var(X |F0)+ ∇h(θ ;F0)′�(θ ;F0)∇h(θ ;F0)
which yield

E[�V2]≈E

[(
∇h(θ ;F0)′

(
(̂θ − θ)(̂θ − θ)′ − �(θ ;F0)

)
∇h(θ ;F0)

)2]
Therefore, the specification of θ̂

∗ should be such that

• (̂θ − θ)(̂θ − θ)′ and �(θ ;F0) are close, and
• �(̂θ ;F0) is computable.
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Appendix D compares the two estimators of conditional MSEP based on unconditional and con-
ditional, respectively, specification of θ̂

∗, in the setting of Mack’s distribution-free chain ladder
model. No significant difference between the two estimators can be found. However, in the set-
ting of Mack’s distribution-free chain ladder model, only the estimator based on the conditional
specification of θ̂

∗ is computable.

3. Data in the Form of Run-off Triangles
One of the main objectives of this paper is the estimation of the precision of reserving methods
when the data in the form of run-off triangles (trapezoids), explained in the following, have condi-
tional development-year dynamics of a certain form. Mack’s chain ladder model, see, for example,
Mack (1993), will serve as the canonical example.

Let Ii,j denote the incremental claims payments during development year j ∈ {1, . . . , J} = :J
and from accidents during accident year i ∈ {i0, . . . , J} = : I , where i0 ≤ 1. This corresponds to the
indexation used in Mack (1993); that is, j= 1 corresponds to the payments that are made during
a particular accident year. Clearly, the standard terminology accident and development year used
here could refer to any other appropriate time unit. The observed payments as of today, at time 0,
is what is called a run-off triangle or run-off trapezoid:

D0 := {Ii,j : (i, j) ∈ I ×J , i+ j≤ J + 1}
and let F0 := σ (D0). Notice that accident years i≤ 1 are fully developed. Notice also that in the
often considered special case i0 = 1, the run-off trapezoid takes the form of a triangle. Instead of
incremental payments Ii,j, we may of course equivalently consider cumulative payments Ci,j :=∑j

k=1 Ii,k, noticing that F0 = σ ({Ci,j : (i, j) ∈ I ×J , i+ j≤ J + 1}).
The incremental payments that occur between (calendar) time t − 1 and t corresponds to the

following diagonal in the run-off triangle of incremental payments:

St = {Ii,j : (i, j) ∈ I ×J , i+ j= J + 1+ t}
Consequently the filtration (Ft)t∈T is given by

Ft = σ (Dt), Dt := {Ii,j : (i, j) ∈ I ×J , i+ j≤ J + 1+ t}
Let

Bk := {Ii,j : (i, j) ∈ I ×J , j≤ k, i+ j≤ J + 1}
that is, the subset of D0 corresponding to claim amounts up to and including development
year k, and notice that Gk := σ (Bk)⊂F0, k= 1, . . . , J, form an increasing sequence of σ -fields.
Conditional expectations and covariances with respect to these σ -fields appear naturally when
estimating conditional MSEP in the distribution-free chain ladder model, see Mack (1993), and
also in the more general setting considered here when θ̂

∗ is chosen according to the conditional
specification. We refer to section 4 for details.

3.1 Conditional MSEP for the ultimate claim amount
The outstanding claims reserve Ri for accident year i that is not yet fully developed, that is, the
future payments stemming from claims incurred during accident year i, and the total outstanding
claims reserve R are given by

Ri :=
J∑

j=J−i+2
Ii,j = Ci,J − Ci,J−i+1, R :=

J∑
i=2

Ri
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The ultimate claim amount Ui for accident year i that is not yet fully developed, that is, the future
and past payments stemming from claims incurred during accident year i, and the ultimate claim
amount U are given by

Ui :=
J∑

j=1
Ii,j = Ci,J , U :=

J∑
i=2

Ui

Similarly, the amount of paid claims Pi for accident year i that is not yet fully developed, that is,
the past payments stemming from claims incurred during accident year i, and the total amount of
paid claims P are given by

Pi :=
J−i+1∑
j=1

Ii,j = Ci,J−i+1, P :=
J∑

i=2
Pi

Obviously, Ui = Pi + Ri and U = P + R.
We are interested in calculating the conditional MSEP of U and we can start by noticing that if

the F0-measurable random variable P is added to the random variable R to be predicted, then the
same applies to its predictor: Û = P + R̂. Therefore,

MSEPF0 (U, Û)=MSEPF0 (R, R̂)
Further, in order to be able compute the conditional MSEP estimators from Definition 2.1, and in
particular the final plug-in estimator given by (7), we need to specify the basis of prediction, that
is, z �→ h(z;F0), which is given by

h(θ ;F0) :=E[U |F0]

as well as specify the choice of θ̂
∗. In sections 4–6, we discuss how this can be done for specific

models using Lemma 2.1.

3.2 Conditional MSEP for the CDR
In section 3.1, we described an approach for estimating the conditional MSEP for the ultimate
claim amount. Another quantity which has received considerable attention is the conditional
MSEP for the CDR, which is the difference between the ultimate claim amount predictor and
its update based on one more year of observations. For the chain ladder method, an estimator of
the variability of CDR is provided in Wüthrich and Merz (2008a). We will now describe how this
may be done consistently in terms of the general approach for estimating the conditional MSEP
described in section 2. As will be seen, there is no conceptual difference compared to the calcu-
lations for the ultimate claim amount – all steps will follow verbatim from section 2. For more
on the estimator in Wüthrich and Merz (2008a) for the distribution-free chain ladder model, see
section 5.

Let

CDR := h(0)(̂θ (0);F0)− h(1)(̂θ (1);F1)

where

h(0)(θ ;F0) :=E[U |F0], h(1)(θ ;F1) :=E[U |F1]

and θ̂
(0) and θ̂

(1) are F0- and F1-measurable estimators of θ , based on the observations at times
0 and 1, respectively. Hence, CDR is simply the difference between the predictor at time 0 of the
ultimate claim amount and that at time 1. Thus, given the above, it follows by choosing

h(θ ;F0) :=E[ CDR |F0]= h(0)(̂θ (0);F0)−E[h(1)(̂θ (1);F1) |F0]
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that we may again estimate MSEPF0 (CDR, ĈDR) using Definitions 2.1 and 2.2 – in particular we
may calculate the plug-in estimator given by (7). Note, from the definition of CDR, regardless of
the specification of θ̂

∗, that it directly follows that

MSEPF0 (CDR, ĈDR)

=MSEPF0

(
E[U |F1](̂θ

(1)),E[E[U |F1](̂θ
(1)) |F0](̂θ

(0))
)

=MSEPF0

(
h(1)(̂θ (1);F1),E[h(1)(̂θ

(1);F1) |F0](̂θ
(0))
)

(9)

where theF0-measurable term h(0)(̂θ (0);F0) cancels out when taking the difference between CDR
and ĈDR. Thus, from the above definition of h(θ ;F0), together with the definition of MSEP∗,
Definition 2.1, it is clear that the estimation error will only correspond to the effect of perturbing
θ in E[h(1)(̂θ (1);F1) |F0](θ). Moreover, the notion of conditional MSEP and the suggested esti-
mation procedure for the CDR is in complete analogy with that for the ultimate claim amount.
This estimation procedure is however different from the ones used in, for example, Wüthrich and
Merz (2008a), Wüthrich et al. (2009), Röhr (2016) and Diers et al. (2016) for the distribution-free
chain ladder model. For Mack’s distribution-free chain ladder model,

E[h(1)(̂θ (1);F1) |F0](̂θ
(0))= h(0)(̂θ (0);F0)

and therefore MSEPF0 (CDR, ĈDR)=MSEPF0 (CDR, 0). This is however not true in general for
other models. More details on CDR calculations for the distribution-free chain ladder model are
found in section 5.

Moreover, by introducing

h(k)(θ ;Fk) :=E[U |Fk]
we can, of course, repeat the above steps to obtain the conditional MSEP for the k-year CDR by
using the following definition:

CDR (k) := h(0)(̂θ (0);F0)− h(k)(̂θ (k);Fk)
together with the obvious changes.

Before ending this section, we want to stress that these CDR calculations are not the main
focus of this paper, but merely serve as an example which illustrates the versatility of the gen-
eral approach to estimation of conditional MSEP described in the present paper. In section 5
we will, as an illustration, provide more detailed conditional MSEP calculations for the ultimate
claim amount and 1-year CDR for the distribution-free chain ladder model. These calculations
are, again, based on using Lemma 2.1.

4. Dynamics in the Form of Sequential Conditional Linear Models
We will now describe how the theory introduced in section 2 applies to specific models. We will
first introduce a class of sequential conditional linear models to which the distribution-free chain
ladder model is a special case, but also contains more general autoregressive reserving models
investigated in, for example, Kremer (1984) and Lindholm et al. (2017). Since this class of models
has a natural conditional structure, it is interesting to discuss the specification of θ̂

∗ as being
either conditional or unconditional.

As concluded in section 2, the parameter estimator θ̂ and �(θ ;F0) are needed in order to
obtain a computable estimator of MSEPF0 (X, X̂) following (7). In the present section, we will
present rather general development-year dynamics for claim amounts that immediately give the
estimator θ̂ and we will discuss how θ̂

∗ can be specified which gives us �(θ ;F0).
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For the remainder of the current section, we will focus on the following development-year
dynamics for claim amounts:

Y j+1 =Ajβ j + σjDjej+1, j= 1, . . . , J − 1 (10)

Here Y j+1 is a |I| × 1 vector that may represent incremental or cumulative claim amounts, cor-
responding to either Y j+1 = (Ii,j+1)i∈I or Y j+1 = (Ci,j+1)i∈I , respectively, Aj is a |I| × pj matrix,
β j is a pj × 1 parameter vector, σj is a positive scalar parameter, Dj is a diagonal |I| × |I| matrix
with positive diagonal elements and ej+1 is a |I| × 1 vector. The canonical example of a reserv-
ing model which is a member of the model class (10) is the distribution-free chain ladder model,
where Y j+1 and Aj are vectors whose components are cumulative payments and Dj is a diagonal
matrix whose diagonal elements are the square roots of cumulative payments. The distribution-
free chain ladder model is discussed in detail in section 5, and for a full specification of Y j+1, Aj
and Dj, see (20). We assume that the random matrices Aj and Dj and the random vector ej+1
all have independent rows. This requirement ensures that claim amounts stemming from differ-
ent accident years are independent. Moreover, the components of ej+1 all have, conditional on Aj
and Dj, mean zero and variance one. Therefore, the same holds for the unconditional first two
moments:

E[ej+1,k]=E[E[ej+1,k |Aj,Dj]]= 0
E[e2j+1,k]=E[E[e2j+1,k |Aj,Dj]]= 1

Notice, however, that variables e2,k, . . . , eJ,k are not required to be independent. In fact if the
variables Y2,k, . . . , YJ,k are required to be positive, then e2,k, . . . , eJ,k cannot be independent. See
Remark 2 in section 5 for an example, and Mack et al. (2006) for further comments in the setting
of Mack’s distribution-free chain ladder model.

The development-year dynamics (10) with the above dimensions of Aj,Dj and ej+1 do not cor-
respond to the dynamics of data observed at time 0. For run-off triangle data, observations come
in the form of a diagonal. In particular, at time 0 only the first nj := J − j− i0 + 1 components of
Y j+1 are observed. The development-year dynamics of claim amounts that are observed at time 0
are therefore of the form

Ỹ j+1 = Ãjβ j + σjD̃j̃ej+1, j= 1, . . . , J − 1 (11)

where Ỹ j+1 is a nj × 1 vector, Ãj is a nj × pj matrix, D̃j is a diagonal nj × nj matrix and ẽj+1 is a nj ×
1. We will throughout assume that nj ≥ pj. Hence, we will in what follows consider a sequence of
conditional linear models where the dimension of the parameters is fixed whereas the dimension
of the random objects vary with the development year. Notice that Ỹ j+1, Ãj, D̃j and ẽj+1 are the
sub-vectors/matrices of Y j+1, Aj, Dj and ej+1 obtained by considering only the first nj rows. For
a full specification of Ỹ j+1, Ãj and D̃j in the setting of the distribution-free chain ladder model,
see (21).

Recall the following notation introduced in section 2

Bk := {Ii,j : (i, j) ∈ I ×J , j≤ k, i+ j≤ J + 1}
that is, the subset of D0 corresponding to claim amounts up to and including development year
k, Ãj and D̃j are both σ (Bj)-measurable with independent rows. Moreover, by the independence
between the rows in ej+1, the components of ẽj+1 all have, conditional on Ãj and D̃j, mean zero
and variance one. These observations form the basis of parameter estimation since it allows β j to
be estimated by the standard weighted least squares estimator from the theory of general linear
models:

β̂ j =
(
Ã′
j�̃

−1
j Ãj

)−1
Ã′
j�̃

−1
j Ỹ j+1, �̃j := D̃2

j (12)
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which is independent of σj. Notice in particular that

E
[
β̂ j | Ãj, �̃j

]=E
[
β̂ j | Bj

]= β j (13)

Moreover,

Cov
(
β̂ j | Bj

)= σ 2
j

(
Ã′
j�̃

−1
j Ãj

)−1
(14)

The estimator of the dispersion parameter σ 2
j is, for j= 1, . . . , J − 1, given by

σ̂ 2
j = 1

nj − pj
(Ỹ j+1 − Ãjβ̂ j)′�̃

−1
j (Ỹ j+1 − Ãjβ̂ j) (15)

given that nj − pj > 0, that is, given that i0 ≤ J − j− pj. If i0 = 1, then σ̂ 2
J−1 has to be defined by an

ad hoc choice. The weighted least squares estimator in (12) is the best linear unbiased estimator
of β j in the sense that, for any a ∈Rpj , β̂ j is such that a′β̂ j has minimum variance among all
unbiased linear estimators. Similarly the estimator in (15) is the best unbiased estimator of σ 2

j .
For further details on weighted (generalised) least squares, see, for example, Seber and Lee (2003:
section 3.10).

Basic properties of the estimators are presented next. The essential properties are that, for each
j, β̂ j is unbiased and, for j = k, β̂ j and β̂k are uncorrelated.

Proposition 4.1. For each j,

(i) E
[
β̂ j
]= β j and, for j = k, Cov

(
β̂ j, β̂k

)= 0;
(ii) E[ σ̂ 2

j | Bj]= σ 2
j given that i0 ≤ J − j− pj.

The proof of Proposition 4.1 is given in the Appendix C.
Recall that the overall aim is estimation of MSEPF0 (X, X̂), where X is a stochastic quantity of

interest, for example, the ultimate claim amount U or the CDR, whose distribution depends on
an unknown parameter θ . Here,

θ = (β , σ ), β := (β1, . . . , βJ−1), σ := (σ1, . . . , σJ−1)

Considering the similarities of the model considered here and general linear models, it is clear
that there are conditions ensuring that h(θ ;F0)=E[X |F0] depends on θ = (β , σ ) only through
β and not σ , for example, h(β ;F0)=E[U |F0]. In what follows we hence make the following
assumption:

Assumption 4.1. h((β , σ );F0)=E[X |F0] is independent of σ .

Assumption 4.1 is fulfilled by, for example, the distribution-free chain ladder model, see sec-
tion 5, as well as the models stated in Appendix A, which cover, for example, Kremer (1984) and
Lindholm et al. (2017).

Given Assumption 4.1, we write h(β ;F0) for h((β , z);F0) for an arbitrary z.
Recall from section 2 that MSEPF0 (X, X̂) is approximated by (6) which in turn has a

computable estimator (7). Under Assumption 4.1,

∇h(θ ;F0)′�(θ ;F0)∇h(θ ;F0)= ∇βh(β ;F0)′�(θ ;F0)∇βh(β ;F0)

and therefore (6) simplifies as follows:

MSEP∗,∇
F0

(X, X̂)=Var(X |F0)+ ∇βh(β ;F0)′�(θ ;F0)∇βh(β ;F0) (16)
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4.1 Specification of ̂θ
∗

Recall from section 2 that we introduced the two independent and identically distributed stochas-
tic processes (St)t∈T and (S⊥

t )t∈T , where the former is the one generating data that can be
observed. In the current setting, we have a parallel universe (another independent run-off triangle)
with development-year dynamics

Y⊥
j+1 =A⊥

j β j + σjD⊥
j e⊥j+1, j= 1, . . . , J − 1

If the unconditional specification of θ̂
∗ is chosen, that is, θ̂ ∗,u = θ̂

⊥, then

β̂
∗,u
j =

(
{Ã⊥

j }′{�̃⊥
j }−1Ã⊥

j

)−1{Ã⊥
j }′{�̃⊥

j }−1Ỹ⊥
j+1

= β j + σj
(
{Ã⊥

j }′{�̃⊥
j }−1Ã⊥

j

)−1{Ã⊥
j }′{D̃⊥

j }−1̃e⊥j+1

that is, simply the weighted least squares estimator applied to the data in the independent triangle
with identical features as the observable one. It follows directly from Proposition 4.1 that

Cov (β̂∗ |F0)=Cov (β̂)= �(β , σ ), β̂
∗ := β̂

∗,u

is a block-diagonal covariance matrix with blocks Cov (β̂ j) of dimension pj × pj. It is also clear
that these unconditional covariances Cov (β̂ j) are not possible to compute analytically.

On the other hand, if we specify θ̂
∗ conditionally, then

β̂
∗,c
j :=

(
Ã′
j�̃

−1
j Ãj

)−1
Ã′
j�̃

−1
j

(
Ãjβ j + σjD̃j̃e⊥j+1

)
= β j + σj

(
Ã′
j�̃

−1
j Ãj

)−1
Ã′
jD̃

−1
j ẽ⊥j+1

which is identical to β̂ j except that ẽ⊥j+1 appears instead of ẽj+1. Notice that this definition of β̂
∗
j

satisfies Assumption 2.1. Notice also that

Cov (β̂∗,c
j |F0)=Cov (β̂ j | Bj)= σ 2

j

(
Ã′
j�̃

−1
j Ãj

)−1

Hence,
Cov (β̂∗ |F0)= �(σ ;F0), β̂

∗ := β̂
∗,c

where

�(σ ;F0)=

⎡⎢⎢⎢⎢⎢⎢⎣
Cov (β̂1 | B1) 0 . . . 0

0
. . .

...
0 Cov (β̂J−1 | BJ−1)

⎤⎥⎥⎥⎥⎥⎥⎦
Further, in section 2, arguments were given for when the conditional specification of θ̂

∗ result-
ing in �(σ ;F0) may be seen as an unbiased estimator of �(β , σ ), given by the corresponding
unconditional θ̂

∗; (see (8). Within the class of models given by (10), this relation may be
strengthened: Proposition 4.2 tells us that �(σ̂ ;F0) is an unbiased estimator of Cov (β̂) and an
empirical estimator of Cov (β̂) based on a single claims trapezoid.

Proposition 4.2. E
[
�(σ̂ ;F0)

]=Cov
(
β̂
)
given that i0 ≤ J − j− pj for all j.

The proof of Proposition 4.2 is given in the appendix.
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Moreover, in Appendix B, we have collected a number of asymptotic results where it is shown
that, given suitable regularity conditions, Cov (β̂) and Cov (β̂ j | Bj) will converge to the same limit
as the number of accident years tends to infinity; see Proposition B.1. This implies that given a suf-
ficient amount of data the two views on estimation error will result in conditional MSEP estimates
that are close. In section 5, this is shown to be the case in an illustration based on real data.

5. Mack’s Distribution-Free Chain Ladder
The classical chain ladder reserving method is a prediction algorithm for predicting the ultimate
claim amount. In order to justify the use of this method and in order to measure the prediction
accuracy,Mack introduced (seeMack (1993)) conditions that should be satisfied by the underlying
model. The chain ladder method with Mack’s conditions is referred to as Mack’s distribution-free
chain ladder model. We will see that this setting is compatible with the development-year dynam-
ics (10) in section 4 and we will show in Proposition 5.1 that the estimator of MSEPF0 (U, Û)
from section 3.1 calculated according to Definition 2.3 coincides with the celebrated estimator of
MSEPF0 (U, Û) provided by Mack (see Mack (1993)).

In accordance with Mack’s distribution-free chain ladder model, assume that, for j=
1, . . . , J − 1, there exist constants fj > 0, called development factors, and constants σ 2

j ≥ 0 such
that

E
[
Ci,j+1 | Ci,j, . . . , Ci,1

]= fjCi,j (17)
Var(Ci,j+1 | Ci,j, . . . , Ci,1)= σ 2

j Ci,j (18)

where i= i0, . . . , J. Moreover, assume that
{Ci0,1, . . . , Ci0,J}, . . . , {CJ,1, . . . , CJ,J} are independent (19)

Notice that the claim amounts during the first development year Ii0,1, . . . , IJ,1 are independent but
not necessarily identically distributed.

Mack’s distribution-free chain ladder fits into the development-year dynamics (10) in section 4
as follows: for j= 1, . . . , J − 1, set pj = 1, β j = fj,

Y j+1 =

⎡⎢⎢⎢⎢⎢⎣
Ci0,j+1

Ci0+1,j+1
...
CJ,j+1

⎤⎥⎥⎥⎥⎥⎦ , Aj =

⎡⎢⎢⎢⎢⎢⎣
Ci0,j

Ci0+1,j
...
CJ,j

⎤⎥⎥⎥⎥⎥⎦ , �j = diag

⎡⎢⎢⎢⎢⎢⎣
Ci0,j

Ci0+1,j
...
CJ,j

⎤⎥⎥⎥⎥⎥⎦ (20)

where �j :=D2
j , and

Ỹ j+1 =

⎡⎢⎢⎢⎢⎢⎣
Ci0,j+1

Ci0+1,j+1
...
CJ−j,j+1

⎤⎥⎥⎥⎥⎥⎦ , Ãj =

⎡⎢⎢⎢⎢⎢⎣
Ci0,j

Ci0+1,j
...
CJ−j,j

⎤⎥⎥⎥⎥⎥⎦ , �̃j = diag

⎡⎢⎢⎢⎢⎢⎣
Ci0,j

Ci0+1,j
...
CJ−j,j

⎤⎥⎥⎥⎥⎥⎦ (21)

where �̃j := D̃2
j , and where diag[a] denotes a diagonal matrix with diagonal [a]. Notice that this

choice of (Y j+1,Aj,�j) corresponds to a special case of (A1) of Assumption A.1. Therefore, the
statement of Assumption 4.1 holds.

Remark 2. For the elements of �j to have positive diagonal elements, we need the additional
condition {ej+1}i > −fjC1/2

i,j /σj. This somewhat odd requirement is easily satisfied. For instance,
setWi,j := fjC1/2

i,j /σj, let Zi,j be standard normal independent ofWi,j and set
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{ej+1}i := exp
{
μ(Wi,j)+ σ (Wi,j)Zi,j

}
−Wi,j

σ (Wi,j) :=
√
log (1+W−2

i,j ), μ(Wi,j) := log (Wi,j)− σ 2(Wi,j)/2

In this case, conditional on Ci,j, {ej+1}i is simply a translated log-normal random variable,
translated by −fjC1/2

i,j /σj, with zero mean and unit variance.

Notice that

β̂ j =
(
Ã′
j�̃

−1
j Ãj

)−1
Ã′
j�̃

−1
j Ỹ j+1 =

∑J−j
i=i0 Ci,j+1∑J−j
i=i0 Ci,j

= f̂j

which coincides with the classical chain ladder development factor estimator, hence, being a
standard weighted least-squares estimator for the model (10). Furthermore,

σ̂ 2
j = 1

nj − pj
(Ỹ j+1 − Ãjβ̂ j)′�̃

−1
j (Ỹ j+1 − Ãjβ̂ j)

= 1
J − j− i0

J−j∑
i=i0

Ci,j
(Ci,j+1

Ci,j
− f̂j
)2
, j= 1, . . . , J − 2

and similarly for σ̂ 2
J−1 if i0 ≤ 0. Notice also that

Cov (β̂ j | Bj)= σ 2
j

(
Ã′
j�̃

−1
j Ãj

)−1 = σ 2
j∑J−j

i=i0 Ci,j
=Var( f̂j | Bj)

Using the tower property of conditional expectations together with (17) and (19), it is straightfor-
ward to verify that

hi( f ;F0) :=E[Ui |F0]= Ci,J−i+1

J−1∏
j=J−i+1

fj

h( f ;F0) :=E[U |F0]=
J∑

i=2
hi( f ;F0)=

J∑
i=2

Ci,J−i+1

J−1∏
j=J−i+1

fj (22)

In order to calculate MSEP for the ultimate claim amount following Lemma 2.1, we need to obtain
expressions for process (co)variances and the Qi,js given by

Qi,j(̂θ ;F0)= ∇hi(̂θ ;F0)′�(̂θ ;F0)∇hj(̂θ ;F0)

The process variances are given in Mack (1993), see Theorem 3 and its corollary, and follow
by using variance decomposition, the tower property of conditional expectations, (17)–(19), and
may, after simplifications, be expressed as

Var(U |F0)=
J∑

i=2
Var(Ui |F0)

=
J∑

i=2
Ci,J+1−i

J−1∑
k=J+1−i

fJ+1−i . . . fk−1σ
2
k f

2
k+1 . . . f 2J−1 (23)
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For detailed calculations, see Theorem 3 and its corollary in Mack (1993). Further, letting

Ûi := hi( f̂ ;F0)= Ĉi,J , Ĉi,j := Ci,J−j+1

j−1∏
k=J−i+1

f̂k

it follows that

Var(U |F0)( f̂ , σ̂ 2)=
J∑

i=2
Û2
i

J−1∑
k=J−i+1

σ̂ 2
k

f̂ 2k Ĉi,k
(24)

Thus, if we set

�̂U
i,J :=

J−1∑
k=J−i+1

σ̂ 2
k

f̂ 2k Ĉi,k
(25)

we see that

Var(U |F0)( f̂ , σ̂ 2)=
J∑

i=2
Û2
i �̂

U
i,J

If we turn to the calculation of Qi,j(̂θ ;F0), we see that

{∇f hi( f ;F0)}j = ∂

∂fj
hi( f ;F0)= 1{J−i+1≤j}Ci,J−i+1

1
fj

J−1∏
l=J−i+1

fl

for i= 2, . . . , J and j= 1, . . . , J − 1 and that

{�(σ ;F0)}j,j =Var( f̂j | Bj)=
σ 2
j∑J−j

i=i0 Ci,j
(26)

where {�(σ ;F0)}i,j = 0 for all i = j. Hence,

{∇f hi( f̂ ;F0)}j = 1{J−i+1≤j}
Ûi

f̂j
(27)

and it follows by direct calculations that

Qi,i(̂θ ;F0)= ∇f hi( f̂ ;F0)′�(σ̂ ;F0)∇f hi( f̂ ;F0)

=
J−1∑

k=J−i+1

Û2
i σ̂

2
k

f̂ 2k
∑J−k

l=i0 Cl,k

= Û2
i �̂

U
i,J

where

�̂U
i,J :=

J−1∑
k=J−i+1

σ̂ 2
k

f̂ 2k
∑J−k

l=i0 Cl,k
(28)
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Thus, from Lemma 2.1 it follows that for a single accident year i,

M̂SEPF0 (Ui, Ûi)=Var(Ui |F0)( f̂ , σ̂ 2)+ ∇f hi( f̂ ;F0)′�(σ̂ ;F0)∇f hi( f̂ ;F0)
= Û2

i (�̂
U
i,J + �̂U

i,J)

= Û2
i

J−1∑
k=J−i+1

σ̂ 2
k
f̂ 2k

(
1
Ĉi,k

+ 1∑J−k
l=i0 Cl,k

)
which is equivalent to Theorem 3 in Mack (1993). We state this result together with the
corresponding result for the total ultimate claim amount in the following proposition:

Proposition 5.1. In the setting of Mack’s distribution-free chain ladder,

M̂SEPF0 (Ui, Ûi)= Û2
i

(
�̂U
i,J + �̂U

i,J

)
= Û2

i

J−1∑
k=J−i+1

σ̂ 2
k
f̂ 2k

(
1
Ĉi,k

+ 1∑J−k
l=i0 Cl,k

)

M̂SEPF0 (U, Û)=
J∑

i=2
M̂SEPF0 (Ui, Ûi)+ 2

∑
2≤i<k≤J

ÛiÛk�̂
U
i,J

where �̂U
i,J is given by (25) and �̂U

i,J is given by (28).

The remaining part of the proof is given in Appendix C and amounts, due to Lemma 2.1,
to identifying Qi,k(̂θ ;F0)= ÛiÛk�̂

U
i,J and noting that all covariances are 0.

By comparing Proposition 5.1 with Mack’s estimator in Mack (1993), see Theorem 3 and its
corollary, for the chain ladder model, it is clear that the formulas coincide. Moreover, following
the discussion in section 4.1, it is clear from Propositions 4.2 and B.1 that

(i) the conditional specification of f̂ ∗ provides an unbiased estimator of the computationally
intractable unconditional (co)variances of the parameter estimators,

(ii) the two covariance specifications are asymptotically equal.

In Appendix D, the effects of using either the conditional specification or the unconditional
specification of f̂ ∗ when estimating the conditional MSEP are analysed based on simulations
and data from Mack (1993). The main conclusion from the simulation study is that the results
are essentially indistinguishable regardless of which specification is used. For more details, see
Appendix D.

Before ending the discussion of conditional MSEP estimation for the ultimate claim amount,
recall that the conditional MSEP can be split into one process variance part and one estimation
error part. In Mack (1993), all process variances are calculated without using any approximations,
and the estimation error is calculated exactly up until a final step where, Mack (1993: 219), “...we
replace S2k with E(S

2
k | Bk) and SjSk, j< k, with E(SjSk | Bk)”. This last step may, as noted already in

Buchwalder et al. (2006), be seen as a specific choice of f̂ ∗, following the general approach in the
present paper. Given this specific choice of f̂ ∗, the calculations carried out in Mack (1993) are
exact. However, the implicit choice of f̂ ∗ used in Mack (1993) is different from the one used in
the present paper, since Proposition 5.1 relies on a certain Taylor approximation. In Buchwalder
et al. (2006), an exact MSEP calculation for the ultimate claim amount is carried out using a choice
of f̂ ∗ which is identical with that used in the present paper. Moreover, from the calculations in
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Buchwalder et al. (2006) it is clear that the Taylor approximation used in Proposition 5.1 will result
in under estimation, w.r.t. the specific choice of f̂ ∗ used in the current paper. For further details,
see Buchwalder et al. (2006) as well as the discussion in Mack et al. (2006).

We will now provide the necessary building blocks needed in order to be able to arrive at the
estimator of conditional MSEP for the CDR following section 3.2 using Definition 2.3. This will
be done using the same notion of conditional MSEP for both the ultimate claim amount and
for CDR which, as introduced in section 2, is the F0-conditional expectation of the squared dis-
tance between a random variable and its F0-measurable predictor, as well as the same estimation
procedures.

We now proceed with the derivation of the estimator of conditional MSEP for the CDR in the
chain ladder setting, in complete analogy with the corresponding derivation of the estimator of
conditional MSEP for the ultimate claim amount. Note that many of the partial results needed for
the computation of our suggested estimator of conditional MSEP for the CDR can be found in
Merz and Wüthrich (2007), Wüthrich and Merz (2008a) and Wüthrich et al. (2009). The results
in these papers do, however, use a different indexation than that used in Mack (1993), which is
the indexation used in the present paper. Due to this, we have rephrased all results for the CDR
calculations in terms of the indexation used in Mack (1993).

As before, let h(θ ;F0) denote the theoretical predictor, but now w.r.t. CDR:

hi( f ;F0) :=E[ CDRi |F0], h( f ;F0) :=E[ CDR |F0]=
J∑

i=2
hi( f ;F0)

It follows from Lemma 3.3 in Wüthrich and Merz (2008a) that

hi( f ;F0)= Ci,J−i+1

⎛⎝ J−1∏
j=J−i+1

f̂j − fJ−i+1

J−1∏
j=J−i+2

(
S0j
S1j
f̂j + fj

CJ−j+1,j

S1j

)⎞⎠ (29)

where Skj =∑J−j+k
i=i0 Ci,j for k= 0, 1. Notice that, h( f̂ ;F0)= 0 and consequently it follows that

MSEPF0 (CDR, ĈDR)=MSEPF0 (CDR, 0)

which is referred to as the “observable” CDR in, for example, Wüthrich et al. (2009).
In order to calculate conditional MSEP for the CDR, we again make use of Lemma 2.1. The

plug-in estimator of the process variance for a single accident year, one of the two terms of the
estimator of conditional MSEP, is derived in Wüthrich et al. (2009); see Result 3.3 and equation
(3.17) in Wüthrich and Merz (2008b):

Var(CDRi |F0)( f̂ , σ̂ 2) := Û2
i �̂

CDR
i,J (30)

where

�̂CDR
i,J :=

⎛⎝(1+ σ̂ 2
J−i+1

f̂ 2J−i+1Ci,J−i+1

) J−1∏
j=J−i+2

⎛⎝1+ σ̂ 2
j

f̂ 2j CJ−j+1,j

(
CJ−j+1,j

S1j

)2
⎞⎠⎞⎠− 1 (31)

The process variance for all accident years is given by

Var(CDR |F0)( f̂ , σ̂ 2) :=
J∑

i=2
Var(CDRi |F0)( f̂ , σ̂ 2)

+ 2
∑

2≤i<k≤J
ÛiÛk�̂

CDR
i,J (32)

https://doi.org/10.1017/S174849951900006X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951900006X


Annals of Actuarial Science 113

where

�̂CDR
i,J :=

⎛⎝(1+ σ̂ 2
J−i+1

f̂ 2J−i+1S
1
J−i+1

) J−1∏
j=J−i+2

(
1+ σ̂ 2

j

f̂ 2j CJ−j+1,j

(CJ−j+1,j

S1j

)2)⎞⎠− 1 (33)

which follows from Result 3.3 and equation (3.18) in Wüthrich et al. (2009). Notice that
ÛiÛk�̂

CDR
i,J corresponds to covariance terms, which did not appear in the calculation of the process

variance for the ultimate claim amount due to independence between accident years.
Further, based on Lemma 2.1, what remains to be determined are the Qi,j(̂θ ;F0)s. From the

definition of h(f ;F0) above, it immediately follows that

{∇f hi( f̂ ;F0)}j =
⎧⎨⎩−Ci,J−i+1

CJ−j+1,j

f̂jS1j

∏J−1
l=J−i+2 f̂l, j> J − i+ 1

−Ci,J−i+1
∏J−1

l=J−i+2 f̂l, j= J − i+ 1

which may be written as

{∇f hi( f̂ ;F0)}j =

⎧⎪⎨⎪⎩
−Ûi

CJ−j+1,j

f̂jS1j
, j> J − i+ 1

−Ûi
1

f̂J−i+1
, j= J − i+ 1

(34)

Hence, it follows that

Qi,i(̂θ ;F0)= ∇hi( f̂ ;F0)′�(σ̂ ;F0)∇hi( f̂ ;F0)

= Û2
i

⎛⎝ σ̂ 2
J−i+1

f̂ 2J−i+1S
0
J−i+1

+
J−1∑

j=J−i+2

σ̂ 2
j

f̂ 2j S0j

(
CJ−j+1,j

S1j

)2
⎞⎠

where

Var( f̂j | Bj)=
σ 2
j

S0j

and �(σ̂ ;F0) is diagonal with jth diagonal element σ̂ 2
j /S0j . If we set

�̂CDR
i,J := σ̂ 2

J−i+1

f̂ 2J−i+1S
0
J−i+1

+
J−1∑

j=J−i+2

σ̂ 2
j

f̂ 2j S0j

(CJ−j+1,j

S1j

)2
(35)

which corresponds to equation (3.4) in Wüthrich and Merz (2008a), then

∇hi( f̂ ;F0)′�(σ̂ ;F0)∇hi( f̂ ;F0)= Û2
i �̂

CDR
i,J

Combining the above, using Lemma 2.1, gives that M̂SEPF0 (CDRi, ĈDRi), given by Definition
2.3, simplifies to

M̂SEPF0 (CDRi, ĈDRi) := Var(CDRi |F0)( f̂ , σ̂ 2)+Qi,i(̂θ ;F0)

= Û2
i

(
�̂CDR
i,J + �̂CDR

i,J

)
(36)

Note that by using the linearisation of the process variance used in equation (A.1) in Wüthrich
and Merz (2008a), it follows that

�̂CDR
i,J ≈ σ̂ 2

J−i+1

f̂ 2J−i+1Ci,J−i+1
+

J−1∑
j=J−i+2

σ̂ 2
j

f̂ 2j CJ−j+1,j

(CJ−j+1,j

S1j

)2
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it in turn follows that (36) reduces to Result 3.1, equation (3.9), in Wüthrich and Merz (2008a).
Notice that our estimator of conditional MSEP coincides with that inWüthrich andMerz (2008a)
despite the quite different logics of the two approaches for deriving the estimator. The deriva-
tion of Result 3.1 in Wüthrich and Merz (2008a) is based on perturbing the initial f̂js, that
is, the f̂ (0)j , that in our setting are a part of the basis of prediction and therefore may not be
perturbed. That the two approaches give estimators that coincide is due to the underlying sym-
metry M̂SEPF0 (CDRi, ĈDRi)= M̂SEPF0 (ĈDRi, CDRi ) and the fact that the CDR-quantities are
multi-linear in the model parameters.

Furthermore, the MSEP calculations for the CDR aggregated over all accident years follow
the same steps as those used for the derivation of the corresponding MSEP calculations for the
ultimate claim amount verbatim. The only resulting difference is the necessity to keep track of
covariance terms across accident years. That is, we will get contributions of the form

Qi,k(̂θ ;F0)= ∇hi( f̂ ;F0)′�(σ̂ ;F0)∇hk( f̂ ;F0)

= ÛiÛk
( σ̂ 2

J−i+1Ci,J−i+1

f̂ 2J−i+1S
0
J−i+1S

1
J−i+1

+
J−1∑

j=J−i+2

σ̂ 2
j

f̂ 2j S0j

(CJ−j+1,j

S1j

)2)
when i< k, which by introducing

χ̂CDR
i,J := σ̂ 2

J−i+1Ci,J−i+1

f̂ 2J−i+1S
0
J−i+1S

1
J−i+1

+
J−1∑

j=J−i+2

σ̂ 2
j

f̂ 2j S0j

(CJ−j+1,j

S1j

)2
(37)

allows us to summarise the results obtained in the following proposition:

Proposition 5.2. In the setting of Mack’s distribution-free chain ladder,

M̂SEPF0 (CDRi, ĈDRi) := Û2
i
(
�̂CDR
i,J + �̂CDR

i,J
)

M̂SEPF0 (CDR, ĈDR) :=
J∑

i=2
M̂SEPF0 (CDRi, ĈDRi)

+ 2
∑

2≤i<k≤J
ÛiÛk

(
�̂CDR

i,J + χ̂CDR
i,J

)
where �̂CDR

i,J , �̂CDR
i,J , �̂CDR

i,J and χ̂CDR
i,J are given by (31), (35), (33) and (37), respectively.

As noted in the discussion leading up to Proposition 5.2, the proof is identical to that of
Proposition 5.1 in all aspects, except for the covariance terms; see Appendix C for details. Again,
in analogy with the situation for a single accident year, using the process (co)variance approxima-
tion following equation (A.1) in Wüthrich and Merz (2008a), it is seen that Proposition 5.2 will
coincide with Result 3.3 inWüthrich andMerz (2008a). Even though the results from Proposition
5.2, given the mentioned approximation, will coincide with those obtained inWüthrich andMerz
(2008a), see Result 3.3, the underlying estimation procedures differ. The procedure advocated
here for the CDR is consistent with that for the ultimate claim amount and is straightforward to
apply.

As mentioned in section 3.2, the primary purpose with the current section was to illustrate
how the introduced methods can be applied to different functions of the future development of
the underlying stochastic process – here the ultimate claim amount and the CDR. In the next, and
final, section, we illustrate how the general approach to calculate conditional MSEP introduced in
the present paper applies to other reserving methods.

https://doi.org/10.1017/S174849951900006X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951900006X


Annals of Actuarial Science 115

6. Applications to Non-sequential Reserving Models
We will now demonstrate that the general approach to estimation of conditional MSEP presented
in section 2 also applies when the model is quite different from the sequential conditional linear
models considered in section 4. We will show how to compute conditional MSEP estimates for
the ultimate claim amount for the over-dispersed Poisson chain ladder model; see, for example,
Mack (1991) and England and Verrall (1999). The overdispersed Poisson chain ladder model is
based on the following assumptions:

E[Ii,j]= μi,j, Var(Ii,j)= φμi,j, log (μi,j)= η + αi + βj

where i, j= 1, . . . , J and α1 = β1 = 0. The model parameters may be estimated using standard
quasi-likelihood theory and the natural predictor for the ultimate claim amount for accident year
i is given by

hi(θ ;F0)=E[Ui |F0]= Ci,J−i +
J∑

j=J−i+1
μi,j = Ci,J−i + g(θ)

where θ = (η, {αi}, {βk}). We may use Lemma 2.1 to calculate conditional MSEP for the ultimate
claim amount. Firstly, due to independence across all indices,

Var(Ui |F0)=Var(Ri)= φ

J∑
j=J−i+1

μi,j, Var(U |F0)=
J∑

i=2
Var(Ri)

Secondly, in order to determine the Qi,j(̂θ ;F0)s, we need the partial derivatives of hi(θ ;F0) which
are given by

∂

∂η
hi(θ ;F0)= ∂

∂η
gi(θ)=

J∑
j=I−i+1

μi,j

∂

∂αk
hi(θ ;F0)= ∂

∂αk
gi(θ)=

J∑
j=I−k+1

μk,j

∂

∂βk
hi(θ ;F0)= ∂

∂βk
gi(θ)= 1{I−i+1≤k}μi,k

Hence,

∇h(θ ;F0)= ∇g(θ), ∇hi(θ ;F0)= ∇gi(θ), i= 1, . . . , J

are independent of F0, and in particular

Qi,k(̂θ ;F0)=Qi,k(̂θ)= ∇gi(̂θ)′�(̂θ)∇gk(̂θ)

By combining the above relations together with Lemma 2.1, it follows that the estimator of
conditional MSEP in Definition 2.3, applied to the ultimate claim amount, is given by

M̂SEPF0 (U, Û)= M̂SEP(R, R̂)

and takes the form
J∑

i=2
Var(Ri)(̂θ)+

J∑
i=2

∇gi(̂θ)′�(̂θ)∇gi(̂θ)+ 2
∑

2≤i<k≤J
∇gi(̂θ)′�(̂θ)∇gk(̂θ) (38)

What remains for having a computable estimator of conditional MSEP for the ultimate claim
amount is to compute the covariance matrix �(θ)=Cov (̂θ). Notice that the estimator (38)
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corresponds to the general conditional MSEP estimator upon choosing θ̂
∗ as an independent

copy θ̂
⊥ of θ̂ , which gives

�(θ ;F0) :=Cov (̂θ ∗ |F0)=Cov (̂θ)

Notice also since the overdispersed Poisson chain ladder model relies on quasi-likelihood theory,
we do not have access to an explicit expression for the covariance of the parameter estimators.
However, no such explicit expression is needed since a numerical approximation is easily obtained
as output of a standard quasi-Poisson generalised linear model (GLM)-fit. That is, using standard
numerical procedures for approximating the covariance matrix, for example, GLM-fitting proce-
dures, one obtains a non-simulation-based procedure for estimation of the conditional MSEP for
the ultimate claim amount. Further, since quasi-likelihood estimators are M-estimators, see, for
example, Chapter 5 in Van der Vaart (2000), these can be shown to be consistent given certain
regularity conditions. This motivates neglecting possible bias when using Definition 2.3. Another
alternative is, of course, to introduce a bias correction; see, for example, Lindholm et al. (2017).
Another observation concerning the conditional MSEP estimator (38) for the overdispersed
Poisson chain ladder model is the following.

Proposition 6.1. The estimator (38) of conditional MSEP for the ultimate claim amount for the
overdispersed Poisson chain ladder model coincides with the one derived in section 4.4 in Renshaw
(1994).

The proof follows by noting that all ∇gi(̂θ) are functions of ∇μi,j(̂θ)s and

∇μi,j(̂θ)′�(̂θ)∇μk,l (̂θ)= μi,j(̂θ) Cov (̂ηi,j, η̂k,l)μk,l (̂θ)

where ηi,j := log (μi,j). See also equations (3.4) and (3.5) in England and Verrall (1999).
Notice that due to Lemma 2.1 the semi-analytical estimator (38) is valid for any non-sequential

GLM-based reserving model.
The above example of calculating a semi-analytical expression for the estimator of conditional

MSEP for the ultimate claim amount according to Definition 2.3 for the overdispersed Poisson
chain ladder model can of course be extended to more complex models as long as it is possible to
compute

(i) h(θ ;F0) together with its partial derivatives,
(ii) (an approximation of) a suitable, conditional or unconditional, covariance matrix of θ̂ .

One example of a more complex GLM-based reserving model is the one introduced in Verrall
et al. (2010), which is based on one triangle for observed counts and one triangle for incremental
payments. In this model, the counts are modelled as an overdispersed Poisson chain ladder model,
and the incremental payments aremodelled as a quasi-PoissonGLMmodel conditional on counts.
Due to the overall quasi-Poisson structure of the model, it is possible to obtain explicit expressions
for the predictor of the ultimate claim amount, together with the corresponding process variance,
but where F0 now also contains information concerning observed counts. The conditional MSEP
for the ultimate claim amount can again be calculated using Lemma 2.1.

Furthermore, the general exposition of themethods introduced in the present paper do not rely
on that the data-generating process is defined in terms of run-off triangles. Examples of another
type of models are the continuous time point process models treated in, for example, Norberg
(1993) and Antonio and Plat (2014). These models rely on extensive stochastic simulations in
order to be used in practice. One simple example of a special case of a point process model for
which the quantities needed for the calculation of a semi-analytical MSEP estimator for the ulti-
mate claim amount according to Definition 2.3 is possible is the model described in section 8.A in
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Norberg (1993). Hence, it is again possible to use Lemma 2.1 to calculate the conditional MSEP of
the ultimate claim amount.

The above examples provide semi-analytical MSEP estimators which only rely on that we are
able to calculate certain expected values and (co)variances. One advantage of this approach is that
there is no need for simulation-based techniques in order to carry out MSEP calculations.
Acknowledgements.Mathias Lindholm is grateful for insightful discussions with Richard Verrall and Peter England con-
cerning the overdispersed Poisson chain ladder model, and thanks Richard Verrall for providing a copy of Renshaw (1994).
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Appendix A. Special Cases of the Model Class from Section 4
Here we present assumptions that may be imposed on the structure of the conditional mean val-
ues in the general development-year dynamics (10). Model assumptions prescribing autoregressive
structures for the conditional means are commonly encountered and enable explicit calculations.

Assumption A.1 (Cumulative model). For (i, j) ∈ I ×J , Yi,j = Ci,j and
Ci,j+1 = βj,1Ci,j + · · · + βj,pjCi,j−pj+1 + σj{� j}1/2i,i {ej}i, pj ≤ j (A1)

or
Ci,j+1 = βj,1 + βj,2Ci,j + · · · + βj,pjCi,j−pj+2 + σj{� j}1/2i,i {ej}i, pj ≤ j+ 1 (A2)

Assumption A.2 (Incremental model). For (i, j) ∈ I ×J , Yi,j = Ii,j and
Ii,j+1 = βj,1Ii,j + · · · + βj,pj Ii,j−pj+1 + σj{� j}1/2i,i {ej}i, pj ≤ j (A3)

or
Ii,j+1 = βj,1 + βj,2Ii,j + · · · + βj,pj Ii,j−pj+2 + σj{� j}1/2i,i {ej}i, pj ≤ j+ 1 (A4)

Remark 3. The models with intercepts defined by (A2) and (A4) require that the payment data
are normalised by an exposure measure before any statistical analysis. The normalisation may cor-
respond to dividing all payments stemming from a given accident year by the number of written
insurance contracts that accident year.

Remark 4. Under Assumption A.1, using the tower property of conditional expectations,

E[U |F0]=
J∑

i=2

E[Ci,J |F0]=
J∑

i=2

(
ai,0 +

J−i+1∑
j=1

ai,jCi,j

)
where each coefficient ai,j is either 0 or a finite product of distinct β-parameters βjk for
j∈{1, . . . , J − 1} and k ∈ {1, . . . , pj}. In particular, E[U |F0] is an F0-measurable multi-affine func-
tion in the parameters βjk, an expression of the form c+ dβjk. Under Assumption A.2, using the
tower property of conditional expectations,

E[U |F0]=
J∑

i=2

( J−i+1∑
j=1

Ii,j +
J∑

j=J−i+2

E[Ii,j |F0]
)

=
J∑

i=2

( J−i+1∑
j=1

Ii,j + bi,0 +
J−i+1∑
j=1

bi,jIi,j
)

where each coefficient bi,j is either 0 or a finite product of distinct β-parameters βjk for
j∈{1, . . . , J − 1} and k ∈ {1, . . . , pj}. In particular, E[U |F0] is again an F0-measurable multi-affine
function in the parameters βjk, an expression of the form c+ dβjk.

It is clear that each of Assumptions A.1 and A.2 implies that the statement in Assumption 4.1
holds.

Appendix B. Asymptotic Properties of Conditional Weighted Least Squares
Estimators

The following result motivates the approximation of Cov (β̂ j) by Cov (β̂ j | Bj), and hence also the
approximation of Cov (β̂) by �(σ ;F0), by asymptotic arguments, corresponding to letting the
number of accident years in the available data set tend to infinity.
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Proposition B.1. Let |I| := J − i0 be the number of fully or partially developed accident years. For
j ∈ {1, . . . , J − 1}, suppose the following statements hold:

(i) For i, k ∈ {1, . . . , pj}, {|I|{(A′
j�

−1
j Aj)−1}i,k}|I| is uniformly integrable.

(ii) For i, k ∈ {1, . . . , pj},
lim

|I|→∞
sup
l≤|I|

Var
({�−1

j }l,l{Aj}l,i{Aj}l,k
)
< ∞

(iii) There exists an invertible pj × pj matrix ν j such that

lim
|I|→∞

1
|I|E[A

′
j�

−1
j Aj]= ν j

Then lim|I|→∞ |I|Cov (β̂ j)= ν−1
j and |I|Cov (β̂ j | Bj)

a.s.→ ν−1
j as |I| → ∞.

The proof of Proposition B.1 is given in the appendix and relies on that the conditional covariance
may be written in the form of weighted sums of independent random variables.

Remark 5. Conditions (i)–(iii) are technical conditions that can be verified given additional mild
assumptions, essentially existence of higher-order moments, on the development-year dynamics
in (10). The conditions can be simplified if it is assumed that the development-year dynamics for
different accident years are identical, corresponding to identically distributed rows for Aj and � j.
Condition (iii) is equivalent to the existence of an invertible pj × pj matrix ν j such that

lim
|I|→∞

1
|I|

|I|∑
l=1

E[{�−1
j }ll{Aj}li{Aj}lk]= {ν j}ik

If the rows of Aj and � j are identically distributed, then

1
|I|

|I|∑
l=1

E[{�−1
j }ll{Aj}li{Aj}lk]=E[{�−1

j }11{Aj}1i{Aj}1k]

so (iii) automatically holds if the pj × 1 vector {�−1/2
j }11{Aj}′

1· has an invertible covariance matrix.

Remark 6. Proposition B.1 provides the asymptotic behaviour of Cov (β̂) and�(σ ;F0) as the num-
ber of accident years in the available data set tends to infinity. Proposition B.1 can be extended to
also address the asymptotic behaviour of �(σ̂ ;F0) by considering conditions ensuring consistency
and a certain rate of convergence for the estimators σ̂ 2

j . We will not analyse such conditions in this
paper.

Combining Markov’s inequality and Propositions 4.1 and B.1 immediately gives consistency of
the weighted least-squares estimator β̂ as the number of fully or partially developed accident years
tends to infinity: moreover, combining Proposition B.1 with either Assumption A.1 or A.2 allows the
asymptotic behaviour of the term in Definition 2.3 accounting for estimation error to be analysed.
We state these facts as a corollary to Proposition B.1:

Corollary. Let |I| := J − i0 denote the number of fully or partially developed accident years. If
the conditions of Proposition B.1 hold, then β̂

P→ β as |I| → ∞. Moreover, if in addition either
Assumption A.1 or A.2 holds, and σ̂ 2

j
P→ σ 2

j as |I| → ∞ for j= 1, . . . , J − 1, then

|I|∇βh(β̂ ;F0)′�(σ̂ ;F0)∇βh(β̂ ;F0)
P→ c as |I| → ∞

for some constant c< ∞.
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Appendix C. Proofs
Proof of Lemma 2.1. Recall from Definition 2.3 that it is possible to split the conditional MSEP
approximation into a process variance part and an estimation error part. Thus, given that X =∑

i∈I Xi, it follows that the process variance may be expressed as

Var(X |F0)(̂θ)=
∑
i∈I

Var(Xi |F0)(̂θ)+ 2
∑

i,j∈I,i<j

Cov (Xi, Xj |F0)(̂θ)

and, if it in addition holds that h(θ ;F0)=∑i∈I hi(θ ;F0), the estimation error part of (7) may be
re-written according to

∇h(̂θ ;F0)′�(̂θ ;F0)∇h(̂θ ;F0)=
(∑

i∈I
hi(̂θ ;F0)

)
�(̂θ ;F0)

(∑
i∈I

hi(̂θ ;F0)
)

=
∑
i∈I

hi(̂θ ;F0)�(̂θ ;F0)hi(̂θ ;F0)

+ 2
∑

i,j∈I,i<j

hi(̂θ ;F0)�(̂θ ;F0)hj(̂θ ;F0)

Lemma 2.1 follows by combining the above.

Proof of Proposition 4.1. Proof of Statement (i): by construction E[ β̂ j | Bj]= β j. For j< k,

Cov (β̂ j, β̂k)=E

[
Cov

(
β̂ j, β̂k | Bk

)]+Cov
(
E
[
β̂ j | Bk

]
,E
[
β̂k | Bk

])
=E

[
Cov

(
β̂ j, β̂k | Bk

)]+Cov
(
β̂ j, βk

)
=E

[
Cov

(
β̂ j, β̂k | Bk

)]
and, since β̂ j is σ (Bk)-measurable,

Cov
(
β̂ j, β̂k | Bk

)=E

[(
β̂ j −E

[
β̂ j | Bk

])(
β̂k − [ β̂k | Bk

])′ | Bk

]
= 0

Proof of Statement (ii). Let Zj+1 := �̃
−1/2
j Ỹ j+1 and Cj := �̃

−1/2
j Ãj and re-write the weighted linear

model (11) as Zj+1 =Cjβ j + σj̃ej. Notice that

σ̂ 2
j = 1

nj − pj
(Ỹ j+1 − Ãjβ̂ j)′�̃

−1
j (Ỹ j+1 − Ãjβ̂ j)

= 1
nj − pj

(Zj+1 −Cjβ̂ j)′(Zj+1 −Cjβ̂ j).

It now follows fromTheorem 3.3 in Seber and Lee (2003) thatE[ σ̂ 2
j | Bj]= σ 2

j holds for j= 1 . . . , J −
1 given that i0 ≤ J − j− pj.

Proof of Proposition 4.2. Covariance decomposition together with (13) gives on the one hand

Cov (β̂ j)=E
[
Cov

(
β̂ j | Bj

)]+Cov
(
E
[
β̂ j | Bj

])=E
[
Cov

(
β̂ j | Bj

)]
On the other hand, using Proposition 4.1(ii), that is, that E[ σ̂ 2

j | Bj]= σ 2
j ,

E

[
σ̂ 2
j

(
Ã′

j�̃
−1
j Ãj

)−1]=E

[
E

[
σ̂ 2
j

(
Ã′

j�̃
−1
j Ãj

)−1 | Bj

]]
=E

[
Cov

(
β̂ j | Bj

)]
Therefore, σ̂ 2

j

(
Ã′

j�̃
−1
j Ãj

)−1 is an unbiased estimator of Cov (β̂ j) and, since Cov (β̂) is block diagonal,
�(σ̂ ;F0) is an unbiased estimator of Cov (β̂).

https://doi.org/10.1017/S174849951900006X Published online by Cambridge University Press

https://doi.org/10.1017/S174849951900006X


Annals of Actuarial Science 121

Proof of Proposition B.1. The constant parameter σj is irrelevant for the argument of the proof and
therefore here set to 1. Notice that, for i, k ∈ {1, . . . , pj},

{Ã′
j�̃

−1
j Ãj}ik =

nj∑
l=1

{�̃−1
j }ll{Ãj}li{Ãj}lk

where the terms are independent since Aj and � j have independent rows. Further, by assumption
(ii), it follows that, for i, k ∈ {1, . . . , pj},∑

l

l−2 Var
(
{�̃−1

j }ll{Ãj}li{Ãj}lk
)

< ∞

This allows us to use Corollary 4.22 in Kallenberg (2002), that is, that, for i, k ∈ {1, . . . , pj},
1
nj

nj∑
l=1

{�̃−1
j }ll{Ãj}li{Ãj}lk a.s.→ {ν j}ik as nj → ∞

which is equivalent to
1
nj
Ã′

j�̃
−1
j Ãj

a.s.→ ν j as nj → ∞

Since ν j is invertible, the latter convergence implies nj(Ã
′
j�̃

−1
j Ãj)−1 a.s.→ ν−1

j as nj → ∞, that is,

nj Cov (β̂ j | Bj)
a.s.→ ν−1

j as nj → ∞
From the proof of Proposition 4.2, we know that Cov (β̂ j)=E

[
Cov

(
β̂ j | Bj

)]
. The assumed uniform

integrability and Proposition 4.12 in Kallenberg (2002) give

nj Cov (β̂ j)= njE
[
Cov (β̂ j | Bj)

]→ ν−1
j as nj → ∞

Proof of Corollary B. We start by proving that β̂ P→ β as |I| → ∞. By Proposition 4.1, β̂ is an unbi-
ased estimator of β . Now Markov’s inequality combined with Proposition B.1 immediately gives
consistency: for k ∈ {1, . . . , pj} and any ε > 0,

P
(∣∣{β̂ j}k − {β j}k

∣∣> ε
)≤ Var({β̂ j}k)

ε2
→ 0 as nj → ∞

since limnj→∞ nj Var({β̂ j}k)= {ν j}k,k. Since {β̂ j}k P→ {β j}k as nj → ∞ for every j= 1, . . . , J − 1 and
k ∈ {1, . . . , pj} if and only if β̂ P→ β as |I| := n1 → ∞, the statement is proved.

We continue by showing that |I|�(σ ;F0) converges in probability as |I| → ∞. First, from
Proposition B.1 we know that |I|�(σ ;F0)

P→C as |I| → ∞, where C is block diagonal with blocks
ν−1
j . From this, (14) and the assumption that σ̂ 2

j
P→ σ 2

j as |I| → ∞ for all j= 1, . . . , J − 1, an appli-
cation of Slutsky’s theorem yields |I|�(σ̂ ;F0)

P→C as |I| → ∞. Further, h is only a function of
elements in either (Iij)i≥2,j∈J or (Cij)i≥2,j∈J and thus it follows that, for a fixed J, h is independent of
|I|. Therefore, β �→ ∇βh(β ;F0) does not depend on |I|. Moreover, from Remark 4, each component
of ∇βh(β̂ ;F0) is either constant or a multi-affine function of the components of β̂ , that is, a sum of
products of the components of β̂ . Therefore, since β̂

P→ β as |I| → ∞, we can use the continuous
mapping theorem to conclude that

∇βh(β̂ ;F0)
P→ ∇βh(β ;F0)
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as |I| → ∞. Putting it all together, we have

|I|∇βh(β̂ ;F0)′�(σ̂ ;F0)∇βh(β̂ ;F0)
P→ ∇βh(β ;F0)′C∇βh(β ;F0)

Proof of Proposition 5.1. The proof of MSEP for the ultimate claim amount for a single accident year
is already given in section 5 in the text leading up to the statement of Proposition 5.1. We will now
go through the remaining steps needed in the derivation of MSEP for the ultimate claim amount
aggregated over all accident years.

In section 5, we provided the process variance, see (24), hence, following Lemma 2.1, what
remains to determine are the Qi,k(̂θ ;F0)s:

Qi,k(̂θ ;F0)= ∇fhi( f̂ ;F0)′�(σ̂ ;F0)∇fhk( f̂ ;F0)

where ∇fhi( f̂ ;F0) is given by (27), that is,

{∇fhi( f̂ ;F0)}j = 1{J−i+1≤j}
Ûi

f̂j

and

{�(σ̂ ;F0)}j,j =
σ̂ 2
j∑J−j

i=i0 Ci,j

where {�(σ̂ ;F0)}i,j = 0 for all i = j. By using the above, for i≤ k, it follows that

∇fhi( f̂ ;F0)′�(σ̂ ;F0)∇fhk( f̂ ;F0)=
J−1∑
j=1

1{J−i+1≤j}1{J−k+1≤j}
Ûi

f̂j
Ûk

f̂j

σ̂ 2
j∑J−j

l=i0 Cl,j

= ÛiÛk�̂
U
i,J

where �̂U
i,J is given by (28). Given the above, the statement in Proposition 5.1 follows by using Lemma

2.1.

Proof of Proposition 5.2. As in the proof of Proposition 5.1, the process (co)variances are obtained
from the references given in the text leading up to the formulation of Proposition 5.2. Thus, given
Lemma 2.1, what remains to determine are the Qi,k(̂θ ;F0)s:

Qi,k(̂θ ;F0)= ∇fhi( f̂ ;F0)′�(σ̂ ;F0)∇fhk( f̂ ;F0)

where ∇fhi( f̂ ;F0) is given by (34), which may be expressed as

{∇fhi( f̂ ;F0)}j =

⎧⎪⎨⎪⎩
−1{J−i+1<j}Ûi

CJ−j+1,j

f̂jS1j

−1{J−i+1=j}Ûi
1

f̂J−i+1

(A5)

and

{�(σ̂ ;F0)}j,j =Var( f̂j | Bj)=
σ̂ 2
j

S0j

where {�(σ̂ ;F0)}i,j = 0 for all i = j. Thus, for all i≤ k it holds that
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∇fhi( f̂ ;F0)′�(σ̂ ;F0)∇fhk( f̂ ;F0)

=
J−1∑
j=1

Ûi

(
1{J−i+1<j}

CJ−j+1,j

f̂jS1j
+ 1{J−i+1=j}

1
f̂J−i+1

)

× σ̂ 2
j

S0j
Ûk

(
1{J−k+1<j}

CJ−j+1,j

f̂jS1j
+ 1{J−k+1=j}

1
f̂J−i+1

)

=
⎧⎨⎩ ÛiÛk�̂

CDR
i,J , i= k

ÛiÛkχ̂
CDR
i,J , i< k

where �̂CDR
i,J is given by (35) and χ̂ CDR

i,J is given by (37). Finally, Proposition 5.2 follows by combining
the above together with the corresponding process (co)variances and Lemma 2.1.

Appendix D. Numerical Example
In this section, a simulation study is presented whose purpose is to analyse and compare the two
estimators of conditional MSEP based on the conditional and unconditional specification of θ̂

∗.
The data used are the run-off triangle of Taylor and Ashe (1983), see Table 1, which has been widely
used and analysed, for example, in Mack (1993).

Table 1. Run-off triangle of aggregated payments of Taylor and Ashe (1983).

i

j
0 1 2 3 4 5 6 7 8 9

1 451,288 339,519 333,371 144,988 93,243 45,511 25,217 20,406 31,482 1,729

2 448,627 512,882 168,467 130,674 560,44 33,397 56,071 26,522 14,346

3 693,574 497,737 202,272 120,753 125,046 37,154 27,608 17,864

4 652,043 546,406 244,474 200,896 106,802 106,753 63,688

5 566,082 503,970 217,838 145,181 165,519 91,313

6 606,606 562,543 227,374 153,551 132,743

7 536,976 472,525 154,205 150,564

8 554,833 590,880 300,964

9 537,238 701,111

10 684,944

The performance of the two estimators of conditional MSEP, based on this particular data set,
is examined by estimating, through simulations, E[�V2] as specified in section 2.1. The practical
relevance of computing these estimators is investigated by comparing the size of the estimation error
to the size of the process variance.

The data-generating process in the simulation study is assumed to be a sequence of general linear
models of the form in (10) in section 4. More specifically, for each i ∈ I , it is assumed that

Ci,1 = α + τei,1, Ci,j+1 = fjCij + σj
√
Cijei,j+1, j= 1, . . . , J − 1

The error terms are given by Remark 2, that is, by translated log-normal variables, which also holds
for the first column by setting Ci0 := 1 for all i ∈ I .

The parameter values used in the simulation study are the ones acquired from fitting this model
to the data in Table 1 following the weighted least squares estimation introduced in section 4; see
(12) and (15). As seen in section 5, this is equivalent to fitting a chain ladder model to this triangle
together with estimating an intercept and a variance for the first column (using the sample mean
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and the unbiased sample variance of the first column). The resulting parameter estimates are taken
to be the true parameter values in the simulation study, they are denoted by f , σ 2, α and τ 2, and
referred to jointly as θ . To be able to use the unbiased estimators of the σ 2

j s, the last column of the
triangle is removed. An alternative to this approach could be to use maximum likelihood or some
form of extrapolation of the σ 2

j s. Since comparison of methods to estimating tail variances is not
the purpose of the simulation study, the former simpler approach is chosen. Based on the above
development-year dynamics and θ , N = 106 new triangles are generated giving rise to {F (i)

0 }Ni=1. For
each such triangle, a chain ladder model is fitted together with an intercept and variance for the
first column, as described above, to get the parameter estimator θ̂

(i). For i= 1, . . . ,N, the following
quantities are computed:

• the (true) process variance Var(U (i) |F (i)
0 ), given in (23), and the plug-in estimator

Var(U (i) |F (i)
0 )( f̂ (i), (σ̂ (i))2) given in (24),

• the (true) conditional expectation of the ultimate claim amount h( f ;F (i)
0 ), given in (22), and

the plug-in estimator h( f̂ (i);F (i)
0 ),

• the plug-in estimator of the gradient ∇h( f̂ (i);F (i)
0 ), given in (27),

• the estimator of the conditional covariance of f̂ ∗ using the conditional specification,

�(σ̂ (i);F (i)
0 )= Ĉov( f̂ ∗,c |F (i)

0 )

the elements of which are given in (26),
• the estimator of the conditional covariance of f̂ ∗ using the unconditional specification,

Ĉov( f̂ )= Ĉov( f̂ ∗,u |F (i)
0 )

• the two estimators of the estimation error,

∇h( f̂ (i);F (i)
0 )′�(σ̂ (i);F (i)

0 )∇h( f̂ (i);F (i)
0 )

and

∇h( f̂ (i);F (i)
0 )′Ĉov( f̂ )∇h( f̂ (i);F (i)

0 )

• �V2
i for the two resampling specifications as given in section 2.1.

As already mentioned, Cov ( f̂ ) is not analytically tractable and is therefore estimated using simula-
tions. Recall, from Proposition 4.2, that Cov ( f̂ )=E[�(σ̂ ;F0)]. Therefore, for each i= 1, . . . ,N,Mi

new triangles are generated based on the parameters θ̂
(i) yielding {F (i,j)

0 }Mi
j=1. For each i, the unbiased

estimator

� i,Mi :=
1
Mi

Mi∑
j=1

�(σ̂ (i);F (i,j)
0 )

of Cov ( f̂ )(̂θ (i)) is chosen as an estimator of Cov ( f̂ )(̂θ (i)). The choice ofMi is as follows. For a fixed
n, consider the increasing sequence (2k−1n)k≥1. Conditional on not having stopped for the value k,
2k+1n new triangles are generated based on the parameters θ̂

(i) yielding {F (i,j)
0 }2k+1n

j=1 and the estimators

� i,2kn := 1
2kn

2kn∑
j=1

�(σ̂ (i);F (i,j)
0 ), ˜� i,2kn := 1

2kn

2k+1n∑
j=2kn+1

�(σ̂ (i);F (i,j)
0 )
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Figure A.1. Kernel density estimator of the dif-
ference between the simulated values of �V2

for the unconditional and the conditional spec-
ification of θ̂

∗ (unconditional minus condi-
tional). Position 0 is marked by the orange
dashed middle line. The other dashed lines cor-
respond to a chosen set of reference sample
quantiles of these differences.
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Figure A.2. Kernel density estimator of the ratio
between the conditional and the unconditional
estimators of the estimation error. Position 1 is
marked by the red dashed line.

are computed as well as

xk := ∇h( f̂ (i);F (i)
0 )′� i,2kn∇h( f̂ (i);F (i)

0 )

x̃k := ∇h( f̂ (i);F (i)
0 )′ ˜� i,2kn∇h( f̂ (i);F (i)

0 )

The stopping criterion is

|xk − x̃k|
min (|xk|, |̃xk|) < 0.001

Upon stopping, the two independent samples of size 2kn are merged. Consequently Mi = 2k+1n,
where k is the smallest number such that the stopping criterion is satisfied.

The results of the simulation study are the following. In Figure A.1, the distribution of the differ-
ence between the simulated values of �V2 for the unconditional and the conditional specification of
θ̂

∗ is illustrated. The distribution is leptokurtic, has a slight positive skewness and is approximately
centred at zero. The mean and the median of this distribution are small relative the scale of the
data (−0.94× 1022 and 0.28× 1022, respectively). To quantify the uncertainty in these quantities,
95% bootstrap confidence intervals are computed based on the percentile method, see Efron and
Tibshirani (1994), yielding [− 1.2,−0.7]× 1022 and [0.2, 0.3]× 1022, respectively, using 105 boot-
strap samples. As a matter of fact, none of the bootstrap samples of the mean are above 0 and none
of the samples of the median are below 0. This indicates that the unconditional specification is better
on average (the mean is negative), but the conditional specification is better more often (the median
is positive). The practical relevance of this is, however, questionable since on the relative scale of the
data, the mean and median are both approximately zero, indicating that the difference between the
two estimators is negligible and that one should therefore focus on the computability of the esti-
mators. In Figure A.2, the ratio between the conditional and the unconditional estimators of the
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Figure A.3. Kernel density estimators of the esti-
mator α̂ of the mean of the first column and the
estimator τ̂ 2 of the variance of the first column.
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mators of the development factors. Some den-
sity curves are cut in order to make it easier to
visually discriminate between the development
factors centred close to 1.

0 100 200 300 400 500 600 700

0.
00

0.
01

0.
02

0.
03

0.
04

Figure A.5. Kernel density estimators of the
square roots of the variance estimators σ̂ 2j .

estimation error is shown. From this figure, it is clear that the two estimators are comparable and do
not deviate from each other by much.

The distribution of the difference between the �V2s is heavy tailed, and one is therefore led to
question whether this is due to the log-normally distributed error terms. Therefore, the marginal
distributions of the components of θ̂ are illustrated in Figure A.3 (first column parameters),
Figure A.4 (development factors) and Figure A.5 (chain ladder variances). The estimators of the
intercept of the first column and the development factors are, for all intents and purposes, marginally
Gaussian. The variances, however, do have heavier tails (the standard deviations are illustrated in
Figure A.5). This can have a large effect on the estimated process variance, and thus in turn on the
�V2s.
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Figure A.6. Kernel density estimators of the true
estimation error minus the estimated estimation
error based on the conditional (blue solid curve)
and the unconditional (red dashed curve) speci-
fication of θ̂

∗. Position 0 is marked by the black
dashed line.
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ratio of the estimation error and the process
variance. The blue solid curve is the density
for the estimated version of this ratio based
on the conditional specification, and the red
dashed curve is for the unconditional specifi-
cation. The corresponding vertical lines mark
the means of the respective distributions. The
black dashed vertical linesmark quantiles and
mean of the true distribution of this ratio.
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Figure A.8. Kernel density estimator of the ratio
between the estimated process variance based
on plug-in estimation and the true process vari-
ance. The red solid line marks the mean of
this ratio and the blue dashed line marks the
median.

So far the relative performance of the two estimators has been presented. It is of interest to
also investigate the absolute performance. Figure A.6 shows the distributions of the true estima-
tion error minus the estimated ones based on the conditional and unconditional specification of
θ̂

∗. It is seen that there is a tendency to overestimate the true estimation error, although there
is a tail to the right indicating that the estimation error will occasionally be greatly underesti-
mated. The mean estimation error in the simulations is 1.9× 1012 and the 95% quantiles of the
two above distributions are approximately 5× 1012. The estimated estimation error will therefore, in
the 95% worst case scenario, be underestimated on the scale of, approximately, 2.5 estimation error
means.

The practical relevance of estimating the estimation error requires that it is of size comparable to
the process variance. Figure A.7 shows the distributions of the estimated estimation errors divided
by the estimated process variances, together with dashed black vertical lines indicating some of the
quantiles of the distribution of the true estimation error divided by the true process variance. On
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average, the estimation error is half the size of the process variance, which is also more or less the
centre of the distributions of the estimated versions. The median, however, of the true distribution
lies approximately around 0.25. Therefore, it is as likely that the estimation error is greater than a
quarter of the process variance as that it would be less than a quarter of the process variance.

Finally, to illustrate how plug-in estimation of the process variance performs, Figure A.8 shows
the distribution of the ratio between the estimated process variance (based on plug-in) and the true
process variance. Both the mean and the median of this distribution lie close to 1, indicating that
on average the estimator yields the correct variance and that we are more or less equally likely to
overestimate it as to underestimate it. It is also seen that there are extreme cases where the variance
is estimated to be either half or double the true variance.
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