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Abstract
For given positive integers r ≥ 3, n and e≤ (n

2

)
, the famous Erdős–Rademacher problem asks for the min-

imum number of r-cliques in a graph with n vertices and e edges. A conjecture of Lovász and Simonovits
from the 1970s states that, for every r ≥ 3, if n is sufficiently large then, for every e≤ (n

2

)
, at least one

extremal graph can be obtained from a complete partite graph by adding a triangle-free graph into one
part.
In this note, we explicitly write the minimum number of r-cliques predicted by the above conjecture. Also,
we describe what we believe to be the set of extremal graphs for any r ≥ 4 and all large n, amending the
previous conjecture of Pikhurko and Razborov.
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1. Introduction
Given integers n≥ r ≥ 2, let Tr(n) denote the balanced complete r-partite graph on n vertices,
and let tr(n) denote the number of edges in Tr(n). The celebrated Turán Theorem [24] (with
the case r = 3 proved earlier by Mantel [13]) states that, for n≥ r ≥ 3, every n-vertex graph with
at least tr−1(n)+ 1 edges contains a copy of an r-clique Kr , that is, a complete graph on r ver-
tices. An unpublished result of Rademacher from 1941 (see [3]) states that, in fact, every n-vertex
graph with t2(n)+ 1 edges contains at least �n/2� copies of K3. The graph obtained from T2(n)
by adding one edge to the larger part shows that the bound �n/2� is tight. Rademacher’s theo-
rem motivated Erdős [3] to consider the following more general question, now referred to as the
Erdős–Rademacher problem: determine

gr(n, e) := min
{
N(Kr ,G) : G is an (n, e)-graph

}
, (1)

where an (n, e)-graphmeans a graph with n vertices and e edges andN(Kr,G) denotes the number
of r-cliques in G.

This problem has attracted a lot of attention and has been actively studied since it first appeared.
Various results covering special ranges of (n, e) were obtained (see e.g. [2, 4–7, 11, 12, 14, 18–20])
until Razborov [22] determined the asymptotic value of g3(n, e) using flag algebras. Later, using
different methods, Nikiforov [17] determined the asymptotic value of gr(n, e) for r = 4 and Reiher
[23] did this for all r ≥ 5. For some further related results, we refer the reader to [1, 8, 10, 15, 16,
21, 25].
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Determining the exact value of gr(n, e) seems very challenging due to multiple (conjectured)
extremal constructions. Given n and e in N := {1, 2, . . . } with e≤ (n

2
)
, let

k= k(n, e) := min {s ∈N : ts(n)≥ e} , (2)

that is, k is the smallest chromatic number that an (n, e)-graph can have. Let H1(n, e) (resp.
K(n, e)) denote the family of (n, e)-graphs that can be obtained from a complete (k− 1)-partite
(resp. complete multipartite) graph by adding a triangle-free graph into one part. Note that the
only difference between these two definitions is that we restrict the number of parts to k− 1 when
definingH1(n, e); thusH1(n, e)⊆K(n, e). Lovász and Simonovits [11] conjectured that for every
integer r ≥ 3 there exists n0 such that, for all positive integers n≥ n0 and e≤ (n

2
)
, it holds that

gr(n, e)=min
{
N(Kr ,H) : H ∈K(n, e)

}
, (3)

that is, at least one gr(n, e)-extremal graph is inK(n, e). Note that (3) trivially holds for e≤ tr−1(n)
when gr(n, e)= 0.

Erdős in [3] (resp. [4]) showed that (3) is true for r = 3 when e≤ t2(n)+ 3 (resp. e≤ t2(n)+ cn
for some constant c> 0). Lovász and Simonovits [11] (see also Nikiforov and Khadzhiivanov [19])
extended the result of Erdős to all e satisfying e≤ t2(n)+ �n/2�. Later, Lovász and Simonovits
[12] proved (3) for r ≥ 3 when e/

(n
2
)
lies in a small upper neighbourhood of 1− 1/m for

some integer m≥ r − 1. More recently, Liu, Pikhurko and Staden [9] determined g3(n, e) for all
positive integers n when e≤ (1− o(1))

(n
2
)
. Determining the exact value of gr(n, e) for r ≥ 4 is still

wide open in general.
Given n, e ∈N with e≤ (n

2
)
, let a∗ = a∗(n, e) ∈N

k be the unique vector such that

a∗
k := min

{
a ∈N : a(n− a)+ tk−1(n− a)≥ e

}
,

a∗
1 + · · · + a∗

k−1 = n− a∗
k , and a∗

1 ≥ · · · ≥ a∗
k−1 ≥ a∗

1 − 1,

where k= k(n, e) is as defined in (2). Thus a∗
k is the smallest possible part size that a k-partite

(n, e)-graph can have. Also, let

m∗ =m∗(n, e) :=
∑

{i,j}∈([k]2 )

a∗
i a

∗
j − e, and

h∗
r (n, e) :=

∑
I∈([k]r )

∏
i∈I

a∗
i −m∗ ·

∑
I′∈([k−2]

r−2 )

∏
j∈I′

a∗
j ,

where [k] := {1, . . . , k} and (X
k
)
:= {Y ⊆ X : |Y| = k}. Let T := K[A∗

1, . . . ,A
∗
k] be the complete k-

partite graph with parts A∗
1, . . . ,A

∗
k where |A∗

i | = a∗
i for i ∈ [k]. Let H∗ =H∗(n, e) be the graph

obtained from T by removing an m∗-edge star whose centre lies in A∗
k and whose leaves lie

in A∗
k−1. It is not hard to see (see e.g. the calculation in (10)) that 0≤m∗ ≤ a∗

k−1 − a∗
k , so the

graph H∗ is well-defined. Also, let H∗
1(n, e) be the family defined as follows: If m∗ = 0, take all

graphs obtained from T by replacing, for some i ∈ [k− 1], the bipartite graph T[A∗
i ∪A∗

k] with
an arbitrary triangle-free graph with a∗

i a∗
k edges. If m∗ > 0, take all graphs obtained from T by

replacing T[A∗
k−1 ∪A∗

k] with an arbitrary triangle-free graph with a∗
k−1a

∗
k −m∗ edges. Observe

that H∗
1(n, e)⊆H1(n, e) and every graph in H∗

1(n, e) has the same number of r-cliques (see Fact
2.2); also, the graph H∗ =H∗(n, e) is contained inH∗

1(n, e).
Sharpening the Lovász–Simonovits Conjecture, Pikhurko and Razborov [21, Conjecture 1.4]

conjectured that, for r ≥ 4 and sufficiently large n, every n-vertex graph with e≤ (n
2
)
edges and that

contains the minimum number of Kr is in K(n, e). However, we show here that this conjecture is
false (see Theorem 1.1 and Proposition 1.2) and present an amended version (see Conjecture 1.3)
as follows.
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First, we write explicitly the value of gr(n, e) predicted by the Lovász–Simonovits Conjecture.
(We also refer the reader to [9, Proposition 1.5] where similar results are proved for r = 3.)

Theorem 1.1. Suppose that r, n, e ∈N satisfy n≥ r ≥ 3 and e≤ (n
2
)
. Then

min
{
N(Kr ,G) : G ∈K(n, e)

}
= h∗

r (n, e). (4)

Moreover, if r ≥ 4 and e> tr−1(n), then{
G ∈K(n, e) : N(Kr ,G)= h∗

r (n, e)
}

=H∗
1(n, e). (5)

Note that, sinceH∗
1(n, e)⊆H1(n, e), Theorem 1.1 remains true if we replaceK(n, e) byH1(n, e).

In fact, the later version of the Lovász–Simonovits Conjecture from [12] states that, for all suf-
ficiently large n≥ n0(r), at least one gr(n, e)-extremal graph is in H1(n, e). By (4), these two
conjectures are equivalent. One should be able to show with some extra work that (5) also holds
for r = 3 (it is also implied by the results in [9] that (5) holds for most e, given n). Since our main
focus is the case r ≥ 4, we do not pursue this strengthening here.

Given integers n, e ∈N with e≤ (n
2
)
, we define the family H∗

2(n, e) as follows (with k, a∗,m∗
being as before). Take those graphs in H∗

1(n, e) that are k-partite, along with the following fam-
ily. Take disjoint sets A1, . . . ,Ak of sizes a∗

1, . . . , a
∗
k , respectively, and let m := m∗. If m∗ = 0

and a∗
1 ≥ a∗

k + 2, then we also allow (|A1|, . . . , |Ak|) =
(
a∗
2, . . . , a

∗
k−1, a

∗
1 − 1, a∗

k + 1
)
and letm :=

a∗
1 − a∗

k − 1. Take all graphs obtained from K[A1, . . . ,Ak] by removing any m edges, each con-
necting Bi to Ai for some i ∈ I, where I := {

i ∈ [k− 1] : |Ai| = |Ak−1|
}
and {Bi : i ∈ I} are some

pairwise disjoint subsets of Ak. Clearly, every graph inH∗
2(n, e) is an (n, e)-graph.

Proposition 1.2. Suppose that n≥ r ≥ 4 and tr−1(n)< e≤ (n
2
)
are integers. Then

N(Kr ,G)= h∗
r (n, e), for every G ∈H∗

2(n, e).

Also, there are infinitely many pairs (n, e) ∈N
2 with tr−1(n)< e≤ (n

2
)
such that H∗

2(n, e) \H∗
1(n, e) �= ∅.
We propose the following amended conjecture.

Conjecture 1.3. Let r ≥ 4 be fixed. For every sufficiently large integer n and every integer e with
tr−1(n)< e≤ (n

2
)
, it holds that

{
G : G is an (n, e)-graph with N(Kr,G)= gr(n, e)

}
=H∗

1(n, e)∪H∗
2(n, e).

For comparison with the case r = 3, the exact result of Liu, Pikhurko and Staden [9] valid for
e≤ (1− o(1))

(n
2
)
states that the set of g3(n, e)-extremal graphs is exactlyH∗

0(n, e)∪H∗
2(n, e) for a

certain explicit family H∗
0(n, e)⊇H∗

1(n, e), where the inclusion is strict for infinitely many pairs
(n, e). However, for r ≥ 4 and e> tr−1(n), every graph inH∗

0(n, e) \H∗
1(n, e) can be shown to have

more Kr ’s than H∗(n, e). (Basically, each such graph is obtained from a complete (k− 1)-partite
graph by adding edges into more than one part and cannot minimise the number of Kr ’s for r ≥ 4
by Lemma 2.5.)

For the purposes of this paper (namely for Proposition 1.2), only the difference H∗
2(n, e) \H∗

1(n, e) matters; we use the current definitions merely so that the families H∗
i (n, e) and Hi(n, e)

are the same as in [9].
The rest of the paper of organised as follows. In the next section, we present some definitions

and preliminary results. As a step towards proving Theorem 1.1, we first find extremal graphs
in a certain family H0(n, e) in Section 3 (see Proposition 3.1 for the exact statement). We derive
Theorem 1.1 in Section 4. The proof of Proposition 1.2 is presented in Section 5.
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2. Preliminaries
Given � pairwise disjoint sets A1, . . . ,A�, we use K[A1, . . . ,A�] to denote the complete �-partite
graph with parts A1, . . . ,A�; if we care only about the isomorphism type of this graph (i.e. only
the sizes of the parts matter), we may instead write Ka1,...,a�

, where ai := |Ai| for i ∈ [�].
Let G= (V , E) be a graph. By |G| we denote the number of edges in G. Let G :=

(
V ,

(V
2
) \ E

)

denote the complement of G. The subgraph of G induced by a set A⊆V is G[A] :=
(
A,

(A
2
) ∩ E

)
.

For disjoint A, B⊆V , we use G[A, B] to denote the induced bipartite graph with parts A and B
(which consists of edges connecting A to B).

In the remainder of this note, we assume unless it is stated otherwise that r, n, e ∈N satisfy
r ≥ 3 and e≤ (n

2
)
(and we minimise the number of r-cliques over (n, e)-graphs). Also, k= k(n, e)

is defined in (2).
Given a family F of (n, e)-graphs, we use Fmin to denote the collection of graphs F ∈F with

the minimum number of Kr ’s (over all graphs in F). For convenience, we set N(K0,G) := 1 and
N(K−1,G) := 0 for all graphs G.

Let the family H0(n, e) be the collection of all (n, e)-graphs that can be obtained from an n-
vertex complete (k− 1)-partite graph by adding a (possibly empty) triangle-free graph into each
part. It is clear from the definition thatH1(n, e)⊆H0(n, e).

The following fact follows from some simple calculations (with the argument for Part (i) being
the same as in (10)).

Fact 2.1. Let k, a∗,m∗,H∗, and h∗
r (n, e) be as defined in Section 1. Then it holds for all r ≥ 3 that

(i) 0≤m∗ ≤ a∗
k−1 − a∗

k ,
(ii) |Ka∗

1 ,...,a
∗
k
| − |Ka∗

1 ,...,a
∗
k−2,a

∗
k−1+1,a∗

k−1| = a∗
k−1 − a∗

k + 1,
(iii) N(Kr ,H∗)= h∗

r (n, e)≥ gr(n, e).

We also need the following simple facts for counting r-cliques in some special classes of graphs.

Fact 2.2. Let G be a graph, S⊆V(G) be a vertex set, and S := V(G) \ S. Suppose that the induced
subgraph G[S] is triangle-free, and the induced bipartite graph G[S, S] is complete. Then

N(Kr ,G)= |G[S]| ·N(Kr−2,G[S])+ |S| ·N(Kr−1,G[S])+N(Kr ,G[S]).

Fact 2.3. Suppose that G is a graph obtained from K[V1, . . . ,V�] by adding a triangle-free graph.
Let S := V1 ∪V2 and S := V(G) \ S. Then

N(Kr,G) = |G[V1]| · |G[V2]| ·N(Kr−4,G[S])
+ (|G[V1]| · |V2| + |G[V2]| · |V1|) ·N(Kr−3,G[S])
+ |G[S]| ·N(Kr−2,G[S])+ |S| ·N(Kr−1,G[S])+N(Kr ,G[S]).

Fact 2.4. Let G be a graph, S⊆V(G), and S := V(G) \ S. Suppose that the induced subgraph G[S]
is 3-partite, and the induced bipartite subgraph G[S, S] is complete. Then

N(Kr,G)=N(K3,G[S]) ·N(Kr−3,G[S])+ |G[S]| ·N(Kr−2,G[S])
+ |S| ·N(Kr−1,G[S])+N(Kr ,G[S]).

We will also use the following results.

Lemma 2.5. Let r ≥ 4 and let n, e ∈N satisfy tr−1(n)< e≤ (n
2
)
. Suppose that G ∈Hmin

0 (n, e) is a
graph with a vertex partition V(G)= B1 ∪ . . . ∪ Bk−1 such that G is the union of K[B1, . . . , Bk−1]
with a triangle-free graph. Then G contains at most one part Bi which is partially full, meaning that
0< |G[Bi]| < t2(|Bi|).
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Proof. Suppose to the contrary that G contains two partially full parts Bi and Bj for some 1≤ i<
j≤ k− 1. Let x := |G[Bi]|, σ := |G[Bi]| + |G[Bj]| and H := G[V(G) \ (Bi ∪ Bj)]. Observe from
Fact 2.3 that there exist constants C2, C3, C4 depending on |Bi|, |Bj| andH (but not on x) such that

N(Kr ,G)=N(Kr−4,H) · x(σ − x)+ C2x+ C3(σ − x)+ C4 =: P(x).

Let Gi be the graph obtained from G by moving one edge from G[Bj] to G[Bi] and rearranging
the latter graph to be still K3-free, which is possible by Mantel’s theorem. Similarly, let Gj be the
graph obtained from G by moving one edge from G[Bi] to G[Bj]. Note that N(Kr ,Gi)= P(x+ 1)
and N(Kr ,Gj)= P(x− 1). Since e> tr−1(n), we have

P(x+ 1)+ P(x− 1)− 2P(x)= −2N(Kr−4,H)< 0. (6)

Thus min
{
N(Kr ,Gi),N(Kr ,Gj)

}
<N(Kr ,G), contradicting the minimality of G. �

The following simple inequality from [9] will be useful. For completeness, we include its short
proof here.

Lemma 2.6 ([9, Lemma 4.5]). For all integers a≥ 1, k≥ 2, and n≥ ak, we have

a(n− a)+ tk−1(n− a)> (a− 1)(n− a+ 1)+ tk−1(n− a+ 1). (7)

Proof. Let a1 ≥ · · · ≥ ak−1 denote the part sizes of Tk−1(n− a). If we increase its number of
vertices by one, then the part sizes of the new Turán graph, up to reordering, can be obtained by
increasing ak−1 by one. Thus the difference between the expressions in (7) is

|Ka1,...,ak−1,a| − |Ka1,...,ak−2,ak−1+1,a−1| = ak−1a− (ak−1 + 1)(a− 1)= ak−1 − a+ 1, (8)

which is positive since ak−1 ≥ ⌊
(n− a)/(k− 1)

⌊ ≥ ⌊
(ak− a)/(k− 1)

⌋ = a. �

3. Extremal graphs inH0(n, e)
As an intermediate step towards Theorem 1.1, we will first prove the following result, which
determines the extremal graphs inH0(n, e).

Proposition 3.1. For all integers n≥ r ≥ 4 and tr−1(n)< e≤ (n
2
)
, we have that Hmin

0 (n, e)=
H∗

1(n, e).

We will use this result later to prove Theorem 1.1 by induction on the number of parts
in a graph in K(n, e). Note that, in general, neither K(n, e) nor H0(n, e) is a subfamily of the
other. However, when we work on the structure of extremal graphs in K(n, e) in the proof of
Theorem 1.1, some intermediate graphs may be inH0(n, e).

We need some further preliminaries before we can prove Proposition 3.1.
Given a graph G ∈Hmin

0 (n, e) with partition B1, . . . , Bk−1, we apply the following modification
to G to obtain a new graph H′ =H′(G) ∈Hmin

0 (n, e). Note that, in fact, these steps do not depend
on r.

Step 1: If there is a part Bi that is partially full in G, then let B := Bi (by Lemma 2.5, such Bi
is unique if it exists). Otherwise, take an arbitrary i ∈ [k− 1] with |G[Bi]| = t2(|Bi|) and
let B := Bi. Since |G| > tk−1(n), |G[Bi]| cannot be 0 for all i ∈ [k− 1]. Thus, the set B is
well-defined.

Step 2: Note that G− B is a complete multipartite graph. Let A1, . . . ,At−2 denote its parts. Let
ai := |Ai| for i ∈ [t − 2] and assume that a1 ≥ · · · ≥ at−2. Note that each original part B�

is either B, some Ai, or the union of two parts Ai and Aj.
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Step 3: Choose integers at−1 ≥ at ≥ 1 such that

at−1 + at = |B| and (at−1 + 1)(at − 1)< |G[B]| ≤ at−1at .

Note that this is possible by Mantel’s theorem since G[B] is triangle-free. Let At−1 �At =
B be a partition with |At−1| = at−1 and |At| = at . If |G[B]| = t2(|B|), then at−1 = �|B|/2�
and at = �|B|/2� and we assume that At−1 �At = B is the original partition of G[B] with
the two parts labelled so that |At−1| ≥ |At|.

Step 4: LetH′ be obtained from K[A1, . . . ,At] by removing a star whose centre lies in At andm′
leaves lie in At−1, where

m′ :=
∑

ij∈([t]2 )
aiaj − e= at−1at − |G[B]|. (9)

This is possible because, by Step 3,

0≤m′ = at−1at − |G[B]| ≤ at−1at − ((at−1 + 1)(at − 1)+ 1) = at−1 − at . (10)

Notice that to obtain H′ we only change the structure of G on B while keeping |G[B]| = |H′[B]|.
Thus, H′ ∈H0(n, e) and, since G[B,V(G) \ B] is complete bipartite and G[B] is triangle-free, it
follows from Fact 2.2 that N(Kr ,H′)=N(Kr,G), and hence, H′ ∈Hmin

0 (n, e).

Lemma 3.2. For all r ≥ 3, integers n and e with tr−1(n)< e≤ (n
2
)
and G ∈Hmin

0 (n, e), the graph H′
produced by Steps 1–4 above is isomorphic to H∗(n, e).
Proof. To prove thatH′ ∼=H∗(n, e), it suffices to show that t = k and (|A1|, . . . , |At|)= a∗, where
k and a∗ are as defined in Section 1.

Claim 3.3. If m′ = 0, then |H′[Ah ∪Ai ∪Aj]| > t2(ah + ai + aj) for all {h, i, j} ∈ ([t]
3
)
. If m′ > 0,

then |H′[Ah ∪At−1 ∪At]| > t2(ah + at−1 + at) for all h ∈ [t − 2].

Proof. Let S := Ah ∪Ai ∪Aj, with {i, j} = {t − 1, t} if m′ > 0. Suppose to the contrary that
|H′[S]| ≤ t2(|S|). Then let G1 be a new graph obtained from H′ by replacing H′[S] with a bipar-
tite graph of the same size. Note that the induced bipartite graph H′[S, S] is complete. (Indeed,
this is trivially true if m′ = 0 as then H′ =K[A1, . . . ,At]; if m′ > 0, then the only non-complete
pair is [At−1,At], but both sets lie in S.) Since H′ is t-partite, the graph G1 is (t − 1)-partite
(and with at most one non-complete pair of parts). By Steps 2–3, we have t ≤ 2(k− 1). So we
can represent G1 as the union of a complete (k− 1)-partite graph and a triangle-free graph,
which implies that G1 ∈H0(n, e). It is easy to see from Fact 2.4 that N(Kr ,G1)≤N(Kr ,H′), since
0=N(K3,G1[S])≤N(K3,H′[S]). So it follows from the minimality of H′ that N(K3,H′[S])= 0.
If {t − 1, t} is not a subset of {h, i, j}, then H′[S] is a complete 3-partite graph and contains
at least one traingle, contradicting N(K3,H′[S])= 0. Therefore, {t − 1, t} ⊆ {h, i, j}. By symme-
try, we may assume that {t − 1, t} = {i, j} (thus being consistent with our earlier assumption if
m′ > 0). Note that |H[At−1,At]| ≥ 1, since otherwise, we would have m′ ≥ at−1at > at−1 − at ,
contradicting (10). Note that each edge in H[At−1,At] is in |Ah| triangles in H[S], contradicting
N(K3,H′[S])= 0. �
Claim 3.4. If m′ > 0, then at−2 ≥ at−1.

Proof. Suppose to the contrary that at−2 ≤ at−1 − 1. Then let G2 be a new graph obtained
from H′ by moving edges from [At−2,At] to [At−1,At] until this is no longer possible. Let
S := At−2 ∪At−1 ∪At . IfAt−2 ∪At is an independent set inG2 (i.e. ifm′ ≥ at−2at), then |H′[S]| =
|G2[S]| ≤ t2(|S|), contradicting Claim 3.3. Thus G2[S] can be viewed as a graph obtained from
K[At−2,At−1,At] by removingm′ edges from K[At−2,At]. So G2 ∈H0(n, e). Note that

N(K3,G2[S])−N(K3,H′[S])=m′ (at−2 − at−1) < 0,
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which combined with Fact 2.4 implies that N(Kr ,G2)−N(Kr,H′)< 0, contradicting the mini-
mality of H′. �

If m′ > 0, let Ci := Ai for i ∈ [t]. If m′ = 0, let C1, . . . , Ct be a relabelling of A1, . . . ,At so that
the sizes of the sets are non-increasing. Regardless of the value of m′, the following statements
clearly hold:

(i) c1 ≥ · · · ≥ ct , where ci := |Ci| for i ∈ [t],
(ii) 0≤m′ ≤ ct−1 − ct ,
(iii) Claim 3.3 applies to all triples {Ci, Ct−1, Ct} for i ∈ [t − 2].

The rest of the proof is written so that it works for bothm′ = 0 andm′ > 0.

Claim 3.5. We have c1 ≤ ct−1 + 1.

Proof. Let S := C1 ∪ Ct−1 ∪ Ct . Note that

|Kc1−1,ct−1+1,ct | − |H′[S]| =m′ − ct−1 + c1 − 1=:m′′.
Suppose to the contrary that c1 ≥ ct−1 + 2. Thenm′′ ≥m′ + 1. Take a partitionC′

1 ∪ C′
t−1 ∪ C′

t = S
of sizes c1 − 1, ct−1 + 1, ct , respectively. Let HS be the graph obtained from K[C′

1, C
′
t−1, C

′
t] by

removingm′′ edges between C′
t−1 and C

′
t . This is possible sincem′′ ≤ (ct−1 + 1)ct . (Indeed, other-

wise |H′[S]| ≤ (c1 − 1)(ct−1 + ct + 1)≤ t2(|S|), contradicting Claim 3.3.) We have |HS| = |H′[S]|.
Let H′′ be the graph obtained from H′ by replacing H′[S] with HS. Note that H′′ ∈H0(n, e). It
follows fromm′ ≤ ct−1 − ct that

N(K3,H′[S])−N(K3,H′′[S]) = (
c1ct−1ct −m′c1

)
− (

(c1 − 1)(ct−1 + 1)ct − (m′ − ct−1 + c1 − 1)(c1 − 1)
)

≥ (c1 − ct)(c1 − ct−1 − 2)+ 1 ≥ 1,

which combined with Fact 2.4 implies that N(Kr ,H′)−N(Kr ,H′′)> 0, contradicting the mini-
mality of H′. �
Claim 3.6. We have t = k.

Proof. It suffices to show that tt−1(n)< e≤ tt(n). The upper bound e≤ tt(n) is trivial, since H′
is t-partite. So it remains to show that e> tt−1(n). Let T := H′[C1 ∪ · · · ∪ Ct−1]. It follows from
Claim 3.5 that T ∼= Tt−1(n− ct). Therefore,

|H′| − tt−1(n− ct)= |H′ \ T| = ct(n− ct)−m′. (11)

On the other hand, by viewing Tt−1(n) as a graph obtained from Tt−1(n− ct) by adding ct new
vertices into some parts, we obtain

tt−1(n)− tt−1(n− ct)≤ ct(n− ct−1 − 1).

By combining these two inequalities, we obtain

|H′| − tt−1(n)≥ ct(ct−1 + 1− ct)−m′ ≥ (ct − 1)(ct−1 − ct)+ ct > 0,

proving that e> tt−1(n). �
Claim 3.7. The sequence (|C1|, . . . , |Ck|) of part sizes is equal to a∗ = a∗(n, e).
Proof. Recall that t = k and, by (11), we have that

|H′| − tk−1(n− ck)= ck(n− ck)−m′ ≤ ck(n− ck). (12)

Let us show that ck is the smallest nonnegative integer a satisfying

f (a) := a(n− a)+ tk−1(n− a)≥ e.

https://doi.org/10.1017/S0963548324000269 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000269


Combinatorics, Probability and Computing 59

This inequality holds for a= ck by (12). Note that ck ≤ n/k as it is the smallest among c1 + · · · +
ck = n. Thus, by Lemma 2.6, it is enough to check that a= ck − 1 violates this condition. Notice
that

f (ck − 1)− f (ck)≤ 2ck − n− 1+ (n− ck − ck−1)= ck − ck−1 − 1.

Therefore, it follows fromm′ ≤ ck−1 − ck that

f (ck − 1)≤ f (ck)− (m′ + 1)≤ |H′| +m′ − (m′ + 1)< |H′|,
as desired.

Thus ck = a∗
k and (since t = k by Claim 3.6) we have (c1, . . . , ck)= a∗ by Claim 3.5, as

desired. �
Also, it follows from the definitions that m′ =m∗ and thus H′ is isomorphic to H∗(n, e). This

completes the proof of Lemma 3.2. �
Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Let G ∈Hmin
0 (n, e) be arbitrary. Let B1, . . . , Bk−1 be a vertex partition

such that G is the union of K[B1, . . . , Bk−1] with a triangle-free graph J. Let bi := |Bi| for i ∈
[k− 1]. Apply Steps 1–4 to G to obtain a k-partite graphH′ with parts A1, . . . ,Ak. By Lemma 3.2,
we have H′ ∼=H∗ := H∗(n, e). Assume that |Ai| = a∗

i for i ∈ [k] and that all missing edges of H′
(if any exist) go between Ak−1 and Ak.

The following claim follows from the definitions of Steps 1–4.

Claim 3.8. If i ∈ [k− 1] satisfies |G[Bi]| ∈
{
0, t2(bi)

}
, then H′[Bi]=G[Bi].

Since H′ is k-partite, it follows from the definitions of Steps 1–4 that exactly one part Bp of
G is divided into Aq ∪As in Steps 2–3, where, say, 1≤ q< s≤ k, while the remaining parts of G
correspond to the remaining parts of H′. In particular, bp = a∗

q + a∗
s .

Claim 3.9. We have |G[Bp]| > 0.

Proof. It follows fromm∗ ≤ a∗
k−1 − a∗

k that

|H′[Bp]| = a∗
qa

∗
s −m∗ ≥ a∗

qa
∗
s − (a∗

k−1 − a∗
k)> 0.

Combined with Claim 3.8, we see that |G[Bp]| > 0. �
Suppose first thatm∗ = 0. ThenH′ =K[A1, . . . ,Ak], andG can be obtained fromH′ by replac-

ing H′[Aq ∪As] with G[Bp]. Moreover, G[Bp] is a triangle-free graph with a∗
q + a∗

s vertices and
a∗
qa∗

s edges. If a∗
s = a∗

k , then it follows from the definition ofH∗
1(n, e) thatG ∈H∗

1(n, e). Otherwise,
|a∗

q − a∗
s | ≤ 1 (by the definition of a∗), and hence, G[Bp]∼= T2(a∗

q + a∗
s ). This implies that G does

not contain any partially full part, and hence, G=H′ ∈H∗
1(n, e).

Suppose that m∗ > 0. Since G[Ai,Aj] is complete for all {i, j} �= {q, s} and H′[Ai,Aj] is com-
plete iff {i, j} �= {k− 1, k}, we have {q, s} = {k− 1, k}. Thus G can be obtained from K[A1, . . . ,Ak]
by replacing K[Ak−1 ∪Ak] with a triangle-free graph with a∗

k−1a
∗
k −m∗ edges. This gives G ∈

H∗
1(n, e). We conclude that Hmin

0 (n, e)⊆H∗
1(n, e). Since H∗

1(n, e)⊆H0(n, e) and every graph in
H∗

1(n, e) contains the same number of Kr ’s, we haveHmin
0 (n, e)=H∗

1(n, e). �

4. Proof of Theorem 1.1
With Proposition 3.1 in hand, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Fix integers n≥ r ≥ 3 and e≤ (n
2
)
. Notice that (4) can be reduced to

min
{
N(Kr ,G) : G ∈K(n, e)

} ≥ h∗
r (n, e), since the other direction is trivially true. Suppose that
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G ∈Kmin(n, e) is a graph obtained from a complete �-partite graph by adding a triangle-free
graph to one part. We aim to show that N(Kr ,G)≥ h∗

r (n, e) when r ≥ 3 and, in addition, G ∈
H∗

1(n, e) when r ≥ 4 and e> tr−1(n). We prove this statement by induction on � + r. Notice that
if � = k− 1 (where k= k(n, e)) and r ≥ 4, then G ∈H0(n, e), and it follows from Proposition
3.1 that G ∈H∗

1(n, e), as desired. If � = k− 1 and r = 3, then G ∈H0(n, e), and it follows from
[9, Proposition 1.5] that N(K3,G)≥ h∗

3(n, e). So the statement is true for all pairs (�, r) with
� = k− 1 and r ≥ 3, and this serves as our base case.

Assume that � ≥ k and r ≥ 3. Let U1 ∪ · · · ∪U� =V(G) be a partition such that G is obtained
from the complete �-partite graph K[U1, . . . ,U�] by adding a triangle-free graph into U�. We can
assume thatU� is not an independent set (otherwise consider instead the (� − 1)-partition ofV(G)
where U�−1 and U� are merged together).

First, we prove (4). Assume that � ≥ r − 1, as otherwise h∗
r (n, e)= 0 and there is nothing to do.

Note that U� is as large as any other part: if some part Ui has strictly larger size then by moving
all edges from U� to Ui (by |Ui| > |U�| there is enough space for this) we strictly decrease the
number of r-cliques (since � ≥ r − 1), a contradiction. By relabelling parts U1, . . . ,U�−1, we may
assume that U1 is of smallest size among U1, . . . ,U�−1. Let Ĝ denote the induced subgraph of G
on U2 ∪ · · · ∪U�. Let n̂ := n− |U1| and ê := |Ĝ|. Let k̂ := k(n̂, ê) be as defined in (2) (while we
reserve k for k(n, e)).

Claim 4.1. We have k̂≤ k.

Proof. Let H∗ =H∗(n, e) be the k-partite graph as defined in Section 1. Assume that A∗
1, . . . ,A

∗
k

are the corresponding parts of H∗ of sizes a∗
1 ≥ · · · ≥ a∗

k , respectively. It is clear that |A∗
1| ≥ n

k . It
follows from the minimality of U1 that |U1| ≤ n−|U�|

�−1 ≤ n
k ≤ |A∗

1|. LetW1 ⊆A∗
1 be a set of size |U1|

and let H′ be the induced subgraph of H∗ on V(H) \W1. Observe that H′ is still a k-partite graph
and |H′| ≥ |Ĝ|. So it follows from the definition that k̂≤ k. �

Note that Ĝ can be viewed as a graph obtained from a complete (� − 1)-partite graph by adding
a triangle-free graph into one part; in particular, Ĝ ∈K(n̂, ê). Let Ĥ be H∗(n̂, ê) and let G′ be the
graph obtained from G by replacing Ĝ with Ĥ. It follows from the inductive hypothesis that

N(Kr , Ĥ)= h∗
r (n̂, ê)≤N(Kr , Ĝ) and N(Kr−1, Ĥ)≤N(Kr−1, Ĝ).

Hence,

h∗
r (n, e)≤N(Kr ,G′)=N(Kr, Ĥ)+ |U1| ·N(Kr−1, Ĥ)

≤N(Kr , Ĝ)+ |U1| ·N(Kr−1, Ĝ)=N(Kr ,G),

finishing the inductive step for proving (4).
Now suppose that r ≥ 4 and e> tr−1(n), and suppose for contradiction that G �∈H∗

1(n, e).
Reusing the notation introduced above, let us first derive a contradiction from assuming that
Ĝ �∈H∗

1(n̂, ê).
If ê> tr−1(n̂), then it follows from the inductive hypothesis that

N(Kr , Ĥ)<N(Kr , Ĝ) and N(Kr−1, Ĥ)≤N(Kr−1, Ĝ).

Therefore,

N(Kr ,G′)=N(Kr , Ĥ)+ |U1| ·N(Kr−1, Ĥ)
<N(Kr , Ĝ)+ |U1| ·N(Kr−1, Ĝ)=N(Kr ,G), (13)

contradicting the minimality of G.
So suppose that ê≤ tr−1(n̂). We have that � ≥ k≥ r. Recall that Ĝ is a graph obtained from an

(� − 1)-partite graph by adding a non-empty triangle-free graph. Thus, we have N(Kr , Ĥ)= 0<
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N(Kr , Ĝ). In addition, by (4), we have N(Kr−1, Ĥ)= h∗
r−1(n̂, ê)≤N(Kr−1, Ĝ). But then the same

calculation as in (13) gives a contradiction to the minimality of G.
Thus we have that Ĝ ∈H∗

1(n̂, ê). Let Â
∗
1 ∪ . . . ∪ Â∗

k̂
=V(Ĝ) be the partition of Ĝ as in the def-

inition of H∗
1(n̂, ê). Let B1 := U1 ∪ Â∗

1, Bi := Â∗
i for 2≤ i≤ k̂− 2, and Bk̂−1 := Âk̂−1 ∪ Âk̂. We

can view G as a graph obtained from K[B1, . . . , Bk̂−1] by adding triangle-free graphs into two
parts, namely G[B1] and G[Bk̂−1]. Since k̂≤ k by Claim 4.1, it holds that G ∈H0(n, e). Therefore,
it follows from Proposition 3.1 that G ∈H∗

1(n, e), finishing the proof of Theorem 1.1. �
Let us remark that if we replace the family K(n, e) in Theorem 1.1 by the larger family K′(n, e)

that consists of all graphs obtained from a complete partite graph by adding a triangle-free graph
(that is, we allow to add edges into more than one part) then the theorem will remain true. Indeed,
for r ≥ 4, the proof of Lemma 2.5 (which in fact works for any number of parts) shows that every
extremal graph K′(n, e) has at most one partially full part and thus belongs to K(n, e). For r = 3,
the equality in (4), will also remain true (again by the proof of Lemma 2.5 except the inequality in
(6) becomes equality).

5. Proof of Proposition 1.2
Proof of Proposition 1.2. First, we prove that N(Kr ,H)= h∗

r (n, e) for all H ∈H∗
2(n, e). Fix H ∈

H∗
2(n, e).
First consider the case when (|A1|, . . . , |Ak|)= a∗, where the sets A1, . . . ,Ak are as

in the definition of H∗
2(n, e). Let K := K[A1, . . . ,Ak], and m∗

i := |H[Bi,Ai]| for i ∈ I :={
j ∈ [k− 1] : |Aj| = |Ak−1|

}
. Note from the definition of I that for all i ∈ I, we have that

N(Kr−2,K[A1, . . . ,Ai−1,Ai+1, . . . ,Ak−1])=N(Kr−2,K[A1, . . . ,Ak−2]),

because we count r-cliques in two isomorphic graphs. Therefore,

N(Kr ,K)−N(Kr ,H)=
∑
i∈I

m∗
i ·N(Kr−2,K[A1, . . . ,Ai−1,Ai+1, . . . ,Ak−1])

=
∑
i∈I

m∗
i ·N(Kr−2,K[A1, . . . ,Ak−2])

=m∗ ·N(Kr−2,K[A1, . . . ,Ak−2])=N(Kr ,K)−N(Kr ,H∗). (14)

It follows that N(Kr ,H)=N(Kr ,H∗)= h∗(n, e), as desired.
Now suppose that (|A1|, . . . , |Ak|) �= a∗. Recall that then m∗ = 0, (|A1|, . . . , |Ak|)=

(a∗
2, . . . , a

∗
k−1, a

∗
1 − 1, a∗

k + 1),m= a∗
1 − a∗

k + 1, andH is a graph obtained from K[A1, . . . ,Ak] by
removing somem edges. Wemay assume that thesem edges were removed from parts [Ak−1,Ak],
since this does not affect the value of N(Kr ,H) by the calculation in (14). Now, by viewing H as
a graph obtained from K[A1, . . . ,Ak] by replacing K[Ak−1,Ak] with a triangle-free graph, we see
that H ∈H∗

1(n, e), and hence, N(Kr ,H)= h∗(n, e).
Next, we show that there are infinitely many pairs (n, e) ∈N

2 with tr−1(n)< e≤ (n
2
)
such that

H∗
2(n, e) \H∗

1(n, e) �= ∅. It is enough to chose (n, e) so that a∗
k−2 = a∗

k−1 andm
∗, a∗

k ≥ 2; the choice
that we use (in (15) below) is rather arbitrary.

Take any integers p≥ r − 1, q≥ 100, and 2≤m≤ q. Let n := 2pq+ q and e := (p
2
)
(2q)2 +

2pq2 −m. Note that e+m is the number of edges in the complete (p+ 1)-partite graph K2q,...,2q,q
with p parts of size 2q and one part of size q. The choice of (p, q,m) ensures that

e=
(
p
2

)
(2q)2 + 2pq2 −m>

(
p
2

) (
2pq+ q

p

)2
≥ tp(n).

By e< e+m≤ tp+1(n), we have that k(n, e)= p.
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Let us show that a∗
p = q. By Lemma 2.6, it is enough to show that (q− 1)(n− q− 1)+ tk−1(n−

q− 1)< e. The left-hand side here is the size of the graph obtained from the complete partite
graph K2q,...,2q,q by moving a vertex from the part of size q into one of size 2q. This results in
losing q+ 1>m edges, giving the required. Thus,

a∗
1 = · · · = a∗

p−1 = 2q, a∗
p = q, and m∗ =m. (15)

Let V1 ∪ · · · ∪Vp+1 = [n] be a partition such that |V1| = · · · = |Vp| = 2q and |Vp+1| = q. Fix m
distinct vertices v1, . . . , vm ∈Vp+1, and choose a vertex ui ∈Vi for every i ∈ [m]. Let G be the
graph obtained from K[V1, . . . ,Vp−1] by removing pairs in {{vi, ui} : i ∈ [m]}. It is easy to see
that G ∈H∗

2(n, e) \H∗
1(n, e), proving Proposition 1.2. �
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