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NUMERICAL SOLUTION OF AN OPTIMAL CONTROL PROBLEM
WITH VARIABLE TIME POINTS IN THE OBJECTIVE FUNCTION
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Abstract

In this paper, we consider the numerical solution of a class of optimal control problems
involving variable time points in their cost functions. The control enhancing transform is
first used to convert the optimal control problem with variable time points into an equivalent
optimal control problem with fixed multiple characteristic time (MCT). Using the control
parametrization technique, the time horizon is partitioned into several subintervals. Let the
partition points also be taken as decision variables. The control functions are approximated
by piecewise constant or piecewise linear functions in accordance with these variable
partition points. We thus obtain a finite dimensional optimization problem. The control
parametrization enhancing control transform (CPET) is again used to convert approximate
optimal control problems with variable partition points into equivalent standard optimal
control problems with MCT, where the control functions are piecewise constant or piecewise
linear functions with pre-fixed partition points. The transformed problems are essentially
optimal parameter selection problems with MCT. The gradient formulae for the objective
function as well as the constraint functions with respect to relevant decision variables are
obtained. Numerical examples are solved using the proposed method.

1. Introduction

Optimal control theory has many successful practical applications in areas ranging
from economics to various engineering disciplines. Since most practical problems are
rather too complex to allow analytical solutions, numerical methods are unavoidable
for solving these complex practical problems. There are numerous computational
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methods for solving various practical optimal control problems. For details, see
[3,10-12] and [9]. In particular, the control parametrization technique is used in [11],
while the control parametrization enhancing technique (CPET) is introduced in [7].

In this paper, we consider the numerical solution of a optimal control problem
involving variable time points. Its motivation comes from a situation in which a target
is moving as a function of time in a space. A space-craft is launched into the Space and
its trajectory is maneuvered by certain control actions. The mission of the space-craft
is to take measurements at various time points over a given mission period which is
divided into a number of time subintervals. Each of the time points is to be selected
from the respective time subinterval. Suppose we wish to take the measurement in
each time subinterval at the time point at which the distance between the moving
target and the space-craft is minimum. Let the sum of these distances be the cost
function. Then we have an optimal control problem, where the control actions of the
space-craft and the variable time points are to be chosen optimally with respect to
the given cost function. A different problem, also involving variable time points, has
been discussed in [2] and [1] from the theoretical point of view. In that problem, each
equation in the dynamical system is defined on an interval with variable initial and
termination time points which are decision variables. The dynamical system of the
problem considered here has fixed initial and termination time points, but has some
variable observation time points within the time interval. Also, the main focus of
the present paper is to present some efficient techniques for the numerical solution
of optimal control problems with variable time points, while [2] and [1] are only
concerned with the theory of necessary optimality conditions for their problems. The
rest of our paper is organized as follows.

A general class of optimal control problems containing the situation just mentioned
above as an example is formulated in Section 2, where the cost function includes
multiple variable time points. The control parametrization enhancing technique is
used to transform the problem into a form solvable by the control parametrization
technique in Section 3. More specifically, the control parametrization transform [7] is
first used to convert the optimal control problem with variable time points to an equiv-
alent optimal control problem with fixed multiple characteristic time (MCT) (cf. [8]).
Using the control parametrization technique [11], the time horizon is partitioned into
several subintervals. The control functions are approximated by piecewise constant
or piecewise linear functions with pre-fixed partition points. We thus obtain a finite
dimensional optimization problem. Clearly, a finer partition would produce a more
accurate solution. It is also intuitively clear that the number of partitions can be much
reduced if the partition points are taken as decision variables. However, it is pointed
out in [12] that there are several numerical difficulties associated with such a direct
approach. The control parametrization enhancing control transform (CPET) (cf. [12])
is used to convert approximate optimal control problems with variable partition points
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into equivalent standard optimal control problems with MCT, where the control func-
tions are piecewise constant or piecewise linear continuous functions with pre-fixed
partition points. The transformed problems are essentially optimal parameter selection
problems with MCT. The gradient formulae for the objective function as well as the
constraint functions with respect to relevant decision variables are derived in Section 4.
With these gradient formulae, each of the transformed optimal control problems is
solvable as an optimal parameter selection problem, and the software MISER 3.2 [6]
can be modified for solving these optimal parameter selection problems. In Section 5,
two examples are solved using the proposed method. Section 6 concludes the paper.

2. Problem formulation

Consider a process described by the following system of differential equations
defined on [0, T\.

x(t) = f(t,x(t),u(t),z(t)), (2.1)

x(0) = x0, (2.2)

where T is a fixed terminal time, x = [xu ... , xn]
T e K ° , H = [ « , , . . . , um]T e Rm

and z = [zu ••• ,zp]
T e Kp are, respectively, state, control and system parameters,

while f = \fi,... ,fn]
T € K" is a continuously differentiable function with respect

to all its arguments, and x° is a given vector.
Let r̂  and rj, i = 0, 1 , . . . , k, be constants in the time interval [0, T] such that

To = To = O < T L < r T < ^ < ^ < - - - <x]L<Tk < T. (2.3)

Furthermore, let a, and bt, i — 1 , . . . , 5, c,, and dh i = 1 , . . . , m, be fixed constants.
Define

V = [t = [/,, . . . , hf € R* : t, e [T,, rfl, « = 1, • • • , k),

Z = [z = [zu ..., ZrY € W : a, < z, < h, i = 1 , . . . , r),

U = {u = [ « , , . . . , um]T € Km : c, < Ui < dit i = 1 , . . . , m).

Any Borel measurable function u : [0, T] -*• U is called an admissible control. Let
ty be the class of all admissible controls. For each («, z) € *% x Z, let x(- | u, z)
denote the corresponding solution of the system (2.1)-(2.2).

Our optimal control problem may now be formally stated as: Given the dynamical
system (2.1M2.2), find a ( r , w , z ) e V x ^ x Z such that the cost function

k

g0(t, u,z) = J^ <J>,(r,, x(t, | ii, z)) (2.4)
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is minimized subject to the constraints

gj0,,x(t,\u,z),z)<0, j =l,...,q, i = \,...,k, (2.5)

ai<Zi<bt, i = l , 2 , . . . , r , (2.6)

ci < u,(t) < dt, i = 1, 2 , . . . , m, t € [0, T], (2.7)

li^'.-^rr, i = 1,2,...,*, (2.8)

where <&,•(/,-, x), i = 1, 2, . . . , * , and &•(/,-, x,z) <0,j = 1 q,i = \ *, are
continuously differentiable real valued functions on [0, T] x R" and [0, T] x K" x Kr,
respectively. Let this optimal control problem be referred to as Problem (P).

3. Transformation

Let s € [0, k + 1] be a new time variable and let v{s) be defined by

(3-1)

where X[i-i,o is m e indicator function of the interval [i — 1, i) and u, are nonnegative
constants. Clearly, v(s) is a nonnegative piecewise constant function, which is called
the enhancing control, defined on [0, k + 1] with fixed switching points located at
{1 ,2 , . . . ,*} .

The control parametrization enhancing transform (CPET) maps / e [0, T] to s e
[0, k + 1] as follows:

- / = v{s), * (0) = 0,

where

U - f i - i , J € [i — 1, 0, i = 1,2,...,*;

and satisfies

v(s) = I ' ' *
\T-tk, s € [ * , * + ! ]

E/< / w(i)rf5<T,, i = l , . . . , * , and (3.2)

/
Jo

(3.3)

Such a function is called an enhancing control; let V* denote the class of all such
enhancing controls.
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Under the CPET, the system dynamics change to

s e[O,k+ 1], (3.4)
\ 1 /

with initial condition

(3.5)

where y(s) = x(t(s)) and w(s) = u(t(s)). The constraints

Ci < «,(0 < 4 , i = l ,2 m, ( € [0, T], (3.6)

reduce to

ct<w,(s)<di, i = l ,2, . . . ,m , 5 € [ 0 , * + l ] . (3.7)

Define u>(.s) = (u>i(s), 102(5),..., iom(i)) where wh i = 1 , . . . , m, satisfy the
constraints (3.7). Let W be the set of all such functions w(s), and the Problem (P)
is now transformed into the following optimal control problem: Given the dynamical
system (3.4)-(3.5), find an admissible element (v, w, z) e y* x W x Z such that the
cost function:

go(v, w,z) = Y^ *, 1^2 vj,y(i I 10, z)z) (3.8)

is minimized subject to the constraints:

j,y(i),z\<0, 7 = 1 I, i = l,...,k, (3.9)

fli;<Zi <bi, i=l,2,...,r, (3.10)

c,<wt(s)<dh i = l , 2 , . . . , m , * € [ 0 , * + l ] , (3.11)

u(5) € y . (3.12)

This problem is referred to as Problem (P*).
An admissible element (v, w, z) e "V* x W x Z (respectively, (f, M, Z)) is called a

feasible element of Problem (P*) (respectively, Problem (P)) if the constraints (3.9)-
(3.12) (respectively constraints (2.5)-(2.8)) are satisfied.

THEOREM 1. Problem (P) is equivalent to Problem (P) in the sense that (v*, u>*,
Z*) is a solution of Problem (P*) if and only if{t*, u*, z*) is a solution of Problem (P),
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PROOF. Let (*,, «,, z,) e (y x <2r x Z) be a feasible element of Problem (P) and
let (vi, u>i, Z\) € y x # x Z be the corresponding feasible element of problem (P*).
Then it is easy to check that x(t) is the solution of (2.1)-(2.2) if and only if y(s) is
the solution of (3.4H3.5), and

=go(vi,wltzi). (3.13)

Hence the results follow readily.

In Problem (P) the cost function (2.4) is to be minimized with respect to (t, u, z) €
( f x f x Z ) where t = [tt,..., tk] and u,i = \,... ,k, are switching times. On the
other hand, the cost function (3.8) in Problem (P*) is to be minimized with respect to
(v, w, z) 6 y* x IP x Z, where v{t) is a nonnegative piecewise constant function.
Since Problem (P) is equivalent to Problem (P*), we choose to solve Problem (P*)
which is an optimal control problem with multiple characteristic times (see [8]). The
main reason is that Problem (P*) is numerically more tractable, as it does not involve
variable switching times.

In the classical control parametrization technique, each control function u>, (s) is
approximated by a zeroth order or first order spline function (that is, a piecewise
constant function or a piecewise linear continuous function) defined on a set of knots
{0 = 5 ,̂ s[,..., s'pi = (k + 1)}. Note that each component may have a different set
of knots and the knots are not necessarily equally spaced. For the case of piecewise
constant basis functions, we write the /-th control function as the sum of basis functions
with coefficients or parameters {o-y, j =1,2,..., /?,}:

where B^(s) is the indicator function for the j -th interval of the /-th set of knots
defined by

10, otherwise.

For piecewise linear continuous basis functions, we write the /-th control func-
tion as:

j=o
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where Blj\s) are the witch's hat functions defined by

10, otherwise,

0, otherwise,

v' [O, otherwise.

Thus w(s) can be uniquely identified with a control parameter vector a and vice versa
with:

<* = [ (<* ) . \ a ) , • • • , (cr J J , or = | c r , [, CT, 2 , . . . , o r , , P i j

which satisfy conditions:

ct<ay<dh i = 1,2, ...,m, j =1,2,.... pi. (3.14)

Let X denote the set of all such control parameter vectors a.
We now apply the Control Parametrization Enhancing Transform (CPET) to Prob-

lem (P*). Let q be the second new time scale which varies from 0 to k + 1. Then the
transformation from s € [0, k + 1] to q € [0, k + 1] can be defined by the differential
equation:

— — = tj(q), s(0) = 0,

where the scaling function ri(q) is called the enhancing control. It is a piecewise
constant function with possible discontinuities at the pre-fixed knots fo, • ••, %M, that is,

Xiiq), where xto) is the indicator function defined by

10, otherwise.

Clearly,

Let 0 denote the class of all such enhancing controls j){q) satisfying

= i, i = l , . . . , * + l . (3.15)
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Under the CPET, the system dynamics change to:

' > Z M , qe[0,k+l], (3.16)

with initial conditions

(3.17)
s(P)J \0

where y(s) = x(t(s(q))).
The constraints (3.7) are reduced to (3.14). Problem (P*) is now transformed into

the following optimal control problem: Given the dynamical system (3.16)—(3.17)
find an admissible element (u, J/, a, z) e ̂ ' x 8 x E x Z such that the cost function

|o(w, >7, a, z) = J2 &i ( J2 V/. K ' I V, <r, z)z \ (3.18)

is minimized subject to the constraints:

j = l,...,l,i = l,...,k, (3.19)

di<Zi<bh i = l,...,r, (3.20)

Cii < °ij < dh i = 1 , . . . , k, j = 1 p.-, (3.21)

i/(*) € *T, t)(q) € 0 . (3.22)

This problem is referred to as Problem (P**). Problem (P**) is an approximate optimal
control problem with MCT, where the control functions are piecewise constant or
piecewise continuous functions with pre-fixed partition points. Hence it can be viewed
as an optimal parameter selection problem with MCT.

4. Gradient formulae

To solve Problem (P**), we need to derive the gradient formulae of the cost function
as well as the constraint functions gj ( £^ = 1 vjt y(i | i), a, z), z), j = 0, 1 , . . . , q,
i = 1,... ,k, (3.9). Let us do this for a slightly more general problem, and hence
the notation used in this section is applicable only to this section. For example,
T = (TI, r 2 , . . . , xk) is used to denote the vector of multiple characteristic times. The
parameter set (v, ri,a,z) is replaced by z, and the cost functional is generalized to

goiz) = ̂ 2 <J>o,,(r,, X(T, I z), z) + / ho(t, x(0, z) dt, (4.1)
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where 0 = r0 < Zi < • • • < rk < r*+i = T. The state is described by the following
system of differential equations:

x(t) = f(t,x(t),z) (4.2)

with the initial conditions

x(0) = x°(z). (4-3)

Let 2? replace ( f x G x E x Z ) . The optimal parameter selection problem (P**)
is to find an admissible element : e J such that the cost function (4.1) is minimized
subject to the constraints:

gj (Z) = J2 * ; .* (* ' • X{X, I z ) , z) + / hj (t, x(t), z)dt, j =l,...,l. (4.4)

For each j = 0 , 1 , . . . , / , the corresponding costate system is given by the following
system of differential equations:

it'*i'Y'X'). 7 = 0 , 1 , . . . , / , (4.5)

where t e ( T , . , , r,), / = 1, 2, ...,k+1, and, for each; = 0,1,..., I, Hj = hj +Xj
is the corresponding Hamiltonian.

The costate system is subject to the boundary conditions:

^ ^ ^ = 1 r ( T - ) t / = ! , . . . , , , (4.6)

Xj(T) = 0. (4.7)

For the gradient of the cost function as well as the constraint functions gj (z),
j = 0, 1 , . . . , / , with respect to the system parameter z, we have the following
theorem.

THEOREM 2. The gradient of the cost function (4.1) or each of the constraint
functions (4.4) with respect to the system parameter z is

for j = 0 , 1 /.

PROOF. Let us re-write (4.1) and (4.4) as

gj(z) = j hj(t, x(t), z) + J2S(t- r,)4>,,,(/, x(t | z), z) dt.
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and the dynamical system (4.2) as x(t) = S(t)x°(z) + f(t,x(t), z) with the initial
conditions JC(O) = 0. Here the delta-functions, by convention, have their mass
within [0, T].

Define the corresponding Hamiltonian

HJ = \hi>+ 12 *<' ~ T')*y.iC
L <=i

for each j = 0, 1 , . . . , / , and the corresponding costate system is given by the follow-
ing system of differential equations:

subject to the boundary conditions:

Xj(T) = 0. (4.9)

It is clear that the costate system (4.8)-(4.9) is equivalent to the costate system
(4.5)-(4.7). Using the usual formula, the gradient of the functional gj (z) with respect
to z is given by

A 3<&;,,-(r,-,j;(r,- | z), z)

y

3z

k

i r ( 0 ) 9 3 r ( z )

7 3

This completes the proof.

5. Examples

EXAMPLE 1. A minimal approach of a dynamical system to a curve.
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2

1 /

is
1 0.5

/I

1 1.5 2 2.5 :

FIGURE 1. The target trajectory xo(t) and the optimal trajectory x*(t)

Let x0 be a function of time given by xo(t) = sin(4f) + It. Consider a process
described by the following differential equations:

xi = x2, x\ = -ui(t)x2 -xi + u2(t),

with initial conditions

*,(()) = 0.1, x2(0)=0.2.

(5.1)

(5.2)

Suppose Titti, i = \ 5, are given by ^ = (5/ - 2)7/30, TJ = (5/ + 2)7/30
and T = 3. Our objective is to find observation times th i = 1 , . . . , k, and the
controls «i(0 and u2(t) such that the cost function

(5.3)

is minimized subject to the constraints: r̂  < t,•, < r,, i = 1 , . . . , 5, —3.0 < ui(t) < 4.0
and -3.0 < u2(t) < 11.5. ~

Define the CPET transform which maps from t to s to be dt/ds = v(s). Let
v(s) = H/=i viX[i-i,i)(.s), where u,, i = 1 , . . . , 6, are collectively referred to as the
parameter vector v. The equivalent transformed problem is: Given the dynamical
system
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0.5 2.5

FIGURE 2. The optimal control («J(r), u\W)

with initial conditions yi(0) = 0.1 and y2(0) = 0.2, find a parameter vector v and
control functions wi(s) = u\(t(s)), w2(s) = u2(t(s)) such that the cost function

2
\ 2

0
/

is minimized subject to

i <rj, j = 1,2, . . . , 5 ,

-3.0 < wi(s) < 4.0, -3.0 < w2(s) < 11.5, Vi e [0, 6).

Using the CPET transform again, which maps from s to q, with pre-fixed knots

where

Clearly

dq
= 0,

fl. ?6B,--i ,
[0, otherwise.

Ti(q)dq = i, i = 1 , 2 , . . . , 6.

10;

(5.4)
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We thus obtain the approximate optimal control problem with MCT: Given the dy-
namical system

5>, = rjvy2, y2 = r}v(-aiy2-yl+a2)

with initial conditions yi(0) = 0.1 and y2(0) = 0.2, find (u, a, r]) such that the cost
function

is minimized subject to

; 6

T ^ < ^ U , < T 7 , ; = 1,2, . . . , 5 , ^ u , = 3,
1=1 i = l

- 3 . 0 < o r , j : < 4 . 0 , - 3 . 0 < o 2 J < 1 1 . 5 , 7 = 1 , . . . , 1 1 ,

Jo
i)(q)dq = i, i =

This is an optimal control problem with MCT cost function. Using the gradient
formulae obtained in Section 4, the optimal control software package MISER 3.2 can
be adapted to solve this optimal control problem. Figure 1 shows the optimal trajectory
of x*(t) and the trajectory for xo(t) = sin(4r) + It. The optimal observation times
are tx = 0.7, t2 — 0.8, f3 = 1.67, t4 = 1.81, t5 = 2.59, t6 = 2.75 with a minimum cost
function value of 0.027889. Figure 2 shows the optimal control functions u*(t), u\{t)
respectively.

EXAMPLE 2. A three dimensional optimal control problem with variable character-
istic times in the cost function.

Consider the dynamical system

x\ = *3 + Z\, x\ = z2xi + z3, x3 = Z4X1 + x2 + Z5X3 (5.5)

with initial conditions

x,(0) = 0.1, *2(0) = 0.2, *3(0) = 0.1. (5.6)

Let the target trajectory be specified as follows:

jtoi(O = sin(4r) + It, jcmCO = t3 - 3t2 + 3t.
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I

0 0

FIGURE 3. The optimal trajectory (x*(t), x\(/)) and target trajectory (xoi ('), xm(t))

Let r̂  = (5 i -2 )7 /30 , T? = (5/+ 2)7/30, i = 1 5, and T = 3. Then
we formulate the following problem: Given the dynamic system (5.5)-(5.6), find
observation times /,, i = 1 , . . . , 5, and system parameters z,, i = 1 , . . . , 5, such that
the cost function

5

J2 {(si"4*, + 2/, - xt (r,))2 + (r,3 - 3r,2 + 3r, - ^2(/,))2] (5.7)

is minimized subject to the constraints

- 1 . 0 < Z i < 2 . 0 , -1.0 < z2 < 10.0,

- 1 . 0 < z 3 < 1 . 0 , - 1 . 0 < z 4 < 1 . 0 , -4.0 < z s < 1.0.

Use the CPET transform to map t to s: dt/ds = v(s). Let v(s) = Yl^=i <JiXu-i,i)(s),
where a,, i = 1 , . . . , 6, are collectively referred to as the parameter vector a. Fur-
thermore, let z,, i = 1 , . . . , 5, be collectively referred to as the system parameter z.
The equivalent transformed problem is: Given the dynamical system

y\ = v(y3 + zi),

y\ = "(Z2V3 + z3), = 0.2,

y3(0) = 0.1,
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(a)
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9
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5

4

3
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(if<0.*j<0)

0 0.5 1 1.5

(b)

/

y
2

/

2.5 3

FIGURE 4. The projections of the trajectories depicted in Figure 3 onto the planes (a) X\ x [0, T] and
(b) X2 x [0, T]

find (u, z) such that

is minimized, subject to

tj < ^2 v,; < Tji, y = 1, 2 , . . . , 5, Vi: = 3 ,

- 1 . 0 < z i < 2 . 0 , -1 .0 < z2 < 10.0,

- 1 . 0 < z 3 < 1 . 0 , -1 .0<Z4<1 .0 , - 4 . 0 < z 5 < 1 . 0 .

The gradient formulae obtained in Section 4 are applicable. Thus MISER 3.2 can be
adapted to solve this optimal control problem with MCT cost function. Figure 3 shows
the optimal trajectory of (x*(0,^W) and the trajectory for xOi(t) = sin(4f) + It
and xai(t) = f3 — 3t2 + 3t, and Figures 4 are projections of Figure 3 onto the planes
X\ x [0, T] and X2 x [0, T]. The optimal observation times are tx = 0.7, t2 = 0.8,
f3 = 1.544678, f4 = 2.2, t5 = 2.3 with a minimum cost function value of 0.1915
and optimal system parameters of zi = 1.32478, z2 = 2.13784, z3 = —0.43432,
U = -0.00573633, z5 = 0.073166.
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6. Conclusion

A computational method was obtained for solving the optimal control problem
with time variables in the objective function. The method is based on the combination
of the control enhancing transform and the control parametrization technique. The
method is efficient and supported by rigorous mathematical analysis. Two numerical
examples are solved using this method.
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