SOME GENERALIZATIONS OF RAMANUJAN'S SUM

K. G. RAMANATHAN AND M. V. SUbBARAO

0. Introduction. Ramanujan's well known trigonometrical sum $C(m, n)$ defined by

$$
C(m, n)=\sum_{x} \mathrm{e}^{(2 \pi i m x / n)}
$$

where x runs through a reduced residue system $(\bmod n)$, had been shown to occur in analytic problems concerning modular functions of one variable, by Poincaré [4]. Ramanujan, independently later, used these trigonometrical sums in his remarkable work on representation of integers as sums of squares [6]. There are various generalizations of $C(m, n)$ in the literature (some also to algebraic number fields) ; see, for example, [9] which gives references to some of these. Perhaps the earliest generalization to algebraic number fields is due to H . Rademacher [5]. We here consider a novel generalization involving matrices.

In his important work on the analytic theory of quadratic forms and modular functions, Siegel [7] had introduced the notion of coprimality for matrices. Christian [2], in an interesting paper, generalized the notion of Euler's totient function and proved elementary properties of it. Since $C(m, n)$ for $m=n$ has the value $\phi(n)$, it seems interesting to study the Ramanujan sum for matrices. It turns out that this sum has multiplicative properties. However evaluating it seems a difficult problem except in the case of 2 rowed matrices. We however show how one can evaluate these sums for matrices of higher order provided the modulus is of a special type. These sums occur, in a rather complicated way, in the Fourier expansions of Eisenstein series [7].

Siegel's modular forms have been generalized in several ways. An important class is the so-called Hermitian modular forms due to H . Braun [1]. We take the simple example of the Hermitian pairs over the ring of Gaussian integers and evaluate the sums also in the case of two rowed matrices.

It is possible to generalize these results to the case of algebraic number fields. About these and other aspects we shall report on another occasion.

1. Coprime residue classes. Let $n \geqq 1$ be a natural number. We shall consider integral n-rowed matrices. For any such matrix A let A^{\prime} denote its transpose. A matrix U is said to be unimodular if $|U|= \pm 1$ so that U^{-1} is also an integral matrix.

Received October 16, 1978.

We call two integral matrices C and D a symmetric pair if
(1) $C D^{\prime}=D C^{\prime}$.

If U and V are unimodular matrices, it is clear that $U C V$ and $U D V^{\prime-1}$ are also a symmetric pair. We call two matrices C and D coprime if for every rational vector $\mathbf{x}, \mathbf{x}^{\prime} C, \mathbf{x}^{\prime} D$ integral implies \mathbf{x} is integral. In this case it follows that the matrix

$$
P=(C D)
$$

of n rows and $2 n$ columns has rank n and that there exist integer matrices X and Y such that

$$
C X+D Y=E=\left(\begin{array}{llll}
1 & & & 0 \tag{2}\\
& \cdot & & \\
& & \cdot & \\
0 & & & 1
\end{array}\right)
$$

E being the n-rowed unit matrix.
Let C be an integral non-singular n-rowed matrix. We say that two integral n-rowed matrices D_{1} and D_{2} are in the same residue class $\bmod C$ if

$$
\begin{equation*}
C^{-1} D_{1} \equiv C^{-1} D_{2}(\bmod 1) \tag{3}
\end{equation*}
$$

i.e., $C^{-1}\left(D_{1}-D_{2}\right)$ is an integral matrix. It is possible to determine the exact number of residue classes mod C. This had been done by Eisenstein.

A residue class mod C is said to be a symmetric residue class if any representative D of that class satisfies
(4) $\quad C^{-1} D \equiv\left(C^{-1} D\right)^{\prime}(\bmod 1)$.

If D_{1} is any other representative of that residue class then $C^{-1}\left(D-D_{1}\right)$ $\equiv 0(\bmod 1)$ and so

$$
C^{-1}\left(D-D_{1}\right) \equiv\left(C^{-1}\left(D-D_{1}\right)\right)^{\prime}(\bmod 1)
$$

Therefore from (4) it follows that

$$
C^{-1} D_{1} \equiv\left(C^{-1} D_{1}\right)^{\prime}(\bmod 1)
$$

A residue class represented by D is called a coprime residue class if C and D form a coprime pair. Then it is clear from (3) that C and D_{1} also form a coprime pair since $D_{1}=D+C T$ for some integral matrix T. We shall consider only coprime, symmetric residue classes mod C.

Let D run through a complete system of coprime symmetric residue classes mod C. We assert that for unimodular U and $V, U D V^{\prime-1}$ run through a complete residue system mod $U C V$ which are coprime and symmetric. That $U C V$ and $U D V^{\prime-1}$ are coprime, symmetric residue classes mod $U C V$ are easily verified. If D_{1} and D_{2} are distinct coprime
symmetric residue classes $\bmod C$, then $U D_{1} V^{\prime-1}, U D_{2} V^{\prime-1}$ are distinct $\bmod U C V$; for otherwise

$$
(U C V)^{-1}\left(U D_{1} V^{\prime-1}-U D_{2} V^{\prime-1}\right)
$$

which equals $V^{-1} C^{-1}\left(D_{1}-D_{2}\right) V^{\prime-1}$ cannot be $\equiv 0(\bmod 1)$ since it would mean

$$
C^{-1}\left(D_{1}-D_{2}\right) \equiv 0(\bmod 1)
$$

Since by the elementary divisor theorem U and V can be chosen so that
(5) $\quad U C V=\left(\begin{array}{llll}f_{1} & & & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & & f_{n}\end{array}\right)=F$
where $f_{i} \mid f_{i+1}, i=1,2, \cdots, n-1$, we shall consider only coprime, symmetric residue classes mod F.

We shall denote by F_{1}, F_{2}, \cdots matrices of the type (5), which are called elementary divisor matrices. Christian has proved [2]

Lemma 1. Let F_{1} and F_{2} be two elementary divisor matrices which are coprime. Let D_{1} run through a complete system of coprime symmetric residue classes $\bmod F_{1}$ and D_{2} similarly for F_{2}. Then $D=F_{1} D_{2}+F_{2} D_{1}$ runs through a complete system of coprime symmetric residue classes mod $F_{1} F_{2}$.

This shows that if $\phi_{n}(F)$ denotes the number of coprime, symmetric residue classes mod F, then

Lemma 2. If F_{1} and F_{2} are two coprime elementary divisor matrices, then

$$
\phi_{n}\left(F_{1} \cdot F_{2}\right)=\phi_{n}\left(F_{1}\right) \cdot \phi_{n}\left(F_{2}\right) .
$$

This lemma reduces the computation of $\phi_{n}(F)$ to the case where

$$
F=\left[p^{a_{1}}, \cdots, p^{a_{n}}\right], 0 \leqq u_{1} \leqq a_{2} \leqq \cdots \leqq a_{n}
$$

p being a prime number.
It is to be remarked that everything that has been mentioned above goes through in any commutative integrity domain, with unit, which has unique factorization into prime elements. For Lemma 2 it would be necessary to assume that the residue class ring modulo any element is a finite ring.
2. The trigonometric sum $W(F, T)$ and its evaluation for $n=2$. We now introduce the trigonometrical sums.

Let C be an integral non-singular n-rowed matrix and T any integral
symmetric matrix. Consider the sum

$$
\begin{equation*}
W(C, T)=\sum_{D} \mathrm{e}^{2 \pi i \sigma\left(C^{-1} D T\right)} \tag{6}
\end{equation*}
$$

where σ denotes matrix trace and D runs through a complete system of coprime symmetric residue classes mod C. It is clear that the sum is independent of the choice of representatives D in the residue class $\bmod C$. For if

$$
C^{-1} D \equiv C^{-1} D_{1}(\bmod 1),
$$

then

$$
\begin{equation*}
\sigma\left(C^{-1}\left(D-D_{1}\right) T\right)=\sigma(L T) \equiv 0(\bmod 1) \tag{7}
\end{equation*}
$$

L being an integral matrix.
Let U and V be two unimodular matrices. Then

$$
W(U C V, T)=\sum_{D_{1}(\bmod U C V)} \mathrm{e}^{2 \pi i \sigma\left((U C V)^{-1} D_{1} T\right)}
$$

where the summation is over a complete system of coprime, symmetric residues mod $U C V$. But if D runs through a complete system of coprime, symmetric residues $\bmod C$, then $U D V^{\prime-1}$ runs through a complete system $\bmod U C V$. Thus

$$
W(U C V, T)=\sum_{D} \mathrm{e}^{\left.2 \pi i \sigma(U C V)^{-1}\left(U D V^{\prime-1}\right) T\right)}
$$

which gives

$$
W(U C V, T)=\sum_{D} \mathrm{e}^{2 \pi i \sigma\left(\left(C^{-1} D V^{\prime-1} T V^{-1}\right)\right.}
$$

Therefore we have the relation

$$
\begin{equation*}
W\left(U C V^{\prime}, T\right)=W\left(C, V^{\prime-1} T V^{-1}\right) . \tag{8}
\end{equation*}
$$

Since for any C, U and V can be so chosen that

$$
U C V=F=\left(\begin{array}{llll}
f_{1} & & & 0 \\
& \cdot & & \\
& & \cdot & \\
\mathbf{0} & & & f_{n}
\end{array}\right)
$$

we get
(9) $\quad W(F, T)=\sum_{D} \mathrm{e}^{2 \pi i \sigma\left(F D^{-1} T\right)}$
where D runs through a complete system of coprime, symmetric residues $\bmod F$.
We call $W(F, T)$ the Ramanujan sum associated to F and T.

We shall now evaluate this sum for $n>1$. Because of Lemmas 1 and 2, we have

Lemma 3. If F_{1} and F_{2} are elementary divisor matrices which are coprime, then

$$
W\left(F_{1}, T\right) \cdot W\left(F_{2}, T\right)=W\left(F_{1} F_{2}, T\right) .
$$

We can therefore consider the case, p a prime and

$$
F=\left(\begin{array}{cccc}
p^{a_{1}} & & & \mathbf{0} \\
& \cdot & & \\
& & \cdot & \\
\mathbf{0} & & & \\
p^{\alpha_{n}}
\end{array}\right), \quad 0 \leqq a_{1} \leqq a_{2} \leqq \ldots \leqq a_{n} .
$$

We shall only consider the case $n=2$ as for $n \geqq 3$ the computations seem difficult.

Put

$$
F=\left(\begin{array}{cc}
p^{a_{1}} & 0 \\
0 & p^{a_{2}}
\end{array}\right), \quad T=\left(\begin{array}{ll}
t_{1} & t_{2} \\
t_{2} & t_{4}
\end{array}\right)
$$

integral symmetric. Let

$$
D=\left(\begin{array}{ll}
d_{1} & d_{2} \\
d_{3} & d_{4}
\end{array}\right) .
$$

Then

$$
F^{-1} D \equiv\left(F^{-1} D\right)^{\prime}(\bmod 1)
$$

so that

$$
\left(\begin{array}{ll}
p^{-a_{1}} d_{1} & p^{-a_{1}} d_{2} \\
p^{-a_{2}} d_{3} & p^{-a_{2}} d_{4}
\end{array}\right) \equiv\left(\begin{array}{ll}
p^{-a_{1}} d_{1} & p^{-a_{2}} d_{3} \\
p^{-a_{1}} d_{2} & p^{-a_{2}} d_{4}
\end{array}\right)(\bmod 1)
$$

which gives
(10) $\quad d_{3} \equiv p^{-a_{1}+a_{2}} d_{3}(\bmod 1)$.

Now, we have
(11) $W(F, T)=\sum_{d_{1}, d_{3}, d_{4}} \mathrm{e}^{2 \pi i\left(p-a_{1} d_{1} t_{1}+2 p-a_{12} d_{2} t_{2}+p-a_{2} d_{4} 4_{4}\right)}$
where d_{1}, d_{3}, d_{4} satisfy the following conditions:
(12) $\quad d_{1}\left(\bmod p^{a_{1}}\right), d_{2}\left(\bmod p^{a_{1}}\right), d_{4}\left(\bmod p^{a_{2}}\right)$
subject to the condition that F and D are coprime.
We shall consider three cases:
Case (i). $0=a_{1}<a_{2}$. Then
(13) $W(F, T)=\sum_{d_{3}, d_{4}} \exp \left(2 \pi i p^{-\alpha_{2}} d_{4} t_{4}\right)$
d_{3}, d_{4} satisfying (12) and F and D coprime. This means that the matrix

$$
\left(\begin{array}{cccc}
1 & 0 & d_{1} & d_{2} \tag{14}\\
0 & p^{a_{2}} & p^{a_{2}-a_{1}} d_{2} & d_{4}
\end{array}\right)
$$

can be completed to a matrix with determinant prime to p. In this case we have

$$
\left(d_{4}, p\right)=1
$$

This gives at once
(15) $W(F, T)=C\left(p^{a_{2}}, t_{4}\right)$
where $C(m, n)$ is the usual Ramanujan sum.
Case (ii). $0<a_{1}<a_{2}$. Then $W(F, T)$ is given by (11) and (12) and we have to look at the condition (14). It leads to

$$
\begin{equation*}
d_{1} d_{4} \not \equiv 0(\bmod p) . \tag{16}
\end{equation*}
$$

Since d_{1}, d_{2}, d_{4} are independent, we have

$$
\left.\begin{array}{l}
W(F, T)=\left(\sum_{\substack{d_{1}\left(\bmod p p^{a_{1}}\right) \\
\left(a_{1}, p\right)=1}} \exp \left(2 \pi i d_{1} t_{1} / p^{a}\right)\right) \\
\quad \times\left(\sum_{d_{2}\left(\bmod p^{a_{1}}\right)} \exp \left(4 \pi i d_{2} t_{2} / p^{a_{1}}\right)\right) \times\left(\sum_{d_{4}\left(\bmod p^{a_{2}}\right)}\left(d_{4}, p\right)=1\right.
\end{array} \exp \left(2 \pi i d_{4} t_{4} / p^{a_{2}}\right)\right) . .
$$

The second factor is zero unless $p^{a_{1}}$ divides $2 t_{2}$. In this case the value of $W(F, T)$ is

$$
\begin{equation*}
W(F, T)=C\left(p^{a_{1}}, t_{1}\right) \cdot C\left(p^{a_{2}}, t_{4}\right) \cdot p^{a_{1}} . \tag{17}
\end{equation*}
$$

Case (iii). $0<a_{1}=a_{2}$. The condition (14) now is given by the matrix

$$
\left(\begin{array}{cccc}
p^{a} & 0 & d_{1} & d_{2} \\
0 & p^{a} & d_{2} & d_{4}
\end{array}\right), \quad a=a_{1}=a_{2}>0
$$

having
(18) $d_{1} d_{4}-d_{2}{ }^{2} \neq 0(\bmod p)$.

We write the sum (11) as
(19) $W(F, T)=W_{1}+W_{2}$
where

$$
W_{1}=\sum_{\substack{d_{1}, d_{2}, a_{4} \\ p \mid d_{1}}}, \quad W_{2}=\sum_{\substack{d_{1}, d_{2}, a_{4} \\ p \not d d_{1}}} .
$$

Let us evaluate W_{1}. By (18), since $p \mid d_{1}$, and d_{4} is arbitrary, $p \nmid d_{2}$ and so we have

$$
\begin{aligned}
W_{1}=\left(\sum_{\substack{d_{1}\left(\underset{\left.\bmod p^{a}\right)}{p \backslash d_{1}}\right.}} \exp \left(2 \pi i d_{1} t_{1} / p^{a}\right)\right) \times & \left(\sum_{\substack{d_{2}\left(\underset{\left.\bmod p^{a}\right)}{p \nmid d_{2}}\right.}} \exp \left(2 \pi i \cdot 2 d_{2} t_{2} / p^{\prime \prime}\right)\right) \\
& \times\left(\sum_{d_{4}\left(\sum_{\left.\bmod p^{a}\right)}\right.} \exp \left(2 \pi i d_{4} t_{4} / p^{\prime \prime}\right)\right) .
\end{aligned}
$$

The last factor vanishes unless $p^{a} \mid t_{4}$ when its value is p^{a} and similarly the first factor vanishes unless $p^{a-s} \mid t_{1}$ in which case its value is p^{a-s}, where $p^{s}, s \leqq a$, is the higher power of p dividing d_{1}. Thus
(20) $\quad W_{1}=\left\{\begin{array}{l}0, \text { if } p^{a} \nmid t_{4} \text { or } p^{a-s} \nmid t_{1}, \quad 1 \leqq s<a \\ p^{2 a-s} C\left(p^{a}, 2 t_{2}\right), \text { otherwise. }\end{array}\right.$

Let us now consider the sum (20). We can write

$$
W_{2}=W_{3}+W_{4}
$$

where

$$
W_{3}=\sum_{\substack{d_{1}, d_{2}, d_{4} \\ p \nmid d_{1}, p \mid d_{4}}}, \quad W_{4}=\sum_{\substack{d_{1}, d_{2}, d_{4} \\ p \nmid d_{1} d_{4}}} .
$$

Let us consider W_{3}. Using (11) we have

$$
\begin{aligned}
& W_{3}=\left(\sum_{\substack{d_{1}\left(\underset{\sim}{\left.\bmod p^{a}\right)} \\
\text { p } \nmid d_{1}\right.}} \exp \left(2 \pi i d_{1} t_{1} / p^{a}\right)\right) \times\left(\sum_{\substack{d_{2}\left(\bmod ^{\left(p^{a}\right)} \\
\text { płd } p_{2}\right.}} \exp \left(2 \pi i \cdot 2 d_{2} t_{2} / p^{\prime \prime}\right)\right) \\
& \times\left(\sum_{\substack{d_{4}\left(\mathrm{~m}_{4} \mathrm{O} p^{a}\right) \\
\text { pld }}} \exp \left(2 \pi i d_{4} t_{4} / p^{\prime \prime}\right)\right) .
\end{aligned}
$$

As before we have
(21) $W_{3}= \begin{cases}0 & , \text { if } p^{a-s} \neq t_{4}, \quad 1 \leqq s<a \\ p^{a-s} C\left(p^{a}, t_{1}\right) \cdot C\left(p^{a}, 2 t_{2}\right), \text { otherwise. }\end{cases}$

We shall finally consider W_{4}. Write

$$
W_{4}=W_{5}+W_{6}
$$

where

$$
W_{5}=\sum_{\substack{d_{1}, d_{2}, d_{4} \\ p \nmid d_{1} d_{4}, p \mid d_{2}}}, \quad W_{6}=\sum_{\substack{d_{1}, d_{2}, d_{4} \\ p \nmid d_{1} d_{2} d_{4}}} .
$$

Again W_{5} is easy to evaluate. A simple computation gives
(22) $W_{5}= \begin{cases}0 & , \text { if } p^{a-s} \nless 2 t_{2}, \quad 1 \leqq s<a \\ p^{a-s} C\left(p^{a}, t_{1}\right) \cdot C\left(p^{a}, t_{4}\right), & \text { otherwise. }\end{cases}$

As for W_{6} we see that since $d_{1} d_{4}-d_{2}{ }^{2} \neq 0(\bmod p)$ and $p \nmid d_{1} d_{2} d_{4}$, p has necessarily to be odd. At this stage, for the sake of simplicity, we
shall assume that $t_{2}=0$. We shall again split the sum W_{6} as

$$
\begin{aligned}
& W_{6}=W_{7}+W_{8}+W_{9}, \text { where } \\
& W_{7}=\sum_{\substack{d_{1}=r \\
d_{4}=n}}, \quad W_{8}=\sum_{\substack{d_{1}=n \\
d_{4}=r}}, \quad W_{9}=\sum_{\substack{d_{1}, d_{4}=n \text { or } \\
d_{1}, d_{4}=r}}
\end{aligned}
$$

where r denotes quadratic residue and n denotes quadratic non residues $\bmod p^{a}$. It should be noted that in W_{7} and W_{8}, d_{2} is arbitrary prime to p with the conditions made; namely $d_{1} d_{4}-d_{2}{ }^{2} \not \equiv 0(\bmod p)$. Thus

$$
\begin{align*}
& W_{7}=\frac{\phi\left(p^{a}\right)-1}{2}\left(\sum_{n} \exp \left(2 \pi i n t_{4} / p^{a}\right)\right)\left(\sum_{r} \exp \left(2 \pi i r t_{1} / p^{a}\right)\right) \\
& W_{8}=\frac{\phi\left(p^{a}\right)-1}{2}\left(\sum_{r} \exp \left(2 \pi i r t_{4} / p^{a}\right)\right)\left(\sum_{n} \exp \left(2 \pi i n t_{1} / p^{a}\right)\right) \tag{23}
\end{align*}
$$

Under the conditions in the summation in $W_{9}, d_{1} d_{4}$ is always a quadratic residue. Therefore d_{2} should run over those d_{2} such that $d_{1} d_{4}-d_{2}{ }^{2} \neq 0$ $(\bmod p)$. For given d_{1}, d_{4} there are clearly 2 values of d_{2}. Since $t_{2}=0$, the summation over d_{2} for a given d_{1}, d_{4} will give

$$
\left(\phi\left(p^{a}\right)-2\right) \exp \left(2 \pi i d_{1} t_{1} / p^{a}\right) \exp \left(2 \pi i d_{4} t_{4} / p^{a}\right)
$$

and therefore

$$
\begin{align*}
W_{9}=\left(\phi\left(p^{a}\right)-2\right) & \left\{\left(\sum_{n} \exp \left(2 \pi i n t_{1} / p^{a}\right)\right)\left(\sum_{n} \exp \left(2 \pi i n t_{4} / p^{a}\right)\right)\right. \\
& \left.+\left(\sum_{r} \exp \left(2 \pi i r t_{1} / p^{a}\right)\right)\left(\sum_{r} \exp \left(2 \pi i r t_{4} / p^{a}\right)\right)\right\} \tag{24}
\end{align*}
$$

The sums inside the bracket can be summed by the use of classical results.

We have thus evaluated $W(F, T)$ in Case 3 .
3. Evaluation of special cases of $W(F, T)$ for $n>3$. Although it seems to be difficult to evaluate $W(F, T)$ in the general case $n \geqq 3$, we shall nevertheless obtain some results when F and T have special forms. For simplicity we shall assume that

$$
T=\left(\begin{array}{lll}
t_{1} & & \tag{25}\\
& \cdot & \\
& & \cdot \\
0 & & \\
0 & & \\
t_{n}
\end{array}\right)
$$

Since F is diagonal, F has the form

$$
F=\left(\begin{array}{cccc}
p^{a_{1}} E_{1} & & & \mathbf{0} \tag{26}\\
& \cdot & & \\
& & \cdot & \\
\mathbf{0} & & & \\
& & & p^{a_{k}} E_{k}
\end{array}\right), 0 \leqq a_{1}<\ldots<a_{k}
$$

where E_{i} is the unit matrix of order m_{i}, and

$$
m_{1}+m_{2}+\cdots+m_{k}=n
$$

We shall now assume that

$$
\begin{equation*}
m_{i}=1 \text { or } 2,1 \leqq i \leqq k . \tag{27}
\end{equation*}
$$

Split D up in the same form $D=\left(D_{k i}\right)$ where $D_{i j}$ is a matrix of m_{i} rows and columns. The symmetry condition then gives
(28) $p^{-a_{i} D_{i j}} \equiv p^{-a_{i} D^{\prime}}{ }_{j i}(\bmod 1)$
for all i, j. Thus $D_{i i}$ is symmetric mod 1 and since for $i<j, a_{i}<a_{j}$ we get
(29) $\quad D^{\prime}{ }_{j i} \equiv p^{a_{j}-a_{i}} D_{i j}\left(\bmod p^{a_{i}}\right)$
which means that

$$
\begin{equation*}
D_{j i} \equiv 0\left(\bmod p^{a_{i}-a_{i}}\right) . \tag{30}
\end{equation*}
$$

Put

$$
T=\left(\begin{array}{llll}
T_{1} & & & \mathbf{0} \\
& \cdot & & \\
& & \cdot & \\
\mathbf{0} & & & T_{k}
\end{array}\right)
$$

where T_{i} is a diagonal matrix of order m_{i}. Then

$$
\left(F^{-1} D T\right)=\sum_{j=1}^{k} \sigma\left(p^{-a_{j}} D_{j j} T_{j}\right) .
$$

Since we require the exponent mod 1 , we take $D_{j j}$ symmetric integral and by (20) $D_{i j}$ is arbitrary integral but $D_{j i}$ satisfies (30). Then
(31) $W(F, T)=\sum \exp \left(2 \pi i \sum_{j=1}^{k} \sigma\left(p^{-a_{j}} D_{j j} T_{j}\right)\right)$
where the summation is over

$$
D_{i j}\left(\bmod p^{a}\right), i \leqq j
$$

which satisfy the condition of coprimality of F and D. We distinguish two cases:
Case (i). $a_{1}=0$. In this case because of (30) the only condition is
(32) $\left(\prod_{i=2}^{k}\left|D_{i i}\right|, p\right)=1$.

Case (ii). $a_{1}>0$. Then we have by (30) again

$$
\begin{equation*}
\left(\prod_{i=1}^{k}\left|D_{i i}\right|, p\right)=1 \tag{33}
\end{equation*}
$$

From (31),

$$
\begin{equation*}
W(F, T)=\lambda \prod_{i=1}^{k} \sum_{D_{i i}} \exp \left(2 \pi i \sigma\left(p^{-a i} D_{i i} T_{i}\right)\right) \tag{34}
\end{equation*}
$$

where λ is a number that comes from summation over $D_{i j}, i<j$. This number λ can be easily seen to be

$$
\begin{equation*}
\lambda=p^{\mu}, \quad \mu=\sum_{1 \leqq i<j \leqq k} m_{i} m_{j} . \tag{35}
\end{equation*}
$$

From (34) we see how to evaluate the product. Since $m_{i}=1$ or 2 , each one of the terms in the product is an ordinary Ramanujan sum ($m_{i}=1$) or a generalized Ramanujan sum of type 3 discussed in the previous section with $m_{i}=2$. Note that the corresponding T_{i} is a diagonal matrix and so the considerations of the previous section apply.
4. Ramanujan sums involving matrices of Gaussian integers. We shall now give another generalization which is related to the theory of Hermitian modular functions. We shall only illustrate the case of the field of Gaussian numbers, $\mathbf{Q}(\sqrt{-1})$.

We consider the ring of n rowed matrices with Gaussian integers as entries. The Gaussian integers form a principal ideal ring. We denote this ring by \mathbf{o}. Two matrices C and D form a Hermitian pair if

$$
\begin{equation*}
C \bar{D}^{\prime}=D \bar{C}^{\prime} \tag{36}
\end{equation*}
$$

where bar denotes complex conjugation and ', as before, denotes the transpose. C and D are coprime if for any vector $\mathbf{x}^{\prime}=\left(x_{1}, \cdots, x_{n}\right)$ with elements in $\mathbf{Q}(\sqrt{-1}), \mathbf{x}^{\prime} C, \mathbf{x}^{\prime} D$ are in \mathbf{o} imply \mathbf{x} has entries in $\mathbf{0}$.

Let C be a non-singular matrix over \mathfrak{o}, i.e., with entries in \mathfrak{o}. Two matrices D_{1} and D_{2} are in the same residue class $\bmod C$ if

$$
C^{-1}\left(D-D_{2}\right) \equiv 0(\bmod \mathfrak{o})
$$

that is that this matrix has entries in \boldsymbol{o}. We can define a Hermitian residue class as that defined by D such that

$$
\begin{equation*}
C^{-1} D \equiv\left(\overline{\left.C^{-1} D\right)^{\prime}}(\bmod \mathfrak{o})\right. \tag{37}
\end{equation*}
$$

We denote by $\tilde{\phi}_{n}(C)$ the number of coprime Hermitian residue classes $\bmod C$. Since for unimodular matrices U and V, (that is matrices with elements in \mathfrak{D} and whose inverses also have elements in \mathfrak{o}) suitably chosen

$$
U C V=F=\left(\begin{array}{cccc}
f_{1} & & & \\
& \cdot & & 0 \\
& & \cdot & \\
0 & & & \\
0 & & & f_{n}
\end{array}\right)
$$

where f_{1}, \cdots, f_{n} are in V. We see that $\tilde{\phi}_{n}(C)=\tilde{\phi}_{n}(F)$ and has the multiplicative property with regard to $F . \tilde{\phi}_{n}(F)$ can be evaluated in much the same way as Christian has done with regard to $\phi_{n}(F)$.

We can now define the Ramanujan sum

$$
\begin{equation*}
\widetilde{W}(F, T)=\sum_{D} \mathrm{e}^{\pi i \sigma\left(F^{-1} D T\right)} \tag{38}
\end{equation*}
$$

where D runs through a complete system of coprime Hermitian matrices satisfying (37) mod F and T is a Hermitian matrix with elements in V. It again has the multiplicativity property and one needs to evaluate $\tilde{W}(F, T)$ only when

$$
F=\left(\begin{array}{cccc}
p^{q_{1}} & & & 0 \\
& \cdot & & \\
& & \cdot & \\
0 & & & \\
0 & & & p^{q_{n}}
\end{array}\right)
$$

where $0 \leqq a_{1} \leqq a_{2} \cdots \leqq a_{n}$ and (p) is a prime ideal in \mathfrak{D}. It should be noted that σ here denotes the algebraic trace of the matrix trace, the algebraic trace of any element $\alpha \in \mathbf{Q}(\sqrt{ }-1)$ being $\alpha+\bar{\alpha}$.

References

1. H. Braun, Hermitian modular functions, Annals of Math. 50 (1949), 829-855.
2. U. Christian, Über teiterfreude symmetrische Matrizenpaare, J. fur. Math. 22:! (1968), 43-49.
3. G. H. Hardy, Ramanujan (Cambridge, 1940).
4. H. Poincaré, Fonctions modulaires et fonctions Fuchsiennes, Ouevres. T2, 592-618.
5. H. Rademacher, Zur additiven Primzahltheorie algebrischer zahlkörper III, Math. Zeit. 27 (1928), 321-426.
6. S. Ramanujan, Collected Papers (Cambridge, 1927), 179-199.
7. C. L. Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Annalen 116 (1939), 617-657.
8. -_Über die analytische Theorie der quadratischen Formen, Ann. of Math. if (1935), 527-606.
9. M. V. Subbarao and V. C. Harris, A new generalization of Ramanujan's sum, J. London Math. Soc. 41 (1966), E35-604.

Tata Institute of Fundamental Research, Bombay, India;
University of Alberta,
Edmonton, Alberta

