EVALUATION OF AN E-FUNCTION WHEN TWO OF THE UPPER PARAMETERS DIFFER BY AN INTEGER

by T. M. MACROBERT
(Received 16th April, 1960)

1. Introductory. If $p \geqq q+1,[1, p .353]$

$$
\begin{align*}
& E\left(p ; \alpha_{r}: q ; \rho_{s}: z\right)= \sum_{r=1}^{p}\left[\prod_{i=1}^{p} \Gamma\left(\alpha_{t}-\alpha_{r}\right)\right]\left[\prod_{s=1}^{p} \Gamma\left(\rho_{s}-\alpha_{r}\right)\right]^{-1} \Gamma\left(\alpha_{r}\right) \\
& \times z^{\alpha_{r}} F\left\{\begin{array}{l}
\alpha_{r}, \alpha_{r}-\rho_{1}+1, \ldots, \alpha_{r}-\rho_{q}+1:(-1)^{p-q_{z}} z \\
\alpha_{r}-\alpha_{1}+1, \ldots * \ldots,-\alpha_{r} \alpha_{p}+1
\end{array}\right\} \\
&=\sum_{r=1}^{p} z^{\alpha_{r}} \sum_{n=0}^{\infty} \frac{\Gamma\left(\alpha_{r}+n\right) \prod_{i=1}^{p} \Gamma\left(\alpha_{t}-\alpha_{r}-n\right)}{n!\prod_{s=1}^{p} \Gamma\left(\rho_{s}-\alpha_{r}-n\right)}(-z)^{n}, \tag{1}
\end{align*}
$$

where, if $p=q+1,|z|<1$. The dash in the product sign indicates that the factor for which $t=r$ is omitted, while the asterisk indicates that the parameter $\alpha_{r}-\alpha_{r}+1$ is omitted.

Now, if two or more of the α 's are equal or differ by integral values, some of the series on the right cease to exist. For instance, if $\alpha_{1}=\alpha+l, \alpha_{2}=\alpha$, where l is a positive integer, the first two series are non-existent. In $\S 3$ it will be shown that they can be replaced by the expression

$$
\begin{align*}
& (-1)^{l} z^{a+1} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+l+n) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-l-n\right)}{n!(l+n)!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-l-n\right)} \Delta_{n} z^{n} \\
& \quad+z^{a^{\prime}} \sum_{n=0}^{l-1} \frac{\Gamma(a+n)(l-n-1)!\prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-n\right)}{n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-n\right)}(-z)^{n}, \tag{2}
\end{align*}
$$

where
$\Delta_{n}=\psi(l+n)+\psi(n)-\psi(\alpha+l+n-1)-\log z+\sum_{t=3}^{p} \psi\left(\alpha_{t}-\alpha-l-n-1\right)-\sum_{s=1}^{q} \psi\left(\rho_{s}-\alpha-l-n-1\right)$.
Here [1, p. 141]

$$
\begin{equation*}
\psi(z)=\frac{d}{d z} \log \Gamma(z+1) \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{d}{d z} \Gamma(z+1)=\Gamma(z+1) \psi(z) \tag{4}
\end{equation*}
$$

Formulae required in the proof are given in § 2; and, in § 4 certain integrals are evaluated with the aid of (1) and (2).

EVALUATION OF AN E-FUNCTION

2. Formulae required in the proof. If n is a positive integer,

$$
\begin{align*}
\psi(z+n) & =\psi(z)+\sum_{r=1}^{n} \frac{1}{z+r} \tag{5}\\
\psi(0) & =-\gamma \tag{6}
\end{align*}
$$

where γ is Euler's constant;

$$
\begin{equation*}
\psi(n)=\phi(n)-\gamma, \tag{7}
\end{equation*}
$$

where

$$
\begin{gather*}
\phi(n)=1+\frac{1}{2}+\ldots+\frac{1}{n}, \quad \phi(0)=0 ; \tag{8}\\
\psi(z)=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+z}\right)-\gamma \tag{9}\\
\psi\left(\frac{1}{2}+n\right)=2 \phi(2 n+1)-\phi(n)-2 \log 2-\gamma . \tag{10}
\end{gather*}
$$

Note. The approximate value of γ is $0.5772156649 \ldots$.
From the formula

$$
\begin{equation*}
\Gamma(z+1) \Gamma(-z)=-\pi \operatorname{cosec} \pi z \tag{11}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\psi(-z-1)=\psi(z)+\pi \cot \pi z \tag{12}
\end{equation*}
$$

and from the formula [1, p. 154]

$$
\begin{equation*}
\Gamma(m z)=(2 \pi)^{\frac{1}{2}-\frac{1}{t} m} m^{m z-\frac{1}{2}} \Gamma(z) \Gamma\left(z+\frac{1}{m}\right) \ldots \Gamma\left(z+\frac{m-1}{m}\right) \tag{13}
\end{equation*}
$$

where m is a positive integer, that

$$
\begin{equation*}
m \psi(m z-1)=m \log m+\sum_{t=0}^{m-1} \psi\left(z+\frac{t}{m}-1\right) \tag{14}
\end{equation*}
$$

From (13), on replacing z by $z-t / m$, where $t=1,2,3, \ldots, m-1$, it follows that

$$
\Gamma\left(z-\frac{t}{m}\right)_{s=1}^{m-1} \Gamma\left(z+\frac{s-t}{m}\right)=(2 \pi)^{\frac{1 m}{-t}} m^{-m z+\frac{1}{2}+t} \frac{\Gamma(1-z)}{\Gamma(1-m z+t)} \frac{\sin \pi(z+n)}{\sin \pi(m z+m n)}(-1)^{m n+n+t}
$$

where the dash on the product sign indicates that the factor for which $s=t$ is omitted. Here let $z \rightarrow-n$, where n is a positive integer, and so obtain

$$
\begin{equation*}
\Gamma\left(-\frac{t}{m}-n\right) \prod_{s=1}^{m-1} \Gamma\left(\frac{s-t}{m}-n\right)=(2 \pi)^{\frac{1}{m-\frac{1}{2}}} m^{m n-\frac{1}{2}+t} \frac{n!}{(m n+t)!}(-1)^{m n+n+t} \tag{15}
\end{equation*}
$$

Similarly it can be deduced from (13) that, if n is a positive integer,

$$
\begin{equation*}
\prod_{t=1}^{m-1} \Gamma\left(\frac{t}{m}-n\right)=(-1)^{m n+n}(2 \pi)^{\frac{1}{2} m-\frac{1}{2}} m^{m n-\frac{1}{2}} n!/(m n)!. \tag{16}
\end{equation*}
$$

Again, from (14) and (12),

$$
\sum_{t=1}^{m-1} \psi\left(\frac{t}{m}+z-1\right)=m \psi(-m z)-\psi(-z)-m \log m-m \pi \cot (\pi m z)+\pi \cot (\pi z)
$$

But, when $z \rightarrow-n$,

$$
\pi \cot (\pi z)-m \pi \cot (\pi m z) \rightarrow 0
$$

Hence, if n is a positive integer,

$$
\begin{equation*}
\sum_{i=1}^{m-1} \psi\left(\frac{t}{m}-n-1\right)=m \phi(m n)-\phi(n)-(m-1) \gamma-m \log m \tag{17}
\end{equation*}
$$

The following integral $[1, p .406]$ will also be required.
If m is a positive integer and $R(k)>0$,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E\left(p ; \alpha_{r}: q ; \rho_{s}: z / \lambda^{m}\right) d \lambda=m^{k-\frac{1}{2}}(2 \pi)^{\frac{1}{2}-\frac{1}{2} m} E\left(p+m ; \alpha_{r}: q ; \rho_{s}: z / m^{m}\right) \tag{18}
\end{equation*}
$$

where

$$
\alpha_{p+1+v}=(k+v) / m \quad(v=0,1,2, \ldots, m-1)
$$

3. Proof of the formula. If $\alpha_{1}=\alpha+l, \alpha_{2}=\alpha+\varepsilon$, where l is zero or a positive integer and ε is small, the sum of the first two series on the right of (1) can be written

$$
\begin{aligned}
& z^{\alpha+l} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+l+n) \Gamma(-l-n+\varepsilon) \prod_{t=3}^{p} \Gamma\left(a_{t}-\alpha-l-n\right)}{n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-l-n\right)}(-z)^{n} \\
& \quad+z^{\alpha+\varepsilon} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+n+\varepsilon) \Gamma(l-n-\varepsilon) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-n-\varepsilon\right)}{n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-n-\varepsilon\right)}(-z)^{n} \\
& =(-1)^{t} z^{\alpha+l} \sum_{n=0}^{\infty} \frac{\Gamma(\alpha+l+n) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-l-n\right)}{n!\Gamma(1+l+n-\varepsilon) \prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-l-n\right)} \frac{\pi}{\sin \pi \varepsilon} z^{n} \\
& \quad=(-1)^{l} z^{\alpha+\varepsilon} \sum_{n=l}^{\infty} \frac{\Gamma(\alpha+n+\varepsilon) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-n-\varepsilon\right)}{n!\Gamma(1-l+n+\varepsilon) \prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-n-\varepsilon\right)} \frac{\pi}{\sin \pi \varepsilon} z^{n} \\
& \quad+z^{\alpha+\varepsilon} \sum_{n=0}^{l-1} \Gamma(\alpha+n+\varepsilon) \Gamma(l-n-\varepsilon) \prod_{t=3}^{p} \Gamma\left(\alpha_{t}-\alpha-n-\varepsilon\right) \\
& n!\prod_{s=1}^{q} \Gamma\left(\rho_{s}-\alpha-n-\varepsilon\right)
\end{aligned}
$$

The limit when $\varepsilon \rightarrow 0$ of the first two terms is obtained by removing the factor $\pi / \sin \pi \varepsilon$, then differentiating with respect to ε, and finally making $\varepsilon \rightarrow 0$. On replacing n by $l+n$ in the second series formula (2) is obtained.
4. Evaluation of certain integrals. Formula (2) can be employed to evaluate certain integrals.

For example, if $|\operatorname{amp} z|<\pi$,

$$
\int_{0}^{\infty} \frac{e^{-t} d t}{z+t}=z^{-1} \int_{0}^{\infty} e^{-t} E(1:: z / t) d t=z^{-1} E(1,1:: z)
$$

by (18). From (2), with $l=0, \alpha=1, p=2, q=0$, this becomes

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}[\psi(n)-\log z]
$$

Hence, if $|\operatorname{amp} z|<\pi$,

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-t} d t}{z+t}=\sum_{n=0}^{\infty} \frac{\phi(n)}{n!} z^{n}-(\gamma+\log z) e^{z} \tag{19}
\end{equation*}
$$

Again, from (18), (1) and (2), if $|\operatorname{amp} z|<\frac{1}{2} \pi$,

$$
\begin{aligned}
\int_{0}^{\infty} \frac{e^{-t} d t}{z^{2}+t^{2}} & =z^{-2} \int_{0}^{\infty} e^{-t} E\left(1:: z^{2} / t^{2}\right) d t=\pi^{-\frac{1}{2}} z^{-2} E\left(1,1, \frac{1}{2}:: \frac{1}{4} z^{2}\right) \\
& =\frac{1}{4 \sqrt{ } \pi} \sum_{n=0}^{\infty} \frac{\Gamma\left(-\frac{1}{2}-n\right)}{n!}\left[\begin{array}{c}
\psi(n)-2 \log \left(\frac{1}{2} z\right) \\
+\psi\left(-n-\frac{3}{2}\right)
\end{array}\right]\left(\frac{z^{2}}{4}\right)^{n}+\frac{1}{2} \pi z^{-1} F\left(: ; \frac{1}{2} ;-\frac{1}{4} z^{2}\right)
\end{aligned}
$$

Here apply (12) and (10), and so get

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-t} d t}{z^{2}+t^{2}}=\frac{1}{2} \pi z^{-1} \cos z-\sum_{n=0}^{\infty} \frac{\phi(2 n+1)}{(2 n+1)!}\left(-z^{2}\right)^{n}+(\gamma+\log z) \sin z / z \tag{20}
\end{equation*}
$$

where $|\operatorname{ampz}|<\frac{1}{2} \pi$.
Note. For large values of $|z|$ the asymptotic expansions of the E-functions can be employed in evaluating the integrals in (19) and (20).

More generally, if $R(k)>0, \mid$ amp $z \mid<\pi$, and if l and m are positive integers,

$$
\int_{0}^{\infty} \frac{e^{-t} t^{k-1}}{\left(z+t^{m}\right)^{l}} d t=\frac{z^{-1}}{\Gamma(l)} \int_{0}^{\infty} e^{-t} t^{k-1} E\left(l:: z / t^{m}\right) d t
$$

and therefore, from (18),

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-t} t^{k-1}}{\left(z+t^{m}\right)^{!}} d t=\frac{m^{k-t} z^{-l}}{(2 \pi)^{ \pm m-t} \Gamma(l)} E\left(l, \frac{k}{m}, \frac{k+1}{m}, \ldots, \frac{k+m-1}{m}:: z / m^{m}\right) \tag{21}
\end{equation*}
$$

In particular, if $l=1, k=m$,

$$
\int_{0}^{\infty} \frac{e^{-t} t^{m-1}}{z+t^{m}} d t=m^{m-\frac{1}{t}}(2 \pi)^{\frac{t}{-t m}} z^{-1} E\left(1,1,1+\frac{1}{m}, \ldots, 1+\frac{m-1}{m}:: z / m^{m}\right)
$$

T. M. MACROBERT

Now, from (1) and (2), the E-function is equal to

$$
\begin{aligned}
& z \sum_{n=0}^{\infty}\left\{\prod_{t=1}^{m-1} \Gamma\left(\frac{t}{m}-n\right)\right\} \frac{z^{n}}{n!}\left[\psi(n)-\log z+\sum_{t=1}^{m-1} \psi\left(\frac{t}{m}-n-1\right)\right] \\
+ & z \sum_{t=1}^{m-1} z^{t / m} \sum_{n=0}^{\infty} \Gamma\left(1+\frac{t}{m}+n\right)\left\{\Gamma\left(-\frac{t}{m}-n\right)\right\}^{2}\left\{\prod_{s=1}^{m-1} \Gamma\left(\frac{s-t}{m}-n\right)\right\} \frac{(-z)^{n}}{n!}
\end{aligned}
$$

Here apply (16), (17) and (15), and so get

$$
\begin{align*}
& \int_{0}^{\infty} \frac{e^{-t} t^{m-1}}{z+t^{m}} d t=m^{m-1} \sum_{n=0}^{\infty} \\
& \frac{\left\{(-1)^{m+1} m^{m} z\right\}^{n}}{(m n)!}\left[\begin{array}{c}
\phi(m n)-m \gamma \\
-m \log m-\log z
\end{array}\right] \tag{22}\\
&-\pi m^{m-1} \sum_{t=1}^{m-1} \frac{\left(-m z^{1 / m}\right) t}{\sin (\pi t / m)} \sum_{n=0}^{\infty} \frac{\left\{(-1)^{m+1} m^{m} z\right\}^{n}}{(m n+t)!}
\end{align*}
$$

where m is a positive integer and $|\operatorname{amp} z|<\pi$.
Again, in (21), put $l=1, k=1$ and get

$$
\begin{aligned}
& \int \frac{e^{-t} d t}{z^{2}+t^{m}}=(2 \pi)^{\frac{1}{2}-\frac{1}{2} m} m^{\frac{1}{2}} z^{-1} E\left(1,1, \frac{1}{m}, \frac{2}{m}, \ldots, \frac{m-1}{m}:: z / m^{m}\right) \\
& =(2 \pi)^{\frac{1}{2}-\frac{1}{2} m} m^{\frac{1}{2}-m} \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{m-1} \Gamma\left(\frac{t}{m}-1-n\right)}{n!}\left(\frac{z}{m^{m}}\right)^{n}\left[\begin{array}{l}
\psi(n)-\log \left(z / m^{m}\right) \\
+\sum_{i=1}^{m-1} \psi\left(\frac{t}{m}-2-n\right)
\end{array}\right] \\
& +(2 \pi)^{\frac{1}{2}-\frac{1}{2} m} m^{\frac{1}{t}} z^{-1} \sum_{t=1}^{m-1}\left(\frac{z}{m^{m}}\right)^{t / m} \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{t}{m}+n\right)\left\{\Gamma\left(1-\frac{t}{m}-n\right)\right\}^{2}\left\{\prod_{s=1}^{m-1} \Gamma\left(\frac{s-t}{m}-n\right)\right\}}{n!}\left(\frac{-}{m^{m}}\right)^{n}
\end{aligned}
$$

Here apply formulae (16) and (17) with $n+1$ in place of n, and formula (15); then, if $|\operatorname{amp} z|<\pi$,

$$
\begin{align*}
\int_{0}^{\infty} \frac{e^{-t} d t}{z+t^{m}}=\frac{(-1)^{m+1}}{m} \sum_{n=0}^{\infty} \frac{\left\{(-1)^{m+1} z\right\}^{n}}{(m n+m-1)!}\left[\begin{array}{c}
m \phi(m n+m-1) \\
-m \gamma-\log z
\end{array}\right] \\
\quad-\frac{\pi}{m z} \sum_{t=1}^{m-1} \frac{\left(-z^{1 / m}\right)^{t}}{\sin (\pi t / m)} \sum_{n=0}^{\infty} \frac{\left\{(-1)^{m+1} z\right\}^{n}}{(m n+t-1)!} . \tag{23}
\end{align*}
$$

Note. Formulae (19) and (20) are particular cases of (22) and (23).

REFERENCE

1. T. M. MacRobert, Functions of a complex variable (London, 1954).

The University
Glasgow

