BULL. AUSTRAL. MATH. SOC. Vol. 62 (2000) [221-226]

MAXIMAL IDEALS AND THE STRUCTURE OF CONTRACTIBLE AND AMENABLE BANACH ALGEBRAS

Yong Zhang

Properties of minimal idempotents in contractible and reflexive amenable Banach algebras are exploited to prove that such a kind of Banach algebra is finite dimensional if each maximal ideal is contained in a maximal left or a maximal right ideal that is complemented as a Banach subspace. This result covers several known results on this subject.

1. INTRODUCTION

Suppose that \mathfrak{A} is a Banach algebra over the complex field \mathbb{C} and X is a Banach \mathfrak{A} -bimodule. A derivation from \mathfrak{A} into X is a linear operator $D: \mathfrak{A} \to X$ which satisfies $D(ab) = a \cdot D(b) + D(a) \cdot b$, $a, b \in \mathfrak{A}$. For any $x \in X$, the mapping $\delta_x: \mathfrak{A} \to X$ given by $\delta_x(a) = ax - xa$, $a \in \mathfrak{A}$, is a continuous derivation, called an *inner derivation*. A Banach algebra \mathfrak{A} is said to be *contractible* if for every Banach \mathfrak{A} -bimodule X each continuous derivation from \mathfrak{A} into X is inner. If X is a Banach \mathfrak{A} -bimodule, then X^* , the conjugate space of X, is naturally a Banach \mathfrak{A} -bimodule with the module actions defined by

$$\langle x, af \rangle = \langle xa, f \rangle, \quad \langle x, fa \rangle = \langle ax, f \rangle, \quad (a \in \mathfrak{A}, f \in X^*, x \in X),$$

where $\langle x, f \rangle$ denotes the evaluation of f at x. A Banach algebra \mathfrak{A} is said to be *amenable* if for every Banach \mathfrak{A} -bimodule X each continuous derivation from \mathfrak{A} into the dual module X^* is inner. It is a basic fact that a contractible Banach algebra has an identity and an amenable Banach algebra has a bounded approximate identity. We call a Banach algebra a reflexive Banach algebra if the underlying space is reflexive as a Banach space. Since a reflexive Banach algebra is weak* complemented, a reflexive amenable Banach algebra has an identity. In this paper we simply denote the identity element in a Banach algebra by 1.

The structure of contractible and reflexive amenable Banach algebras has been studied by many authors. It is a simple fact that any finite dimensional semi-simple Banach

Received 16th November, 1999

The author wishes to thank Professor F Ghahramani for bringing the problem to him and for many illuminating conversations.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 \$A2.00+0.00.

Y. Zhang

algebra is contractible and, of course, is (reflexive) amenable (see [5, I.3.68 and VII.1.74]). The converse is known to be true for some special cases: A contractible Banach algebra is finite dimensional if it has the bounded (compact) approximation property [9] or if it is commutative [2]. As to reflexive amenable Banach algebras, it has been conjectured that they should also be finite dimensional. Gale, Ransford and White proved in [3] that this is true if irreducible representations of \mathfrak{A} are finite dimensional. This result was improved by Johnson in [6], where he showed that this is the case if each maximal left ideal of \mathfrak{A} is complemented as a Banach subspace. Later, Ghahramani, Loy and Willis showed in [4] that the conjecture is true if the underlying space of \mathfrak{A} is a Hilbert space. Although this result is covered by Johnson's preceding result, the method is different and will be exploited in this paper. Recently, Runde [8] obtained some new results on this problem. One of his main results is that if each maximal ideal of \mathfrak{A} is of finite codimension then the conjecture is true. In this paper we shall give a theorem which improves both Johnson's and Runde's results.

2. COMPLEMENTED LEFT IDEALS

Suppose that \mathfrak{A} is a Banach algebra and $E \subset \mathfrak{A}$. The *left annihilator* and the *right annihilator* of E are, respectively, the following sets

$$\ln(E) = \{a \in \mathfrak{A}; \ aE = \{0\}\}, \quad \operatorname{ran}(E) = \{a \in \mathfrak{A}; \ Ea = \{0\}\}.$$

For an element $a \in \mathfrak{A}$, $lan(\{a\})$ and $ran(\{a\})$ will be simply denoted by lan(a) and ran(a) respectively. The following lemma is trivial.

LEMMA 1. Suppose that \mathfrak{A} is a Banach algebra having an identity 1. Then for any $a \in \mathfrak{A}$,

(i)
$$ran(\mathfrak{A}(1-a)) = ran(1-a) = \{x \in \mathfrak{A}; ax = x\},\$$

(ii) $\ln((1-a)\mathfrak{A}) = \ln(1-a) = \{x \in \mathfrak{A}; xa = x\}.$

Recall that a non-zero element e of \mathfrak{A} is a *minimal idempotent* if e is an idempotent (that is, $e^2 = e$) and $e\mathfrak{A}e$ is a division algebra.

LEMMA 2. Suppose that \mathfrak{A} is a contractible or a reflexive amenable Banach algebra. Let L be a closed proper left (right) ideal of \mathfrak{A} . If L is complemented in \mathfrak{A} , then $\operatorname{ran}(L)$ (respectively, $\operatorname{lan}(L)$) contains an idempotent e such that the following hold.

- (i) $\operatorname{ran}(L) = e\mathfrak{A}$ (respectively, $\operatorname{lan}(L) = \mathfrak{A}e$);
- (ii) $L = \mathfrak{A}(1-e)$ (respectively, $L = (1-e)\mathfrak{A}$);
- (iii) If in addition, L is a maximal left (respectively, right) ideal, then e is a minimal idempotent and Ae (respectively, eA) is a minimal left (respectively, right) ideal.

PROOF: We prove the case when L is a left ideal. To prove (i) and (ii) we can assume $L \neq \{0\}$, for otherwise e = 1 satisfies the requirements. First we show that L contains a right identity μ . Then it is clear that μ is an idempotent and $L = \mathfrak{A}\mu$.

If \mathfrak{A} is contractible, we consider the following exact short sequence of left \mathfrak{A} -modules:

$$\sum: \quad 0 \longrightarrow L \xrightarrow{\mathfrak{r}} \mathfrak{A} \xrightarrow{q} \mathfrak{A}/L \longrightarrow 0,$$

where i is the inclusion mapping and q is the quotient mapping. Since L is complemented, \sum is admissible. From [2, Theorem 6.1] \sum is a splitting sequence, that is, there is a left \mathfrak{A} -module morphism $\delta: \mathfrak{A} \to L$, such that $\delta \circ i = I_L$, the identity operator on L. Then $\mu = \delta(1)$ is obviously a right identity of L.

If \mathfrak{A} is reflexive and amenable, then according to [2, Theorem 3.7], L contains a right bounded approximate identity, say (l_{α}) . Since \mathfrak{A} is reflexive, as a closed subspace of \mathfrak{A} , L is also reflexive. Then a weak^{*} cluster point μ of (l_{α}) in L is a right identity of L.

Now let $e = 1 - \mu$. Then $e \in \operatorname{ran}(L)$, $e \neq 0$ and e is also an idempotent. Since $L = \mathfrak{A}\mu = \mathfrak{A}(1-e)$, from Lemma 1, $\operatorname{ran}(L) = \{x \in \mathfrak{A}; ex = x\} = e\mathfrak{A}$. This proves the first two statements of this lemma.

Now suppose that L is a maximal left ideal. Then, since \mathfrak{A} is the direct sum of $\mathfrak{A}(1-e)$ and $\mathfrak{A}e$, we have that $\mathfrak{A}e$ is a minimal left ideal of \mathfrak{A} . By [1, Lemma 30.2], e is a minimal idempotent. This completes the proof.

In the following we use $rad(\mathfrak{A})$ to denote the *radical* of \mathfrak{A} .

LEMMA 3. Suppose that \mathfrak{A} is a contractible or a reflexive amenable Banach algebra. If $\mathfrak{A}/\operatorname{rad}(\mathfrak{A})$ is finite dimensional, then so is \mathfrak{A} and \mathfrak{A} is semi-simple.

PROOF: If $\mathfrak{A}/\operatorname{rad}(\mathfrak{A})$ is finite dimensional, then $\operatorname{rad}(\mathfrak{A})$ is a complemented closed ideal of \mathfrak{A} . From Lemma 2 $\operatorname{rad}(\mathfrak{A})$ contains an idempotent which is non-zero if $\operatorname{rad}(\mathfrak{A}) \neq \{0\}$. But $\operatorname{rad}(\mathfrak{A})$ can never have a non-zero idempotent. So $\operatorname{rad}(\mathfrak{A}) = \{0\}$.

It is known that if a Banach algebra is contractible or amenable, then its image under a continuous algebraic homomorphism is also contractible or amenable (see [5, Proposition VII.1.71] and [7, Proposition 5.3]). This leads to part of the following lemma.

LEMMA 4. Suppose that \mathfrak{A} is a Banach algebra. Then the following statements hold.

- (i) If \mathfrak{A} is contractible, or reflexive and amenable, then so is $\mathfrak{A}/\operatorname{rad}(\mathfrak{A})$;
- (ii) An ideal M ⊂ A/rad(A) is a maximal ideal if and only if q⁻¹(M) is a maximal ideal in A, where q: A → A/rad(A) is the quotient mapping;
- (iii) If L is a maximal left (right) ideal of A containing rad(A), then q(L) is a maximal left (respectively, right) ideal of A/rad(A). If L is complemented in A, then q(L) is complemented in A/rad(A).

PROOF: The first statement is clear. Checking of the second one is also a routine. Suppose that L is a left (right) ideal of \mathfrak{A} and rad(\mathfrak{A}) $\subset L$. Then it is easily verified that

Y. Zhang

 $L = q^{-1}(q(L))$. So q(L) is maximal in $\mathfrak{A}/\operatorname{rad}(\mathfrak{A})$ whenever L is maximal in \mathfrak{A} . If L is complemented in \mathfrak{A} , then there is a closed complement, say J, of L in \mathfrak{A} . The image q(J) is also closed since q is open, and

$$q(L) + q(J) = \mathfrak{A}/\operatorname{rad}(\mathfrak{A}).$$

If $m \in q(L) \cap q(J)$, then for some $j \in J$ and $l \in L$, m = q(j) = q(l). Hence $j - l \in rad(\mathfrak{A}) \subset L$. So $j \in L$. This shows that j = 0 and hence m = 0. Therefore q(J) is a complement of q(L) in $\mathfrak{A}/rad(\mathfrak{A})$. Thus q(L) is complemented in $\mathfrak{A}/rad(\mathfrak{A})$.

3. MAIN RESULTS

THEOREM 5. Suppose that \mathfrak{A} is a contractible or a reflexive amenable Banach algebra. If each maximal ideal of \mathfrak{A} is contained in either a maximal left ideal or a maximal right ideal of \mathfrak{A} which is complemented in \mathfrak{A} , then \mathfrak{A} is finite dimensional.

PROOF: From Lemmas 3 and 4 we can assume that \mathfrak{A} is semi-simple. We can also assume that \mathfrak{A} is not a division algebra. Then \mathfrak{A} contains at least one maximal ideal and hence has at least one maximal left or maximal right ideal which is complemented in \mathfrak{A} . By Lemma 2, \mathfrak{A} has at least one minimal idempotent. Let E be the set of all minimal idempotents of \mathfrak{A} , and let J be the ideal generated by E (the socle of \mathfrak{A}). We prove $J = \mathfrak{A}$.

If $J \neq \mathfrak{A}$, then there is a maximal ideal M containing J, since \mathfrak{A} has an identity. Then, by assumption, there is either a maximal left ideal or a maximal right ideal of \mathfrak{A} which contains M and which is complemented in \mathfrak{A} . Assume the former is true and the corresponding left ideal is L. Then from Lemma 2, $\operatorname{ran}(L) \neq \{0\}$ and contains a minimal idempotent e such that $L = \mathfrak{A}(1 - e)$. So we would have $Ee = \{0\}$ and $e \in E$. This implies that $e = e^2 = 0$, a contradiction.

Therefore $J = \mathfrak{A}$. Then the identity 1 of \mathfrak{A} can be represented as

$$1=\sum_{i=1}^n a_i e_i b_i,$$

where e_i , i = 1, 2, ..., n, are minimal idempotents, and $a_i, b_i \in \mathfrak{A}$. We then have

$$\mathfrak{A} = 1 \cdot \mathfrak{A} \cdot 1 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i e_i b_i \mathfrak{A} a_j e_j b_j$$

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i (e_i \mathfrak{A} e_j) b_j.$

Since each space $e_i \mathfrak{A} e_j$ has dimension of at most one [1, Theorem 31.6], each subspace $a_i(e_i \mathfrak{A} e_j)b_j$ has dimension of at most one. It follows that \mathfrak{A} is finite dimensional. This completes the proof.

Structure of Banach algebras

If every maximal ideal in \mathfrak{A} is of finite codimension or every maximal left ideal of \mathfrak{A} is complemented, then the condition of Theorem 5 holds automatically. Therefore Theorem 5 covers [6, Theorem 2.2] and [8, Proposition 2.3].

Recall that a *simple algebra* is an algebra which has no proper ideals other than the zero ideal. For this sort of Banach algebra we have the following.

COROLLARY 6. Suppose that \mathfrak{A} is a contractible or a reflexive amenable Banach algebra. If \mathfrak{A} is also a simple algebra and has a maximal left or right ideal which is complemented in \mathfrak{A} , then \mathfrak{A} is of a finite dimension.

PROOF: In this case, $\{0\}$ is the only maximal ideal and is contained in a maximal left or a maximal right ideal which is complemented in \mathfrak{A} by the assumption.

COROLLARY 7. Suppose that \mathfrak{A} is a contractible or a reflexive amenable Banach algebra. If every maximal ideal in \mathfrak{A} is either a maximal left or a maximal right ideal, then \mathfrak{A} has finite dimension.

PROOF: For each maximal ideal M, \mathfrak{A}/M is a simple Banach algebra. Since M itself is a maximal left or maximal right ideal in \mathfrak{A} , \mathfrak{A}/M has either no non-zero proper left ideals or no non-zero proper right ideals, meaning that $\{0\}$ is either a maximal left or a maximal right ideal in \mathfrak{A}/M which is certainly complemented. From the preceding corollary, \mathfrak{A}/M is of finite dimension. Then any subspace containing M is finite codimensional and hence complemented in \mathfrak{A} . This is true for every maximal ideal M and so, from Theorem 5, \mathfrak{A} is finite dimensional.

REMARK 8. If \mathfrak{A} is commutative, then the condition of Corollary 7 is satisfied automatically. Therefore Corollary 7 covers [2, Theorem 6.2].

References

- F.F. Bonsall and J. Duncan, Complete Normed Algebras (Springer-Verlag, Berlin, Heidelberg, New York, 1973).
- [2] P.C. Curtis, Jr. and R.J. Loy, 'The structure of amenable Banach algebras', J. London Math. Soc. 40 (1989), 89-104.
- [3] J.E. Galé, T.J. Ransford and M.C. White, 'Weakly compact homomorphisms', Trans. Amer. Math. Soc. 331 (1992), 815-824.
- [4] F. Ghahramani, R.J. Loy and G.A. Willis, 'Amenability and weak amenability of second conjugate Banach algebras', Proc. Amer. Math. Soc. 124 (1996), 1489-1497.
- [5] A.Ya. Helemskii, Banach and locally convex algebras (Oxford University Press, Oxford, New York, Toronto, 1993).
- B.E. Johnson, 'Weakly compact homomorphisms between Banach algebras', Math. Proc. Cambridge Philos. Soc. 112 (1992), 157-163.
- [7] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127, 1972.
- [8] V. Runde, 'The structure of contractible and amenable Banach algebras', in Banach Algebras '97 (Blaubeuren) (de Gruyter, Berlin, 1998), pp. 415-430.

[9] J.L. Taylor, 'Homology and cohomology for topological algebras', Adv. Math. 9 (1972), 137-182.

Department of Mathematical Sciences University of Alberta Edmonton, Alberta T6G 2G1, Canada e-mail: yzhang@math.ualberta.ca

226