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1. Introduction

Voevodsky’s category of motivic complexes over a perfect field & is based on a simple idea:
most cohomology theories for smooth k-schemes are insensitive to the affine line; that is,
they satisfy A'-homotopy invariance. This observation led Voevodsky to introduce as
a building block of his theory of motives the category of homotopy-invariant sheaves
with transfers HlInis(k); that is, sheaves F' for the Nisnevich topology defined on the
category of finite correspondences over k such that F(X x A') = F(X) for every smooth
k-scheme X. These sheaves enjoy many nice properties: the category HInis(k) is a
Grothendieck abelian subcategory of the category Shvi. (k) of Nisnevich sheaves with
transfers, closed under extensions and equipped with a (closed) symmetric monoidal
structure ®yg1. Moreover, a celebrated theorem of Voevodsky shows that the cohomology
presheaves HZ. (—,F) of a homotopy-invariant sheaf with transfers F are still Al-
homotopy invariant. In fact, HInis(k) can be identified with the heart of a certain t-
structure on the triangulated category DM (k), induced by the standard t-structure on
the derived category D(Shvii.(k)) and called by Voevodsky the homotopy t-structure.
The Al-invariance of the cohomology of homotopy-invariant sheaves can be rephrased by
saying that a sheaf F' € HIyis(k), seen as object of D(Shvi(k)), is local with respect
to the Bousfield localisation of D(Shvy;.(k)) over the complexes (AL )[n] — X|[n] for
X € Sm(k).

Much work has been done around the homotopy t-structure, including Déglise’s
extension to the noneffective version of DM®® (k) and the identification of its heart with
the category of Rost’s cycle modules [9] and Morel’s work on the stable homotopy category
SH(k) [24]. In informal terms, we can interpret the existence of the homotopy t-structure
as a manifestation of the interplay between the Postnikov truncation functors 7<,, and the
A'-localisation functor on the derived category D(Shvi;.(k)). This interplay is precisely
expressed by Morel’s connectivity theorem.

Voevodsky’s category of motives over a field has been recently extended to the setting
of logarithmic algebraic geometry in [7]. The basic objects in this context are no
longer smooth k-schemes but rather fine and saturated log schemes, log smooth over
a base considered with trivial log structure (typically, the base is a perfect field). The
Nisnevich topology on the underlying schemes defines naturally a topology, called the
strict Nisnevich topology, sNis for short. This topology is not enough to guarantee that the
resulting category of motives satisfies a number of nice properties and needs to be replaced
with a subtle variant, the dividing Nisnevich topology, dNis for short, with additional
covers given by certain blow-ups with center in the support of the log structure. The
affine line A is replaced by its compactified avatar; that is, the log scheme [0 = (P*,00)
obtained by considering the compactifying log structure along the embedding A' < P!,
The category of log motives logDM® (k,A) (with transfers) is then defined as the
homotopy category of the (dNis,[J)-local model structure on the category of (unbounded)
chain complexes of presheaves with logarithmic transfers, C(PSh'"(k,A)), for A a ring of
coefficients. See [7, 4-5] and Section 2 for more details. The variant without transfers will
be denoted logDAeH(l{,A), and it is obtained as Bousfield localisation of the category of
(unbounded) chain complexes of presheaves C(PSh'*5(k,A)).
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The goal of this article is to develop in the logarithmic context the analogue of
Voevodsky’s homotopy t-structure and to derive some consequences from this. As
discussed above, the homotopy ¢-structure on (usual) motives is induced by the standard
t-structure on the derived category of sheaves. In order to restrict this ¢-structure to the
subcategory of local objects, one needs to understand how much connectivity (with respect
to the homology sheaves) is lost after taking a fibrant replacement for the (A!,Nis)-local
model structure. This is the content of Morel’s connectivity theorem [24, Theorem 6.1.8].

Our first main result is the following logarithmic variant.

Theorem 1.1 (see Theorem 3.2). Assume that k is a perfect! field and let T €
{sNis,dNis}. Let C € Cpx(PSthg(k,A)) be locally n-connected for the T-topology. Then
any (7,0)-fibrant replacement C — L is locally n-connected.

A complex of presheaves is said to be locally n-connected with respect to a topology 7
if the homology sheaves a, H;(C') vanish below n. For the proof of Theorem 1.1 we follow
the pattern given by Ayoub in his adaptation of Morel’s argument to the P'-local theory,
developed in [5]. In particular, the statement can be reduced to a purity result for local
complexes.

Theorem 1.2 (see Theorem 4.4). Let X be a connected fs log smooth k-scheme that
is essentially smooth over k (in particular, the underlying scheme X is an essentially
smooth k-scheme) such that X is a Henselian local scheme. Then the map

H;(C(X)) — Hi(C(nx,triv))
is injective for every (sNis,()-fibrant complex of presheaves C' € Cpx(PShlog(k,A)).

Here, we write nx for the generic point of X and (nx,triv) for nx seen as a log scheme
with trivial log structure. The proof is quite long, for which we use in an essential way
the results developed in [7], such as the existence of a number of distinguished triangles
in logDA" (k) and a description of the motivic Thom spaces [7, 7.4]: in particular, new
ingredients (compared to the argument given by Morel or Ayoub) are required when the
log structure on X is not trivial.

We remark that the original formulation of Morel’s connectivity theorem was given for
the Al-localisation of presheaves of S1-spectra, rather than presheaves of chain complexes.
The arguments given in this article can be easily adapted to that context. Because our
main application is about the motivic category introduced in [7], we decided to state the
results for Cpx(PSh'°8(k,A)).

Having the analogue of Morel’s connectivity theorem at disposal, it is possible to
characterise O-local complexes of sheaves.

Corollary 1.3 (see Corollary 5.5). Let C' € Dgnis(PSh®(k,A)) where t € {log,ltr}. Then
the following are equivalent:

(a) C is O-local.

LIf ch(k) is invertible in A, this assumption can be relaxed because 1Cor(k,A) 2 1Cor(k?*",A)
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(b) The homology sheaves aqnisH;C are strictly O-invariant for every i € Z; that is,
their cohomology presheaves are O-invariant.

We can then consider the inclusions
1ogDA " (k,A) < Danis(PSh'%(k, A))
logDM® (%, A) < Dgnis(PSh'" (k,A))

that identify logDAT(k,A) and logDM®T(k,A) with the subcategories of C-local
complexes. Using Theorem 1.1 it is easy to show that the truncation functors 7<,, and 7>,
preserve the categories of [J-local complexes and therefore that the standard t-structures
on the categories of (pre)sheaves induce the desired homotopy ¢-structure on log motives.
We denote by CIL{’I\EIis (and by CI;. for the variant with transfers) its heart, which is then
identified with the category of strictly O-invariant dNis-sheaves. It follows from the fact
that the t-structures are compatible with colimits (in the sense of [20]) that CILOI?HS and
CI%,. are Grothendieck abelian categories. See Theorem 5.7. In particular, the inclusions

i: CIgE, < Shvig (k,A)
itr: CIlitI{hs — Shv}itllihs(kvA)

admit both a left adjoint and a right adjoint. Objects of leﬁ\gﬁs and of CI}KHS satisfy the
following purity property.

Theorem 1.4 (see Theorem 5.10). Let F € CIfﬁ\gHs (respectively F € CIY%,.). Then for
all X € SmlISm(k) (see the notation below) and U C X an open dense, the restriction
F(X)— F(U) is injective.

In [7], a comparison functor

REw*: DM (k,A) — logDM®? (K, )
has been constructed. Under resolution of singularities, it is known that RBw* is fully
faithful, and it identifies DM®T(k,A) with the subcategory of (AL, triv)-local objects in
logDM®®(k,A) (see [7, Theorem 8.2.16] and the results quoted there). Even without

knowing that RYw* is a full embedding, we can show that , it is t-exact with respect
to the homotopy t-structures on both sides. In fact, when RYw* is an embedding, it is
straightforward to conclude that Voevodsky’s homotopy ¢-structure is induced by the
t-structure on logDMeH(k,A) via RPw*. See Proposition 5.11.

The good properties of the category of strictly C-invariant sheaves Clgﬁis, deduced
from the identification with the heart of the homotopy t-structure, allow us to make
a further comparison with the category RSCyjs of reciprocity sheaves of Kahn-Saito-
Yamazaki. This is an abelian subcategory of the category of Nisnevich sheaves with
transfers Shvil, (k), whose objects satisfy a certain restriction on their sections inspired
by the Rosenlicht-Serre theorem on reciprocity for morphisms from curves to commutative
algebraic groups [30, III]. See [18] and the recollection paragraph below.
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In [29], S. Saito constructed an exact and fully faithful functor

Log: RSChis (k) — Shvlix. (k,Z) (1.4.1)

having as essential image a subcategory of CI4k;.. In Section 6 we study its pro-left

adjoint Rsc: Shviix (k,Z) — pro-RSCuis and in particular its behavior with respect to
the lax symmetric monoidal structure (—, —)rscy,. constructed in [27]. See Theorem 6.11
and Corollary 6.12.

The category of reciprocity sheaves RSCyjs is defined in terms of the auxiliary category
of modulus pairs, building block of the theory of motives with modulus as developed
in [14], [15] and [16]. In fact, Saito’s functor (1.4.1) is itself defined by first ‘lifting’
a reciprocity sheaf to the category of (semipure) sheaves on modulus pairs and then
applying another functor landing in Shv}fﬁﬁs(l@Z). It turns out that such a detour is not
necessary, at least if k admits resolution of singularities.

In fact, we can look at the composite functor

Wi CIiL,, < Shvlit, (k,Z) —% Shvi, (k.Z) (1.4.2)

where wy is the left Kan extension of the restriction functor from smooth log schemes to
smooth k-schemes w: 1Sm(k) — Sm(k), sending X € 1Sm(k) to X°, the open subscheme
of the underlying scheme X of X where the log structure is trivial. Using a comparison
result from [7] (which relies on the resolution of singularities) and our purity Theorem
5.10 we can show that wof in (1.4.2) is fully faithful and exact (Proposition 7.3). We
denote by LogRec its essential image: it is a Grothendieck abelian category that contains
RSCyis as full subcategory; see Theorem 7.6. Thanks to the purity property for strictly
O-invariant sheaves, its objects satisfy global injectivity; that is, for every F' € LogRec

and U C X dense open subset of X € Sm(k), the restriction map
F(X)—= F(U)

is injective. See [18] for a similar statement for reciprocity sheaves (relying on [28]). In
fact, we can show that the cohomology presheaves of any reciprocity sheaf F € RSCyis
satisfy global injectivity; see Corollary 7.7.

If we denote by irsc the inclusion RSCyis C Shv&ris, we can then identify the functor
Log of (1.4.1) with the composite wﬁé oirsc, where wgé is the right adjoint to wICO%. The
category LogRec seems to share many of the properties of RSCyjs: in the rest of Section
7 we discuss some of them, in particular in relationship with the monoidal structure. See
Proposition 7.11.

Notations and recollections on log geometry

In the whole article we fix a perfect base field £ and a commutative unital ring of
coefficients A. Let S be a Noetherian fine and saturated (fs for short) log scheme. We
denote by 1Sm(S) the category of fs log smooth log schemes over S. We are typically
interested in the case where S = Spec(k), considered as a log scheme with trivial log
structure.
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For X €1Sm(S), we write X € Sch(S) for the underlying S-scheme, where S is the
scheme underlying S. We also write 0X for the (closed) subset of X where the log
structure of X is not trivial. Let SmlSm(.S) be the full subcategory of 1Sm(S) having
for objects X € 1Sm(S) such that X is smooth over S. By, for example, [7, A.5.10], if
X € SmISm(k), then 0X is a strict normal crossing divisor on X and the log scheme
X is isomorphic to (X,0X); that is, to the compactifying log structure associated to
the open embedding (X \ 0X) — X. If X,Y €1Sm(S), we will write X xgY for the fibre
product of X and Y over S computed in the category of fine and saturated log schemes: it
exists by [25, Corollary I11.2.1.6] and it is again an object of 1Sm(S) using [25, Corollary
IV.3.1.11]. Unless S has trivial log structure, the underlying scheme X xgY does not
agree with X xg¥. See [25, §II1.2.1] for more details.

We denote by PSh'°%(S,A) the category of presheaves of A modules on 1Sm(S). It
naturally has the structure of a closed monoidal category. If 7 is a Grothendieck topology
on ISm(S) (see Section 2.1), we write Shv'°8(S,A) for full subcategory of PSh'8(S, A)
consisting of 7-sheaves. We typically write a, for the T-sheafification functor.

Let S;i_S/m(S) be the category of fs log smooth S-schemes X that are essentially
smooth over S; that is, X is a limit @iel X, over a filtered set I, where X; € SmlSm(.S)
and all transition maps are strict étale (i.e., they are strict maps of log schemes such that
the underlying maps f;;: X, — X, are étale)

For (X,0X) € SmISm(S) and = € X, let ¢: Spec(Ox, ) — X be the canonical
morphism. Then the local log scheme (Spec(Ox ,,t*(0X)) is in S;nTS/m(S).

We frequently allow F' € PSh'°(S,A) to take values on objects of SmlSm(S) by setting
F(X):= lim, F(X;) for X as above.

Notations and recollections on reciprocity sheaves

We briefly recall some terminology and notations from the theory of modulus sheaves
with transfers; see [14], [15], [18] and [28] for details.

A modulus pair X = (X, X,,) consists of a separated k-scheme of finite type X and an
effective (or empty) Cartier divisor X, such that X := X \ |X| is smooth; it is called
proper if X is proper over k. Given two modulus pairs X = (X, X, ) and Y = (YY), with
opens X := X \ | X4 | and Y := Y \ |Y,|, an admissible left proper prime correspondence
from X to ) is given by an integral closed subscheme Z C X xY that is finite and

surjective over a connected component of X, such that the normalisation of its closure
=N = . — .
Z — X XY is proper over X and satisfies

X N,

00| ZN = Y<><>|7

as Weil divisors on 7N, where X (respectively Yoo|7”> denotes the pullback of X,

OO\ZN
(respectively Y,) to Z" . The free abelian group generated by such correspondences is
denoted by MCor(X,Y). By [14, Propositions 1.2.3, 1.2.6], modulus pairs and left proper
admissible correspondences define an additive category that we denote by MCor. We
write M Cor for the full subcategory of M Cor whose objects are proper modulus pairs.

We denote by 7 the inclusion functor 7: MCor — MCor.
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We write MPST for the category of additive presheaves on MCor and MPST for the
category of additive presheaves on MCor.

Let PSh"(k) be Voevodsky’s category of presheaves with transfers. Recall from
[28, Definition 1.34] that F € PSh' (k) has reciprocity if for any X € Sm(k) and
a € F(X) = Hompgpe (Z;(X),F) there exists X = (X, X ) € MSm(X) such that the
map a: Z,(X) — F corresponding to the section a factors through ho(X'). Here MSm(X)
is the category of objects X € MCor such that X — | X | = X, and ho(X) is the presheaf
defined as

ho(X)(Y) = Coker(MCor(Y ©0,&) 2~ Cor(Y, X)),

where [ = (P!,00) (we will use the same notation for the log scheme in 1Sm(k)) and the
tensor product refers to the monoidal structure in MCor; see [14]. Tt is easy to see that
RSC is an abelian category, closed under subobjects and quotients in PSh* (k). On the
other hand, it is a theorem [28, Theorem 0.1] that RSCy;s = RSCNNST is also abelian,
where NST = Shv{l, (k) is the category of Nisnevich sheaves with transfers.

2. Preliminaries on logarithmic motives

In this section we review the construction and the basic properties of the categories
logDMeH(kz,A) and logDAeff(S,A) of motives, with and without transfers, as introduced
in [7]. The standard reference for properties of log schemes is [25]. The definitions in this
section work for a quite general base log scheme S, but in the rest of the article we will
mostly deal with the case S = Spec(k).

2.1. Topologies on logarithmic schemes

Recall from [7, Definition 3.1.4] that a Cartesian square of fs log schemes

vy 9y

Q= J{f’ Jf

X X

is a strict Nisnevich distinguished square if f is strict étale, g is an open immersion and f
induces an isomorphism f~1(X —g(X")) = X —g(X') for the reduced scheme structures.
We say that @Q is a dividing distinguished square (or elementary dividing square) if Y/ =
X’ =0 and f is a surjective proper log étale monomorphism. According to [7, Proposition
A.11.9], surjective proper log étale monomorphisms are precisely the log modifications, in
the sense of F. Kato [19]. We similarly say that Q is a (strict) Zariski distinguished square
if f and g are (strict) open immersions (note that ‘strict’ here is redundant, because open
immersions in the category of log schemes are automatically strict).

Definition 2.1. The strict Nisnevich cd-structure (respectively the dividing cd-structure)
is the cd structure on 1ISm(S) associated to the collection of strict Nisnevich distinguished
squares (respectively of elementary dividing squares), and the dividing Nisnevich cd
structure is the union of the strict Nisnevich and of the dividing cd-structures.
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The associated Grothendieck topologies on 1Sm(S) are called the strict Nisnevich and
the dividing Nisnevich topologies, respectively. Mutatis mutandis, we define the (strict)
Zariski and the dividing Zariski topologies on 1Sm(S) in a similar fashion.

We write Shv!°8(S,A) for the category of 7 sheaves of A-modules on 1Sm(S), where
7 is one of the above-defined topologies. The inclusion Shv!°(S,A) ¢ PSh'°8(S A) =
PSh(1Sm(S),A) has an exact left adjoint, a-.

Let S be a Noetherian fs log scheme such that S has finite Krull dimension. According
to [7, Proposition 3.3.30], the strict Nisnevich and the dividing Nisnevich cd structures
on 1Sm(.S) are complete, regular and quasi-bounded with respect to the dividing density
structure [7, Definition 3.3.22]. In particular, any X € 1Sm(S) has finite cohomological
dimension. When S = Spec(k), we can bound the dNis cohomological dimension by the
Krull dimension of the underlying scheme, according to the following proposition.

Proposition 2.2 (see [7, Corollary 5.1.4]). Let F € Shv}ioléis(k,A) and let X € 1Sm(k).
Let d = dim(X). Then Hiyn (X, Fx) =0 fori>d+1.

Remark 2.3. Because the dividing Nisnevich cd-structure is clearly squareable in the
sense of [7, Definition 3.4.2], one can apply [7, Theorem 3.4.6] to get a bound on the dNis
cohomological dimension for any X € 1Sm(S) in terms of the dimension of a log scheme
computed using the dividing density structure: this is, for a general log scheme X, larger
than the Krull dimension of the underlying scheme X (see [7, Exercise 3.3.25]). In view
of [7, Remark 3.3.27], for S = Spec(k) and X € 1Sm(k) such dimension agrees with the
Krull dimension.

The dividing Nisnevich cohomology groups are, a priori, difficult to compute. The
situation looks better for X € SmlSm(%) thanks to the following result.

Theorem 2.4 ([7, Theorem 5.1.8]). Let C be a bounded below complex of strict Nisnevich
sheaves on SmISm(k). Then for every X € SmISm(k) and i € Z there is an isomorphism

Hinis (X, aanisC) = th Hxi(Y,0) (2.4.1)

yexgm

where Xagi’]} is the category of smooth log modifications Y — X of X.
A formula similar to (2.4.1) holds for X € 1Sm(S) as in the following theorem.

Theorem 2.5 ([7, Theorem 5.1.2]). Let S be a Noetherian fs log scheme, and let C' be a
bounded below complex of strict Nisnevich sheaves on 1Sm(S). Then for every X € 1Sm(.S)
and i € Z there is an isomorphism

HZNZS(XaaszsC): 11&’1 Hi;st(X7C)
Y € Xaiv

where the colimit runs over the set Xaiy of log modifications of X (not necessarily smooth).

The following result comes in handy to produce long exact sequences.
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Lemma 2.6. Let X,Y € SmISm, let Dx C X and Dy CY be Cartier divisors such that
Dx +10X| and Dy + |0Y| have simple normal crossings.
Suppose that

X-Dx — X

l |

Y-Dy — Y

is a Zar- (respectively Nis-) distinguished square in Sm. Let 0X T and OY ™ be the log
structures induced by the divisors Dx + |0X| and Dx + |0Y |, and let X := (X,0X™T)
and Y+ := (Y,0Y1). Then, for every complex C'€ PSh'" (k,A) that is sZar- (respectively
sNis-) fibrant the following square

C(X) —— C(XH)

!

ClY) —— C(Y™)
is a homotopy pullback.

Proof. Let 7 be either Zar or Nis. Because the log structures on X — Dy (respectively
Y — Dy) induced by X and X™* (respectively Y and Y1) are the same, the following
squares are sT-distinguished:

X-Dx — X X—-Dyxy — X+
Y-Dy — Y Y-Dy —— YT

Moreover, the canonical maps X — X and Y™ — Y, whose underlying maps of schemes
are the identities of X and Y, make the following diagram commutative:

C(X) — C(X+) —— C(X — Dx)

| | |

C(Y) — C(Y*+) —— C(Y — Dx)

Because C is st-fibrant, the big rectangle and the square on the right are homotopy
pullbacks. Hence, the square on the left is a homotopy pullback. O

2.2. log correspondences

Following [7], we denote by 1Cor(k) the category of finite log correspondences over k. It is
a variant of the Suslin-Voevodsky category of finite correspondences Cor(k) introduced
in [32]; see [22]. It has the same objects as 1Sm(k), and morphisms are given by the free
abelian subgroup

ICor(X,Y) C Cor(X —0X,Y —0Y)
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generated by elementary correspondences V° C (X —9X) x (Y —9Y") such that the closure
V C X xY is finite and surjective over (a component of) X and such that there exists
a morphism of log schemes VY — Y, where V¥ is the fs log scheme whose underlying
scheme is the normalisation of V' and whose log structure is given by the inverse image log
structure along the composition V¥ — X xY — X. See [7, section 2.1] for more details
and for the proof that this definition gives indeed a category.

Additive presheaves (of A-modules) on the category 1Cor(k) will be called presheaves
(of A-modules) with log transfers. Write PSh' (k,A) for the resulting category. We have
a natural adjunction

Ve
PSh'¢(k,A) «——~" — PSh"" (k,A)

Y

where by convention v is left adjoint to v*, which is left adjoint to .. Here v: 1Sm(k) —
1Cor(k) is the graph functor. For a topology 7 on 1Sm(k), a presheaf with log transfers F
is a 7-sheaf if v*F is a 7-sheaf. We denote by Shv'"" (k,A) ¢ PSh'"(k,A) the subcategory
of 7-sheaves. By [7, Proposition 4.5.4] and [7, Theorem 4.5.7], the strict Nisnevich and
the dividing Nisnevich topology on 1Sm(k) are compatible with log transfers: this means
in particular that the inclusion Shv'™ (k,A) C PSh'™ (k,A) admits an exact left adjoint a,
(see [7, Proposition 4.2.10]), and that the category Shv™ (k,A) is a Grothendieck Abelian
category [7, Proposition 4.2.12].

2.3. Effective log motives

We fix again a Noetherian fs log scheme S and a field k and let C be either 1Sm(S) or
1Cor(k). We start by recalling some standard facts. The category Cpx(PSh(C,A)) of
unbounded complexes of presheaves is equipped with the usual global (projective) model
structure (W, Cof,Fib), where the weak equivalences are the quasi-isomorphisms and
the fibrations are the degreewise surjective maps (see, for example, the remark after [12,
Theorem 9.3.1] or [4, Proposition 4.4.16]).

Let 7 be a topology on C (and we require that 7 is compatible with transfers when C =
1Cor(k)). Recall that a morphism of complexes of presheaves F' — G in Cpx(PSh(C,A))
is called a 7-local equivalence if it induces isomorphisms a, H;(F') ~ a,H;(G) for every
i € Z, where H;(F) denotes the ith homology presheaf of F.

The left Bousfield localisation of the global model structure on Cpx(PSh(C,A)) with
respect to the class of 7-local equivalences exists and the resulting model structure
(W,,Cof,Fib,) is called the 7-local model structure (see, for example, [4, Proposition
4.4.31]). The maps in W, are precisely the 7-local equivalences. It is well known that the
homotopy category of Cpx(PSh(C,A)) with respect to the local model structure, denoted
D, (PSh(C,A)), is equivalent to the unbounded derived category D(Shv.(C,A)) of the
Grothendieck abelian category of T-sheaves Shv,(C,A).

For any X € C, we write

RT,(X,—): D,(PSh(C,A)) — D(A)
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for the right derived functor of the global section functor I'(X,—). The 7-(hyper)
cohomology of X with values in a complex of presheaves C' is then computed as

H;(X,a.(C))=H"(RI';(X,a,C)).
Finally, let Og := (P§,005) € C, with S = Spec(k) if C =1Cor(k).

Definition 2.7. The (7,0g)-local model structure on Cpx(PSh(C,A)) is the (left)
Bousfield localisation of the 7-local model structure with respect to the class of maps

A(0s x5 X)[n] = A(X)[n]
forall X €C and n € Z.

General properties of the Bousfield localisation (see, e.g., [4, Définition 4.2.64,
Proposition 4.2.66]) imply that a complex of presheaves C is (7,0g)-fibrant if and
only if it is 7-fibrant (i.e., fibrant for the 7-local model structure) and the morphisms
C(X) — C(X xsUg) induced by the projection are quasi-isomorphisms for every X € C.

Definition 2.8. (1) A complex of presheaves C, seen as an object of D.(PSh(C,A)), is
called Og-local if for all X € C the map

RT,(X,C) = RT+(X x50s,0)

is a quasi isomorphism in D(A). Equivalently, C' is Og-local if and only any 7-fibrant
replacement of C' is (7,0g)-fibrant.
(2) Let L: D,(PSh(C,A)) — D(dNiSES)(PSh(C,A)) be the localisation functor. A

complex of presheaves K, seen as an object of D,(PSh(C,A)), is called (7,0s)-locally
acyclic if L(K) is T-locally isomorphic to the zero complex; that is, if RT';(X,L(K))~0
for all X €C.

Definition 2.9. The derived category of effective log motives (with transfers)
logDM®" (k, A) = 1ogDMgy;,(k, A) = D ;. ) (Cpx(PSh™ (, A)))

is the homotopy category of Cpx(PSh'"(k,A)) with respect to the (dNis,[J)-local model
structure. Similarly, if S is an fs Noetherian log scheme of finite Krull dimension, the
category of effective log motives without transfers logDAT(S,A) = logDAST. (S,A) is
the homotopy category of Cpx(PShlog(S,A)) with respect to the (dNis,[g)-local model
structure.

The interested reader can verify that Definition 2.9 is equivalent to [7, Definition 5.2.1].

We now collect some well-known facts about the (7,00g)-local model structure, for
7 € {sNis,dNis} that we are going to use later. Recall that Cpx(PSh'°8(S,A)) is a closed
monoidal model category with respect to the global model structure by [4, Lemme 4.4.62].
We write Hom(—,—) for the internal Hom functor.

Lemma 2.10. Let I be a T-fibrant object (respectively a (r,0g)-fibrant object) of
Cpx(PSh'°8(S A)). Then, for every X €1Sm(S), the complez Homg(A(X), 1) is 7-fibrant
(respectively is (1,0s)-fibrant).
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Proof. Every representable presheaf A(X) is cofibrant for the projective model structure,
and —®@A(X) is a left Quillen functor. So, for every A — B € Cof N W, we have that
ARA(X) - BRA(X) is a trivial 7-local cofibration (see [4, Proposition 4.4.63] and
observe that the small site Y; is coherent for every Y € 1Sm(S) because S is quasi-
compact and quasi-separated; hence, it has enough points by [3, Exp. VI, Proposition
9.0] and we can apply [4, Proposition 4.4.63]). In particular, every r-fibrant object I
satisfies the lifting property

AeNX) —=1

7
e
e
Ve

B®A(X)

We conclude that —® A(X) is a left Quillen functor for the T-local model structure; hence,
Homg (A(X),—) is a right Quillen functor. In particular, Hom¢(A(X),I) is 7-fibrant. O In
a similar way, if I is (7,0J)-fibrant, we have that Homg(A(X),I) is 7-fibrant and O-local,
so it is (7,00)-fibrant. O

2.11. Let X €1Sm(S) and let A: X — S be the structural morphism. We have an induced
functor A* : PSh'°8(S,A) — PSh'°8( X, A) given by precomposition with X. The functor \*
and its left Kan extension A, induce two adjoint functors on the categories of complexes:

A\i: Cpx(PSh'8(X,A)) < Cpx(PSh'°(S,A)) : A*. (2.11.1)

Because \* is exact, it preserves by definition global fibrations and global weak
equivalences; hence, A preserves global cofibrations and (2.11.1) is a Quillen adjunction.
In fact, by, for example, [4, Theorem 4.4.51], the same holds for the 7-local model structure
where 7 is a topology on 1Sm(S); in particular, A* preserves T-fibrant objects.

Finally, if C € Cpx(PSthg(S,A)) is Og-local, then A\*C is Ox-local, because for all
U elSm(X)

)\*C(U Xxﬁx) = C(U XxX XSES) ~ C(U XxX) = )\*O(U)
We conclude that A\* preserves (7,0J)-fibrant objects as well.

2.12. We end this section with a computation of the localisation functor
L=L ., Cpx(PSh'!(5,A)) — Cpx(PSh'**(S,A)) . 7., C Cpx(PSh'*¥(S,A)),

where Cpx(PShlog(S,A))(TES) denotes the subcategory of (7,0g)-local objects. By
general properties of the Bousfield localisation, L comes equipped with a natural
transformation A: ¢d — L, and the pair (L,\) is unique up to a unique natural
isomorphism.

An explicit description of the localisation functor has been worked out by Ayoub in [5,
Section 2] for the P!-localisation. We spell out the construction for presheaves without
transfers and for 7 € {sNis,dNis}.
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Construction 2.13 (see [5, Construction 2.6]). We fix an endofunctor (—), that gives

a 7-fibrant replacement. Let A(ﬁrsed) be the kernel of the map A(Og) — A. For a complex
C € Cpx(PSh'*%(S,A)) we put

—red —red

o(C) = Cone{(5 :A(0g ) ®arHomg(A(dg ),Cr) — 07}7

—red

where § is the counit of the adjuntion A(ﬁged) ®A - 1Homg(A(Og ),-).
We obtain an endofunctor ® equipped with a natural transformation ¢: id — ®, and
we define the endofunctor ®> by taking the colimit of the following sequence:

Peo2(C)

C 2% o(C) 212 9°2(L) L D(C)

By construction, the functor ®°° comes equipped with a natural transformation
P> id — P,

Theorem 2.14 (see [5, Théoreéme 2.7]). Let C' € Cpx(PSh'°8(S,A)). Then ®>(C) is
(1,0s)-fibrant and ©> is a (7,0g)-local equivalence. In other words, the pair (®>°,p>)
is naturally isomorphic to the (1,0g)-localisation (L,\).

Proof. We follow the same pattern of the proof in [5], and we divide the proof into
two steps. First, we need to show that for any complex of presheaves C' the morphism
C — ®>(C) is a (1,0g)-local equivalence. After that, we have to prove that ®>(C) is
fibrant for the (7,0g)-local model structure.

We begin by observing that for all F € Cpx(PSh'°%(S A)) the tensor product
A(ﬁmd) ®p F is (7,0g)-locally acyclic (see Definition 2.8). Indeed, the subcategory of
(7,0s)-locally acyclic complexes is a triangulated subcategory of D, (PSh'°%(S,A)) that
is stable by direct sums, and by construction it contains all of the objects of the form
A(ﬁged) ®@a A(X) for any X €1Sm(S).

Next, note that because the homotopy fibre of ¢¢ is given by

AT @a Homg (ATS),C,),
which is then (7,0g)-locally acyclic in virtue of what we just observed, p¢ is a (7,0s)-
local equivalence for all complexes C. Because filtered colimits preserve (7,00g)-local
equivalences, we conclude that the map C' — ®>°(C) is a (7,0g)-local equivalence.

We move to the second part of the proof. By construction, the map ®°"(C') — ®°"+1(C)
factors through ®°"(C'),, which are by construction 7-fibrant. Hence, ®>°(C) is a filtered
colimit of 7-fibrant objects.

By Lemma 2.15, filtered colimits preserve 7-fibrant objects; hence, ®>°(C) is dNis
fibrant.

Finally, we need to show that ®>°(C) is Og-local, which is equivalent to showing that

Homg (ﬁf;d,@‘x’ (C)) is acyclic. The argument in the proof of part (B) of [5, Theorem 2.7]
goes through without changes. We leave the verification to the reader. O

Lemma 2.15. Let S be a Noetherian scheme of finite Krull dimension and let (C;),c;

be a filtered diagram in Cpx(PSthg(S,A)), Assume that each C; is T-fibrant, then @Ci
is T-fibrant.
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Proof. We argue as in [4, Proposition 4.5.62]. For 7 = sNis, it follows from [31, Tag
0737], using that S is Noetherian of finite Krull dimension. For 7 = dNis, we have that
for every X € 1Sm(S) and every filtered system {F;};cr € Shvlﬁ%is(X,A) there is a chain

of isomorphisms

QNiS(X,h_;)nFi) =) lim HiNiS(Yﬁ_ﬂgFi)

_)
i Yex ¢
2(2)11_%1 lim Hiy, (Y, F;)
i YeX

=(3) li%raniNis(‘)(7l‘—"i)’

where (1) and (3) follow from Theorem 2.5 and (2) follows from the fact that each Y
is also Noetherian of finite Krull dimension. This implies that filtered colimits preserve
dNis-fibrant objects. O

Remark 2.16. The proof works verbatim for C' € Cpx(PSh'"(k,A)), where ®, is
changed with the tensor product ®@'**.

3. The connectivity theorem following Ayoub and Morel

In this section we show a [-analogue of the Al-connectivity theorem of Morel [24,
Theorem 6.1.8], adapting the argument of Ayoub in [5, Section 4]. As in [5], we exploit
the notion of preconnected complex (see Definition 3.3) and we reduce the proof of the
connectivity Theorem 3.2 to a purity statement, namely Theorem 4.4, whose proof will
be given in Section 4. The reader should note that though the results in this section are
direct analogues of the results in [5], new ingredients are necessary to prove the purity
theorem, and this is where our arguments diverge from [5].

Throughout this section, we fix a ground field &k and we work with the categories of
presheaves and 7-sheaves on 1Sm(k) for 7 € {sZar,sNis,dNis}. Recall from [7, Lemma
4.7.2] that Shv'o¢, (k,A) is equivalent to the category Shvanis(SmlSm(k),A) of sheaves
defined on the full subcategory SmlSm(k) C ISm(k). If X = (X,0X) € SmISm(k) and

—_~—

z € X is any point, we consider Spec(Ox ) € SmISm(k) with the logarithmic structure
induced by the pullback of 0.X.

Definition 3.1. Let n € Z and let C be a complex of presheaves on a site (C,7). We say
that C' is locally n-connected (for the topology 7) if the homology sheaves a.H,;(C) are
zero for j <n.

The main result of this section is the following.

Theorem 3.2. Assume that k is a perfect field and let 7 € {sNis,dNis}. Let C €
CpX(PSthg(k’,A)) be locally n-connected for the T-topology. Then for any (7,0)-fibrant
replacement C — L, the complex L is locally n-connected.

The proof will be given at the end of this section, assuming Theorem 4.4. We need some
preliminary definitions; compare with [5, Déf. 4.5].
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Definition 3.3. (i) A complex C of presheaves is called generically n-connected if for all
X € SmlSm(k) with X connected and generic point nx the homology groups H;(C(nx))
are zero for j <n. o

(ii) A complex C of presheaves is called n-preconnected if for all X € SmlSm(k) the
homology groups H;(C(X)) are zero for j <n—dim(X).

Remark 3.4. (1) Clearly (i) = (i) because a generic point has dimension 0, but it is
evident that (i) # (i1).

(2) If C € Cpx(PSh'(k,A)) is locally n-connected for a topology 7 where the
cohomological dimension equals the Krull dimension of the underlying scheme, then
H!(X,C) =0 for i > dim(X) —n. Hence, if G is a 7-fibrant replacement of C, G is
n-preconnected, because H;(G(X)) = H-4(X,G).

We will prove some technical result that will be needed later. Here we let 7 be either
sZar, sNis or dNis.

Proposition 3.5 (see [5, Proposition 4.8]). Let C' be an n-preconnected complex of
presheaves; then for all X € SmlSm(k) we have H . (X,C) =0 for i > dim(X) —n.

Proof. Without loss of generality we can suppose n = —1 — that is, H_;(C(X)) =0
for j > dim(X) — and we need to show that H:(X,C) =0 for i > dim(X). Using
the descent spectral sequence H'(X,a,H_;(C)) = H:(X,C), it is enough to show
H!(X,a,H_;(C)) =0 for i > dim(X) —j.

If j <0, this follows Proposition 2.2, so suppose j > 0. By —1-preconnectedness,
H_;(C)(Spec(Ox,5)) =0 for codim(z) < j, because codim(z) = dim(Spec(Ox,,)). Using
Lemma 3.6, the statement then follows for 7 € {sZar,sNis}.

The result for 7 = dNis then can be deduced from the case sNis. Indeed, using Lemma
3.6, we get in particular H (Y, asnisH—j(C)) =0 for all Y € X5, whence, because by
(2.4.1) we have that

HﬂNis(X’a'dNiSH—j(O)): hgl HgNis(YaasNisH—j(C)),
Yexgm

the required vanishing holds for dNis as well. O

Lemma 3.6. Let 7 € {sZar,sNis}. Let F' be a presheaf of A-modules on the small site
X, such that for every T-cover X' — X and z' € X' with codimy/(x') < j, we have
F(Spec(Ox: 4)) =0. Then H:(X,a,F) =0 for i > dim(X)—j.

Proof. This is [5, Lemma 4.9]; we reproduce part of the proof in our setting for
completeness and to take care of some subtleties. Observe that the forgetful functor
f: SmlSm(k) — Sm(k) that sends X to the underlying scheme X defines an isomorphism
of the small sites fx: Xqnis =X Nis (and similarly for sZar and Zar): the inverse functor
sends an étale scheme g: U — X to the morphism of log schemes U — X, where U is the
log scheme having U as underlying scheme and log structure given by the inverse image
log structure along g (note that this would be false for the dNis-topology). A presheaf F
on XgNis (respectively on Xyz,,) then gives canonically a presheaf F' on Xy, (respectively
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X..), by setting Xy 2 U — F(U) (respectively X, >V +— F(V)). Clearly, there is a
canonical isomorphism H!, (X, F) = Hi, (X, F), and by abuse of notation we drop the
underline and write simply F' for both presheaves on Xnis or on Xy, (and the same for
the Zariski case).

The rest of the proof of the lemma goes through as in [5, Lemme 4.9]. See [5] for more
details. 0

Corollary 3.7. Let C € Cpx(PSh'°8(k,A)) and let C — L be a 7-fibrant replacement for
7 € {dNis,sNis}. If C is n-preconnected, then so is L.

Proof. Follows from the fact that H_;(L(X))=H(X,C) and Proposition 3.5.
We have the following set of elementary properties of n-preconnected complexes. [

Lemma 3.8 (see [5, Lemme 4.11]). Let C be an n-preconnected complex of presheaves
on 1Sm(k):

(i) For all G m-connected, C ®7 G is (n+m+ 1)-preconnected.
(ii) For all X €1Sm(k), Hom(X,C) is n — dim(X)-preconnected.

(iii) If a: G — C is a morphism of complexes of presheaves on 1Sm(k) and G is (n—1)-
preconnected, then Cone(a) is n-preconnected.

Proposition 3.9 (see [5, Theorem 4.12]). Let ' € Cpx(PSh'*%(k,A)) n-preconnected and
F — C be a (r,0)-fibrant replacement for T € {dNis,sNis}. Then C is n-preconnected.

Proof. The argument of [5, Theorem 4.12] goes through. We have an explicit description
of C' given by Theorem 2.14. Let

®(F) := Cone(0®Hom(O, F;)) — F,

where F; denotes a T-fibrant replacement of F'; which is n-preconnected by Corollary 3.7.
By Lemma 3.8(i)—(ii) O® Hom([J,F})) is n — 1-preconnected; hence, by lemma 3.8(iii)
the cone ®(F) is n-preconnected. Because C ~ lim ~®°" (F), we conclude. O

Proof of Theorem 3.2. We give a proof for 7 = dNis, because the case 7 = sNis is
identical. Let C € CpX(PShIOg(k‘,A)) be a complex of presheaves, locally n-connected
for the dNis topology. Because the Krull dimension of any X € 1Sm(k) agrees with
the dNis-cohomological dimension by Proposition 2.2, the fact that C' is locally n-

—_~—

connected is equivalent to asking that, for any X € SmlSm(k), we have HY ;. (X,C) =0
for ¢ > dim(X) —n. If G is a dNis-local fibrant replacement of C, this implies that H
is n-preconnected (see Remark 3.4(2)), and by Proposition 3.9, any (dNis,[J)-fibrant
replacement L of C' is then n-preconnected as well. In particular, it is generically n-
connected.

We are left to show that every (dNis,[J)-fibrant complex L that is generically n-
connected is also locally n-connected. Consider the canonical map aanisH;(L)(X) —
H;(L)(nx,triv) for any X € SmISm(k) with X connected and generic point 7x. Here we
write (1x,triv) to indicate the essentially smooth log scheme given by the scheme nx with
trivial log structure. By Corollary 4.6 (this is where the assumption that k is perfect is
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used), this map is injective. This implies that aqnis H;(L)(X) =0 for any X € SmISm(k)
and 7 < n; that is, the homology sheaves aqnisH;(L) are zero for ¢ < n, proving the
claim. g

4. Purity of logarithmic motives

Throughout this section, we fix a base field k and a (sNis,[J)-fibrant complex of presheaves
C € Cpx(PSh'8(k,A)).

Lemma 4.1 (see [5, Sous-Lemme 4.14]). Let X € SmISm(k), z € X and a € H;(C(X))
such that there is a dense open U C X and a;y = 0. Then there exists an open
neighbourhood V' of x such that a;yy =0 if either one of the following hypotheses is satisfied:

(i) OX =0; that is, X has trivial log structure.
(ii) dim(X) =1 and |0X| is supported on a finite number of k-rational points.

Proof. Let Z=X—-U. If € Z, there is nothing to prove; hence, we can suppose x € Z.
We can apply Gabber’s geometric presentation theorem ([8, Theorem 3.1.1] for k infinite;
[11, Theorem 1.1] for k finite): by replacing X with an open neighbourhood of z there
exist a k-scheme Y and an étale morphism e: X — A} such that

(1) Z maps isomorphically to e(Z); that is, there is a Nisnevich distinguished square

of schemes
X-Z X
A} —¢f

Z)H—A%,

.

(2) The composition
Z—-X—Ay =Y
is finite.

In particular, e(Z) is closed in P}, and it is disjoint from coy. We now divide the proof
into two parts.

Case (i): Let us suppose that X has trivial log structure. In this case we have two sNis-
distinguished squares

T
P%’ —E(Z) - P%’v (P%/ —G(Z),OO)/) - (P%/,OOy)

where Y is seen as a log scheme with trivial log structure, and Oy = (Pi.,00y)
(respectively (P —e(Z),00y)) denotes as usual the scheme P}, (respectively Pl —e(Z))
with compactifying log structure at ooy = {oo} x Y. Furthermore, the morphisms
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(Pi,00y) — Pl and (P} —e(Z),00y) — Pi —e(Z), whose underlying morphisms of
schemes are the identities on P}, and P}, —e(Z), induce a commutative diagram

(Pl OOY %
P — e(Z)

We define the following objects of D(A):
Cz(X)= hoﬁb(C(X) c(U)),
Cz(Py) = hofib(C(Py) — C(Py —e(2)))
Cz(ﬁy) = hOﬁb(C(Dy) — C(PY — e(Z),OOy)).

Because C is (sNis,[])-fibrant, it is in particular sNis-fibrant and therefore the three
left vertical arrows of the following diagram

4 Pl

C(PL —¢( (4.1.1)

(b %
=,

Dy 4>C |:|y —>CP1 —6

denoted SpL, Sg, and t, respectively, are quasi-isomorphisms.

Let now o € H;(C(X)) such that o) = 0; hence, there exists 3 € H;(Cz(X)) such that
a = 0(f). By the quasi-isomorphism above, there exists a unique /Bpi, € H;,Cz(P},) such
that sp1 (Bp1 ) = B. Let ap: = dpy (Bpy) and let r: C(PL) — C(PL,c0y) be as in the
diagram above. It is enough to show that r(ap1 ) =0 in H;(C(Pi,00v)) to conclude that
a=0in H;(C(X)), using (4.1.1).

Write Co(P3) for the homotopy fibre of C(P}.) == C(coy). Because e(Z) is disjoint
from ooy, the map 6P1Y factors as

Cy (Pl);C’ Py) ——= C(Pi —e(2))

l |

Co(PY) — C(PL) —= C(coy)

In particular, there exists ag € H;(Co(P3.)) such that §o(ag) = apy . We will conclude by
showing that rdg is the zero map.
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Because C is O-local, the projection 7: Oy — Y induces a quasi-isomorphism

7: C(Y) = C(0y). Because clearly 7 factors through the natural map Oy — P31, we
have a commutative diagram

Co(P}) —— C(P}) —=> C(ocoy)

AN

C(Oy) <=—C(y)

Idy

and this immediately shows that rdg factors through an acyclic complex, as required.
Case (ii): Let us now suppose that dim(X) =1 and 90X is nontrivial, supported on a
finite set of k-rational points.

If « ¢ |0X|, then we can suppose X = (X —|0X|,triv) and conclude as before (this in
fact does not use the assumption on the dimension of X). So let us assume that z € [0X]:
because dim(X) =1, by replacing X with an open neighbourhood of 2 we can suppose
|0X|=z=2Z.

After replacing X with an open neighbourhood of = we have a sNis distinguished square

U X

| |

(P,lc(z) —e(x),triv) —— (Pi(x),e(x)).

Because z is a k-rational point, we conclude that k = k(x) and e(z) is a k-rational point
of P,le. We drop the subscript k& for simplicity. Write as before:

Cay (X) = hofib(C(X) — C(U))
Clea (@) = hofib(C(PL,e(x)) = C(P' —e(x))).

Because C is (sNis,[J)-fibrant, hence sNis fibrant, the left vertical arrow of the following

diagram
1, 0y
Cle@p(@) —=C(Pe(z)) —= C(P! —e(z)) (4.1.2)
Cpap (X) —— C(X) c()

is a quasi-isomorphism. Now, because C is O-local, the complex C(P%e(x)) is quasi-
isomorphic to C(Spec(k)), and by choosing any k-rational point of P! —e(x) splitting the
projection (P! —e(x)) — Spec(k), we see that the map

H;(C(P.e(x))) = Hi(C(P! —e(x)))

is injective for every ¢ € Z. This, together with the commutativity of (4.1.2), allows us to
conclude. g
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Corollary 4.2. Let 7 be either sZar,sNis or dNis.
(i) Let X € Sm(k). Then the following map is injective:
a, H;(C(X, triv)) — H;(C(nx,triv)),

where nx is the generic point of X and (X, triv) denotes the scheme X seen as a
log scheme with a trivial log structure.

(ii) Let X € SmISm(k) such that dim(X) =1 and |0X]| is supported on a finite number
of k-rational points. Then the following map is injective:

a-H;(C(X)) = Hi(C(nx, triv)),
where nx is the generic point of X.

Proof. We begin by observing that maps in (i) and (ii) exist because H;C(nx,triv) =
a, H;C(nx,triv). We first prove (i). Let a € a, H;(C(X,triv)) be a section such that a,,, =
0. Let V— X be a 7-cover such that there exists § € H;(C(V,triv)) mapping to the image
of a in a,H;C(V,triv). Let [[nv be the disjoint union of the generic points of V. The
following diagram is clearly commutative:

H;(C(V,triv))

|

a, H;(C(X,triv)) — a, H;(C(V,triv))

l |

H;(C(nx,triv)) —— @ H;(C(ny,triv));

hence, 8 maps to zero in @@ H;(C(ny,triv)). By Lemma 4.1(i), for all x € V' there exists
an open neighbourhood V,, such that 8+ 0 in H;(C(V,,triv)). Because we can cover V by
the V.., and because for every topology 7 as in the statement open sieves are covering, we
conclude that 8 maps to zero in a, H;C(V triv); hence, o = 0, because (V,triv) — (U, triv)
is a 7-cover. This proves (i). The proof of (ii) is similar, replacing (V/,triv) with (V,0.X y)
and using Lemma 4.1(ii). O

In order to prove Theorem 4.4, we need the following technical result, which is well
known to experts. Recall that a Henselian k-algebra is said to be of geometric type if
there exists X € Sm(k) and x € X such that R = (’)g(,w, the henselisation of the local ring
OX,x at x.

Lemma 4.3. Let k be a perfect field and R a Henselian k-algebra of geometric type. Let
p C R such that R/p is essentially smooth over k. Then the map R, — k(p) has a section.

Proof. Let x be the residue field of R. By the properties of Henselian k-algebras of
geometric type (see, for example, [28, Lemma 6.1]), there exists a regular sequence
ti...tn € R such that R = k{t;...t,}, the henselisation of the local ring of A7 at (0),
and p = (ty41,...tn); hence, R/p = x{t1... 1, }.
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In particular, the map 7 : R — R/p has an evident section s: k{t1,...,t, } = k{t1,...,tn}.
Moreover, it is also evident that Im(s)Np = 0; thus, there exists a unique map s :
Frac(x{t1...t,.}) = A, such that the following diagram commutes:

K{th,...t ,,} S

| T J

Frac(n{tl.. r}) = H{tla atn} (trt1sent
S

Hence, s’ is a section of «’. This, together with the isomorphism k(p) = Frac(x{t;...t.}),
concludes the proof. O

Theorem 4.4. Let X € Sﬁ_s/m(k) such that X is a Henselian local scheme. Then the
map

H;(C(X)) = Hiy(C(nx, triv)) (4.4.1)
18 injective.

Proof. Let |[0X|= Dy +...+ D,,. We proceed by double induction on dim(X) and n.

If dim(X) =1 and n =0, then (4.4.1) is injective by Corollary 4.2 (i). Assume then
that dim(X) =1 but n > 0. Then 90X is supported on the closed point z (note that 0X
is automatically irreducible, because X is 1-dimensional and local). By Lemma 4.3, the

map Spec(k(z)) — X has a retraction; hence, X € SmlSm(k(z)) and |0X| is supported
on a k(z)-rational point.

Let A: Spec(k(z)) — Spec(k). Because C is (sNis,[J)-fibrant in Cpx(PSh'*8(k,A)), \*C
is (sNis,d)-fibrant in Cpx(PSh'(k(z),A)) (see Remark 2.11); hence, we have

(=

HiO(X) = HA*C(X) 2 BN C(nx triv) = HiC(nx, triv)

and (1) is injective by Corollary 4.2 (ii). This proves the case for dim(X) = 1.

Suppose now that dim(X) > 1 and n =0. Then again (4.4.1) is injective by Corollary
4.2 (i). We now pass to the case dim(X) > 1 and n > 1. For every 1 <r <n, let np, € X
be the generic point of D, and ¢p, : D, — X the inclusion. For Y € SmlSm(k), we write
¢(Y) for the number of irreducible components of the strict normal crossing divisor 9Y'.

We make the following claim. O

Claim 4.5. Assume thii\rguction hypothesis above; that is, suppose that Theorem 4.4
holds for every Y € SmlSm(k) local Henselian such that dim(Y) <n—1 and ¢(Y) >0
and with dim(Y) = dim(X) and ¢(Y) <n—1. Then, for every U C X dense open such
that UND,, C D, is dense, the restriction map H;C(X) — H;C(U) is injective.

We postpone the proof of Claim 4.5 and complete the proof of the theorem. Because
filtered colimits are exact in the category of A-modules, we get from Claim 4.5 an injective
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map:

H(C(X)) = iy H,(C(U)) = Hi(C(Spec(Ox. o, )i, 0X)). (4.5.1)
Ucx
np,, €U
Let Ox yp, be the local ring of X at np, : it is a discrete valuation ring with generic point
nx and infinite residue field k(np, ). Because Ox ,p, is the localisation of a Henselian
k-algebra at a prime ideal generated by a regular sequence, we can apply Lemma 4.3 to
get a map Spec(Ox ,, ) — Spec(k(np, )) that splits np, — Spec(Ox ,, ); hence,

(Spec(Ox.np,, ),tp, 0X) € SmISm(k(np,,))

and |, 0X]|is a k(np, )-rational point.

Let \ : Spec(k(np,)) — Spec(k). We argue as above: because C is (sNis,[J)-fibrant
in Cpx(PSh'8(k,A)), A*C is (sNis,0)-fibrant in Cpx(PSh'8(k(np, ),A)) (see again
Remark 2.11); hence, by Corollary 4.2 (ii) we have an injective map:

H;(C(Spec(Ox,np, ))stp, 0X) = Hi(A"C(Spec(Ox,yp. )),tp, 0X) (4.5.2)
— H;(\*C(nx,triv))
= H;(C(nx,triv)).

Combining (4.5.1) with (4.5.2), we get the desired injectivity. This reduces the proof of
Theorem 4.4 to the proof of Claim 4.5.

Proof of Claim 4.5.

Let X~ := (X,0X ") € SmISm(k), where 0X~ is the strict normal crossing divisor
Dy +...4+D,,_;. Because ¢(X ) =n—1, by hypothesis (this is the induction assumption
on the number of components of 9X), the map H;C(X ) — H;C(nx,triv) is injective.

Let U be an open dense subset of X such that UND,, is dense in D,, and UND; =0
if i #n, and set U := (U,0X|y). Write U™ := (U,@X‘E) = (U,triv). Hence, we have a
commutative diagram:

ﬂl) m | l (4.5.3)

where (1), (2) and (3) are injective because they all factor the injective map H;C(X ™) —
H;C(nx,triv).

Because X is Henselian local of dimension r > n with closed point x, there exists
an isomorphism e: X 2 Spec(k(x){t1,...,t-}). Without loss of generality, we can
assume that ¢, is a local parameter for D,, so that ¢ induces an isomorphism
D,, = Spec(k(x){t1,...,t,—1}). Hence, the map henselisation at 0,

k(x){tla cee 7t'r‘71}[t7’] - k(z){tlv . 7t’r‘}a
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induces a pro-Nisnevich square® of (usual) schemes:

| l” (4.5.4)

By Lemma 2.6, the square
C(Dy,, x (Al triv)) —— C(D,, x (A1,0))

l l (4.5.5)

X)) — C(X)

is a filtered colimit of homotopy pullbacks; hence, it is itself a homotopy pullback. Consider
the system {V} of open neighbourhoods of np, x {0} in D,, x Al: the system {p~1(V)}
is cofinal in the system of open neighbourhoods of np, in X. Given any such V, let Wy,
be the subset of D, x A! given as n

(m(Dp, x {0}NV) x AH) NV,

where 7: D,, x Al = D,, is the projection. It is clear by construction that EK contains
(D, x{0}NV) and, in fact,

VN (D, x{0}) = Wy N (D, x {0}).

Because V is an open neighbourhood of np_ x {0}, the projection (V. N (D, x {0})) is
open dense in D,, and thus Wy, is an open neighbourhood of np, x {0} and the system
{W,,} is cofinal in the system of open neighbourhoods of np, x {0} in D,, x A'. Because
{p~T (W)} is then cofinal in the system of open neibghborhoods of np, in X, we can
conclude that there exists W C U such that WN D,, is dense in D,, and induces a pro-

Zariski square of (usual) schemes:

W—-D.NW) ——— W

l l (4.5.6)

(D, NW) x (Al —{0}) —— (D, NW) x Al

Hence, up to refining U we can suppose that U itself fits in a pro-Zariski square like (4.5.6),
so again using Lemma 2.6 and the fact that a filtered colimit of homotopy pullbacks is
itself a homotopy pullback, we get the following homotopy pullback square:

C((DnNU) x (Al triv)) —— C((D,NU) x (A1,0))

l l (4.5.7)

cw-) c(U)

2That is, a cofiltered limit of Nisnevich squares.
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We conclude that for C' sNis-fibrant the squares (4.5.5) and (4.5.7) induce the following
equivalences:

Cofib(C(X ™) = C(X)) = Cofib(C(D,, x (Al triv)) — C(D,, x (A1,0)))
= HOHl. (MTh(NDn/X— ),C)

Cofib(C(U™) = C(U)) = Cofib(C((D, NU) x (Al triv)) = C((D, NU) x (A*,0)))
~ Hom®*(MTh(Np, v/v-),C),s

where the last isomorphisms come from the definition of the motivic Thom space [7,
Definition 7.4.3], the fact that X is local and U C X is an open immersion; hence,
Np, /x- = Dy x A and Np pju- = (D, NU) x A, Here, Hom*(K,C) € D(A) for
K € Cpx(PSh'°8(k,A)) is the mapping complex. In particular, we get for every i € Z
the following commutative diagram:

)) —— Hom(MTh(Np, ,x),Cli—1]) =0

(C(x
l l (4.5.8)
(c(U

0 Hi(C(X™)) —— H;
-) )) —— Hom(MTh(Np, nvu-),Cli—1]),

| )\

H;(C(U
where the top horizontal sequence is exact and the bottom horizontal sequence is exact
in the middle. We will now show that for every ¢, the natural map

H;

Hom(MTh(Np, /x-),Cli]) = Hom(MTh(Np, —z)/((x-)-z)),CIil)

is injective, where Z = X — U: assuming this, by diagram chase in (4.5.8) we finally
conclude that the map H;(C(X)) — H;(C(U)) is injective for every U as above.

We can use [7, Proposition 7.4.5] (note that the condition that C is (sNis,[J)-fibrant is
enough) to compute the motivic Thom spaces: we get a commutative diagram where the
rows are split exact sequences

0 — H;C(Dy,dDy) —— HiC((Dp,dDy) x P') ——— Hom(MTh(Np, x-),C[i]) = 0

! | l

0— H,C(DnNU,0DY) + H;C((Dn NU,ODY) x PY) + Hom(MTh(Np, _z/x - z),Cli]) — 0.
(4.5.9)
We have that

H;C(~ xP') = H;(Hom((P', triv),C))(~)
and Hom((P1,triv),C) is (sNis,0)-fibrant because C'is (see Lemma 2.10). By induction on
dimension we conclude that the middle vertical map of (4.5.9) is injective, and because

the rows in (4.5.9) are split-exact sequences, the right vertical map is a retract of the
middle one; hence, it is injective. This concludes the proof. O
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Corollary 4.6. Let X € SmISm(k) and let T be either sNis or dNis. Then the following
map 18 injective:

a-H;C(X)— H;C(nx,triv),
where nx is the generic point of X.

Proof. The case where 7 = dNis follows from the case of sNis. Indeed, because filtered
colimits are exact in the category of A-modules, and because for all Y € Xy, the map
Y — X is birational, so that ny =nx, we get
adNisHiC(X) = ll_H>1 asNisHiC(Y) — hi}n HiC(Uy,tI"iV) = HiC’(nX,triv).
YeXaiv YeEXdiv
Thus, from now on let 7 = sNis. For all x € X, let X! be the henselisation of X at x with
log structure induced by the log structure of X, and let 7(X") be its fraction field, which
is a field extension of n7x. We have a diagram

a, H;C(X) L H;C(nx,triv)

Jo» |

(%2) .
[Lex H,C(X}) —= [lex H;C(n(XD),triv).

The map (x1) is injective by the sheaf condition and the map (x2) is injective by
Theorem 4.4 and the fact that injective morphisms are stable under arbitrary products in
A-modules. Hence, the map (*3) is injective, which concludes the proof. 0

5. The homotopy t-structure on logarithmic motives

The goal of this section is to generalise to the logarithmic setting the results of Morel
on the existence of the homotopy t-structure on the category of motives. Having the
connectivity Theorem 3.2 at disposal, the proofs are fairly straightforward.

Recall that the triangulated categories

Danis(PSh'*%(1ISm(k),A)) = Dynis(PSh(SmISm(k),A)), o)
5.0.1
Danis(PSh'" (1Sm(k),A)) = Danis (PSh'" (Sm1Sm(k),A))

are equipped with a natural ¢t-structure. The heart is equivalent to the category of dNis-
sheaves (with or without transfers)

SthNiS(ISm(lﬂ),A) = SthNiS(SmISm(k),A),
(5.0.2)
Shvlix:.(1Sm(k),A) = Shv'ix,. (SmISm(k),A).

The equivalences follow from [7, Lemma 4.7.2] (without transfers) and [7, Proposition
4.7.5] (with transfers), which hold for the dNis-topology but not for the strict Nisnevich
topology. We write 7>, and 7<, for the (homologically graded) truncation functors
on Dgnis(PSh(1Sm(k),A)) and 7Y, and 72, for the (homologically graded) truncation

functors on Danis(PSh'" (1Sm(k),A)). In view of (5.0.1) and (5.0.2), we will work with the
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category of sheaves on SmlSm(k) without further notice and simply write Shv}joﬁis(k,A)
(respectively Shv'it. (k,A)) for the abelian category of sheaves (respectively of sheaves
with log transfers). The proof of the following theorem is formally identical to [5, Theorem

4.15).

Theorem 5.1. Let C € Dgnis(PSh(SmlSm(k),A)) and suppose that C is O-local (see
Definition 2.8). Then for all n € Z the truncated complexes 7>,C and 7<,C are O-local.

Proof. Up to shifting, we can clearly assume that n =0, and by the standard properties
of the t-structure, it is enough to show the statement for 75¢C'. Because C' is O-local, the
natural map 7>9C — C factors through L(7>0C) as

T>OC *> L T>oc

where L(759C) is any (dNis,0)-fibrant replacement. We have by Theorem 3.2 that
L(m>0C) is locally —1-connected, so the map ¢ factors as

T>OC 4) L T>oc *> T>()C

By the universal property of 7> we get that lpe, = id, ,c. Hence, 7>oC is a direct
summand of L(7>0C), so it is C-local as required. O

Corollary 5.2. Let C € DdNiS(PShltr(SmlSm(k:) A)) and suppose that C is O-local.
Then for all n € Z the truncated complexes T r.C and T " C are O-local.

Proof. As in the proof of Theorem 5.1, it is enough to prove the statement for 7>0C.
Recall that the graph functor v: SmlSm(k) — SmlCor(k), which sends a map X — Y to

the finite correspondence X l(p% Y induced by its graph, is faithful: the category SmlCor

is, by definition, the full subcategory of 1Cor(k) consisting of all objects in SmlSm (k)
(it is denoted ICorsmism/k in [7]). Presheaves with log transfers on SmlSm(k) are, by
definition, presheaves (of A-modules) on SmlCor(k).

The dNis-topology is compatible with log transfers by [7, Theorem 4.5.7]; hence, ~
induces a functor

~+*: Danis(PSh"™ (SmISm(k),A)) — Dgnis(PSh(SmISm(k), A)).

It is immediate so see that v* is t-exact and conservative and preserves flasque sheaves;
hence, for all X € SmISm(k) and F € Dyyis(PSh'™" (SmISm(k),A)), we have

RT(X,y*F) = RT(X, F).

In particular, F is O-local if and only if v*F is. To prove the corollary, it is then enough
to show that v*(7,C) is O-local. But because v* is t-exact, we have v*(74(C) = 7507*C,
which is O-local by Theorem 5.1. O
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Definition 5.3 (see [7, Definition 5.2.2]). Let F € Shvigé, (k,A) (respectively F €
Shv!i (k,A)). We say that F is strictly O-invariant if the cohomology presheaves
Hyi. (L F) are O-invariant.

Analogous to [29], we denote by CIldOI\gIis (respectively CINL. ) the full subcategory of
Shvgoﬁis(k,A) (respectively Shv'ix. (k,A)) of strictly O-invariant sheaves.

Remark 5.4. Note that the above definition is slightly nonstandard: in the context of
reciprocity sheaves we typically write Clyis for the category of O-invariant Nisnevich
sheaves, without ‘strictness’ condition; that is, without asking the property that the
cohomology presheaves are O-invariant. If F' € Clyis is moreover semipure in the sense
of [28, Definition 1.28], the fact that the cohomology presheaves are [-invariant (at least
when restricted to the subcategory MCor,, defined in [28]) is indeed a difficult result
due to S. Saito [28, Theorem 9.3]. In the Al-invariant context, the analogous statement
is due to Voevodsky [22, §24].

Recall that, in general, a sheaf F' seen as an object of Dgyis(PSh*(k,A)) for t € {log,ltr}
is O-local if and only if it is strictly O-invariant.

Corollary 5.5. Let C € Dgnis(PSh®(k,A)) where t € {log,ltr}. Then the following are
equivalent:

(a) C is O-local.

(b) The homology sheaves aqnisH;C' are strictly O-invariant for every i € Z.

Proof. The implication (b) = (a) holds very generally and comes from a spectral sequence
argument. The converse implication (a) = (b) comes from the fact that aqnisH;C[i] =
7>iT<;C and Theorem 5.1. O

The following proposition is an instance of the more general fact that if C = D is
an adjoint pair of triangulated categories equipped with ¢-structures such that the left
adjoint is right t-exact, then the induced functors between the hearts are still adjoint.
See, for example, [6, Proposition 1.3.17-(iii)].

Proposition 5.6. The inclusion i: CI?I\ins — Shvlfﬁis(k,A) (respectively i'": CI%. <
Shvlﬂ{]is(k,/\)) has a left adjoint

ho = aqnisHo L(—[0])
(respectively hi" = aqnisHE" L' (—[0]) ).

We can finally state the promised result on the existence of the t-structure on the
category of motives.

Theorem 5.7. Consider the inclusions

logDA°T (k,A) < Dynis(PSh'8 (k,A)) (5.7.1)

logDM® (£, A) < Dgnis(PSh'" (k,A)) (5.7.2)
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that identify logDACH(hA) (respectively logDMCH(k,A)) with the subcategory of
O-local complexes. Then the standard t-structure of Danis(PSh'®8(k,A)) (respectively of
Danis(PSh'" (k,A))) restricts to a t-structure on the category of motives logDAT (k, A)
(respectively logDMEH(k,A)), called the homotopy t-structure.

The heart of this t-structre is naturally equivalent to CIfﬁ\ins (respectively CI?KHS), which

is then a Grothendieck abelian category.

Proof. The first assertion follows directly from Theorem 5.1 (respectively Corollary 5.2)
and the second from Corollary 5.5 and Proposition 5.6. The fact that the heart of a
t-structure is abelian is well known [6].

Next, note that the homotopy t-structure is clearly accessible in the sense of [20,
Definition 1.4.4.12].

Moreover, filtered colimits commute with cohomology; hence, if { F}, } is a filtered system
of (dNis,0) fibrant objects, then lim F, is (dNis,[J) fibrant because it is dNis-fibrant (as
observed in the proof of Theorem 2.14) and

H'(X,lim F,) = im H' (X, F,) = HY(X x O, im ).
So if HFFQ =0 for 7 > 0 and all «, then

HE (i F) = Hi(lim F,) = ling H; F, = 0.

Hence, the ¢-structure is compatible with colimits in the sense of [20, Definition 1.3.5.20].
In particular, as observed in [20, Remark 1.3.5.23], the categories CIiﬁ%is and CINy,.
are Grothendieck abelian categories. O

Proposition 5.8. The inclusion i: CLyE, < Shvi8 (k,A) (respectively i : Clir, <

Shv'i%i. (k,A)) has a right adjoint h® (respectively hO.) such that for F € Shv'g.
(respectively Shv'ix:.)

ih"F(X) = Homg 1o (ho(aanis(A(X))),F)
(respectively i“ThY, F(X) = HomSthI{Iis(i”rhé"(adNis(Atr(—)))7F)).

Proof. We prove the assertion for Cllﬁ\g“s, because the statement for CI'{%, is identical.
First, note that if the right adjoint h° exists, then for F' € Shvgyis and X € SmlSm(k),
we have

ih?(F)(X) = Homghy .. (Ganis A(X),ih° F) = Hom o (ho(aanisA(X)),h°F) =
Homsnhy ;. (10 (aanisA (X)), F)

as required. Hence, we only have to prove that h° exists.

By the special adjoint functor theorem (see [21, p. 130]), a functor between two
Grothendieck abelian categories has a right adjoint if and only if it preserves all (small)
colimits, so we need to show that this holds for i: CI}ﬁ%is — Shvfl\gﬁs(k,A); that is, that
CI'® is closed under small colimits in Shv' (k,A).

As observed in the proof of Theorem 5.7, CI'°® is stable under filtered colimits. Because

(small) colimits are filtered colimits of finite colimits, it is enough to show that CI'°® is
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stable under finite limits. Because it is an abelian subcategory, it is enough to show that
it is stable under cokernels.
Let F,G € CI?ﬁiS and let F'— G be a map in Shvgnis. Then we have that

COkerSthNis (F — G) = adNiSHo (COﬁb(FdNiS — GdNiS))7

where Fynis and Ggnis denote the dNis-fibrant replacements. Because F' and G are
strictly O-local, Fynis and Gqnis are (dNis,0)-fibrant; hence, Cofib(Fynis — Ganis) is
also (dNis,0)-fibrant.

In particular,

cokershy gy, (F' — G) = aqnis Ho(Cofib(Fanis — Ganis))

~ aqnisHo (Ltr(COﬁb(FdNis — GdNis))) (_) cokerCIlog (F — G)

dNis

where (%) comes from Proposition 5.6 and the fact that hg preserves colimits. O
Corollary 5.9. Let G € CIles (respectively G € CLix,.). Then

Ext’ .. (F,G)ec CIL¥,

Shvnis
respectively Extl, .. (F,G) € CI¥..) for every F € Shv'%. k,A) (respectively F €
Shv dNis dNis
Shvifl{Tm(]ﬁA))

Proof. We only prove it for Sthlev the proof for Shv}fﬁns is identical. Let G[0] = Ganis
be a dNis-fibrant replacement; hence,

Exty, e (F,G) = aanisHi(Hom(F,Gaxis))-

ViNis

Note that for every X € SmlSm(k), we have an isomorphism
Hom(A(X),Ganis) = Hom(A(X x 0),Ganis),

because by adjunction we have

1%

I'(Y,Hom(A(X),Ganis)) =T(Y x X,Ganis)
(Y x X X ﬁ GdNis)

I'(Y,Hom(A(X x 0O),Gqnis))-

IIZ

HZ

From this it easily follows that Hom(F,Gqnis) is [-local; hence, we conclude by
Theorem 5.7. g

Theorem 5.10. Let F € CIfﬁ‘\QHS (respectively F € CI¥.. ). Then for all X € SmISm(k)
and U C X an open dense, the restriction F(X) — F(U) is injective.

Proof. As before, we give a proof for the version without transfers. Let F[0] — G be a
dNis-fibrant replacement. Because F[0] is U-local, G is (dNis,0J)-fibrant. Because F =
aanisHoG, the result follows from Theorem 4.6. O
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5.1. Comparison with Voevodsky’s motives

Let Cor(k) be Voevodsky’s category of finite correspondences over k [22, §1]. We have a
pair of adjoint functors

A: Cor(k) &——= 1Cor(k): w,

where A\(X) = (X, triv) and w(X,0X) = X —|0X]|. They induce functors on the categories
of complexes of presheaves
ltr % tr
Cpx(PSh™ (k,A)) <—z— Cpx(PSh™ (k,A)), (5.10.1)
where w* denotes as usual the restriction functor, wy its left Kan extension and w. the
right Kan extension. Because A is left adjoint to w, we have \* = wjy. By construction, w*
and wy are t-exact for the global ¢-structures.

The adjunction (wyw*) is a Quillen adjunction with respect to the dNis-local model
structure on the left-hand side and the Nis-local model structure on the right-hand side
(see [7, (4.3.4)]) and with respect to the (dNis,[J)-local model structure on the left-hand
side and the (Nis,A')-local model structure on the right-hand side (see [7, (4.3.5)]) and
therefore induces the following derived adjunctions:

Lw; : Danis(Cpx(PSh™ (k,A))) —— Dyis(Cpx(PSh' (k,A))) : Rw*.
(5.10.2)

LE. wy: logDM (k,A) m——— DM (k,A)) : RFw*.
Similar adjunctions hold for the categories without transfers.

Proposition 5.11. Let F € Cpx(PSh™(k,A)) (respectively G € Cpx(PSh'(k,A)).
Then Rw*(F) = (w*F)anis (respectively Lwy(G) = (wyG)nis) and, in particular, Rw* is
t-exact.

Proof. Because w* and wy from (5.10.1) are t-exact functors, we have that for every
X €1Sm(k) (respectively Y € Sm(k)),

Ho (o Fais(X) = H (X' F)  Ha(wr@)in(Y) = BV 05G)
NHNN( w(X), F) = H i (A(Y),6)

n(Fhis(w(X))) = H, (Ganis(MX)))

(H Fis) (X) = wy(HnGanis)(Y)

= Hp(w" Fiis)(X) = Hp(w;Ganis)(Y)
H,(Rw*F)(X) = H,(Lw;G)(Y).

Finally, by [7, (4.3.4)],
adNian(Rw*(F)) = adNiSW*Hn(F) = W*aNian(F)~

Because w* is fully faithful, we conclude that anisH,(F) = 0 if and only if
aaNisHp (Rw*(F)) = 0; hence, w* is t-exact for the local t-structure. O
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Proposition 5.12. The functor RBw* is t-ezact with respect to Voevodsky’s homotopy
t-structure on DM and to the homotopy t-structure on long\/Ieff of Theorem 5.7.

Proof. If K is (Nis,A!)-fibrant, it is in particular Nis-fibrant; hence, by Proposition 5.11,
w* K is dNis-fibrant. Hence, we have for every n € Z and X € SmlSm,

H J. (X,w'K) =H{ (w(X),K) = Hom(Ag (w(X))[n], K). (5.12.1)
In particular, because w(X x 0) = w(X) x Al, we have that
Hom((Ay:(X) @ 0)[n],w* K) = Hom (A (w(X) @ Al [n], K)
= Hom (A (w(X))[n],K)

= Hom (A, (X)[n],w* K),

so w*K is O-local if K is (Nis,A')-local. It follows that w* sends (Nis,A!)-weak
equivalences to (dNis,[J)-weak equivalences, so that the following diagram of triangulated
categories commutes:

Danis (Cpx(PSh' (k,A))) <= Dnis(Cpx(PSh" (k,A)))
LlogDMT LDMT (5.12.2)

1ogDM*" (k,A) «—————— DMy, (k,A)),
R-w*

where the vertical fully faithful functors are the right adjoint to the localisations L”
and LA, respectively. By [32, Proposition 3.1.13] and Theorem 5.7, the t-structure
on Dyis(Cpx(PSh™(k,A))) (respectively on Dgnis(Cpx(PSh'™ (k,A)))) induces a t-
structure on DM (respectively on logDMeff), so that the inclusions tpm and tiogbm
are both t-exact. - -

To conclude, we need to show that RPw* o 7PM = Tl<°ngDM o RPw*. But because Rw* is
t-exact and (5.12.2) commutes, we have - -

Riw*(T?ivIK) = Rw*LDM(Tgv{K) = Rw*(1<ptpm(K))
=T1<pRw*ipm(K) = TISOngDMRiw*(K).
The same argument applies to the truncation 7>,, so that we can conclude. O

Remark 5.13. Assume that k satisfies resolution of singularities. Then the functor RBw*
is fully faithful, and its essential image is identified with the subcategory of A!l-local
objects in logDM®T by [7, Theorem 8.2.16]. It follows from Proposition 5.12 that under

RBw*, the homotopy t-structure on DM*! is induced by the homotopy t-structure on
logDM°®.

Corollary 5.14. The functor Liwu is Tight t-exact.

Proof. This follows immediately from the fact that its right adjoint is ¢-exact (in
particular, left ¢-exact). O
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6. Application to reciprocity sheaves

In this section, we discuss some applications to the theory of reciprocity sheaves. As above,
for X € SmISm(k), let |0X| be the strict normal crossing divisor supporting the log
structure of X. We will call the modulus pair (X, |0X|,cq) the associated reduced modulus
pair. We remark that the assignment X — (X,|0X |req) does not give rise to a functor
from SmlSm(k) to MCor, because a priori there is no control on the multiplicities of
the divisor X in the pullback along a morphism in SmlSm(k).

However, thanks to [29], there exists a functor

Log: RSCuis (k) — Shv'ix. (k,Z)
where for X = (X,0X) € SmISm(k) we have
Log(F)(X) := F°5(X) = w“F(X,|0X|cq).

Here, w®: RSCyjs — Clyjs is the functor defined in [18, Proposition 2.3.7] (see also
[18, Theorem 2.4.1-2.4.2] and 6.3) and Cly;s is the subcategory of O-invariant Nisnevich
sheaves on MCor, defined in [14] (not to be confused with CIy;, introduced in the
present article). By [29, Theorem 0.2], Log is fully faithful and exact.

Proposition 6.1. The essential image of Log is a subcategory of CIétIGiS.

Proof. By [29, Theorem 4.1] we have that for F € RSCyjs Log(F) is strictly
O-invariant. O

One can wonder whether the two categories agree; that is, whether Log is essentially
surjective onto CI}E{HS. This is not the case, as the following example indicates.

Ezample 6.2 (See [5, Proposition 3.5]). Let G, € RSChyis; then
Log(Ga)(X) =T'(X,Ox).

By, for example, [7, Corolary 9.2.6], we have that Hi\; (X, Log(Gq)) = H!,.,. (X, Log(G,)).

Let Log(G,) — I* be an injective resolution of dNis-sheaves. Thus, for all U C X open
affine, then there is a quasi-isomorphism

Log(Ga)(U) — I* (V).
It follows that for every set A, the map
[[£os(Ga)(©) =[] 1°(V)
A A
is a quasi-isomorphism. Thus, [], Log(G,) — [[ 4 I® is a sZar-local equivalence and hence

a sNis-local equivalence, so [], I® is an injective resolution of [], Log(G,).
We conclude that

Hinio(X, [[ £09(Ga)) = HM (] 1°(X)) = [[H"I*(X) = [] Hinis(X, Log(Ga))-
A A A A

In particular, [T, Log(G,) is strictly O invariant. On the other hand, by [17, Remark
6.1.2], if A is infinite, [], G4 does not belong to RSChyis.
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6.3. We recall some further constructions from the theory of modulus (pre)sheaves with
transfers. For F € MPST, write hj (F) for the presheaf

X s Coker(F(X @0) =% F(X)),
where i and 7] are as usual the pullbacks along the zero section and the unit section of
0, respectively. Clearly, hg'(F) is O-invariant in MIPST; that is, hj'(F) € CL. By [18,
Proposition 2.1.5], h§'(—) is the left adjoint to the inclusion (7: CI — MPST. Note that
(P has a right adjoint as well by [18, Lemma 2.1.7], denoted h%(—).

Let wi: MPST — PSh" (k) be the left Kan extension of w: MCor — Cor(k), sending
X =(X,X00) = X —|Xo|.? We write wCI: RSC — CI for the composition h%ow* OLRSC,
where (grsc is the inclusion of RSC in PSh" (k) and w*: PSh" (k) — MPST is the
restriction. If no confusion arises, we will use the same symbols to denote the corre-
sponding functor on the subcategories of Nisnevich sheaves, w®!: RSCyjs — Clyis and
w*: Shvi (k) — MNST. By [18, Proposition 2.3.7], wiw®F = F for every F € RSChjs.

Using the above-defined functors, we can compute the sections of Log(F) on
X € SmISm(k) for F' € RSCy;s as follows. Write X = (X,0X) and X° = X — |0X]|.
Choose a normal compactification j: X < Y with the property that X° - X — Y is
open dense and such that the complement Y — X° = D+ 0Xy for some effective Cartier
divisors D and 90Xy on Y satisfying Y —|D| = j(X) and 0Xy NX = 9X as reduced
Cartier divisors. Such a compactification is called a Cartier compactification of X, and
it always exists (cf. [14, Definition1.7.3]). Then we have

Log(F)(X) = (wCTF)°8(X) = colimHomMNST(hOi(X,nD +0Xy),w*F), (6.3.1)

where w*F € MNST if F € Shvy,,. This follows from [14, Lem. 1.7.4(b)] and the
definition of w©r.

Proposition 6.4. RSCyis is closed under colimits in Shvy, (k).
Proof. Recall that if {F;};c; is a diagram in Shvi,(k), then
lim F; = a;, coli v (Fy 4.1
colim F; = ay;; colimignyy, (Fi), (6.4.1)

where tgpy Shv{. (k) — PSh"™ (k) is the inclusion, the colimit on the left-hand side

of (6.4.1) is computed in Shv{y,, and the colimit on the right-hand side is computed in
PSh" (k). Because a;, respects reciprocity by [29, Theorem 0.1], it is enough to prove
that RSC is closed under colimits in PSh* (k). Consider then a diagram {F;};c; in RSC.
Because wy is a left adjoint and thus it preserves all colimits, we have

PShy;, (k) MPST
colim F; = wy colim w™" Fj.
iel il

3We follow the notation in [14], to avoid confusion with wy used before, but note that the
functor w in [14] and the functor w used in this article are very similar, even though they are
defined on different categories.
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Because CI is closed under colimits and hoi and i are left adjoints, we con-

clude iﬁhoicolimMP STE = colimMPSTiEhoiFi, so that the colimit is in RSC, as
required. O

Remark 6.5. For X,Y € SmISm(k), we have by, for example, [25, Section I11.2]
XxY = (X <Y, (priMx @pry My)®).

The divisor that supports the sheaf of monoids priy Mx @ pry My is Dx xY +X x Dy,
where the divisors Dx and Dy support Mx and My, respectively, and the functor (—)®
does not change the support. We conclude that the associated reduced modulus pair of
XxYisX).

Lemma 6.6. Log has a pro-left adjoint Rsc, given by the formula
pro- RSCnis

Rse(G):=" colim ~ “lim "wh5(X,D+nD'),F),

for every G € Shvlin,. (k,Z).

Proof. It follows directly from Saito’s theorem [29, Theorem 6.3] that Log preserves finite
limits, so the existence of a pro-left adjoint is formal (see, e.g., [2, Proposition 1.8.11.4]).
In the rest of the proof we characterise the pro-adjoint explicitly: such description will
be used later in the computation. Let F € RSCyjs and G € Shvlix,. (k,Z). For any X €
SmlISm(k), let (X,D) be the associated reduced modulus pair and choose X a Cartier
compactification of X. Set D’ := X'\ X.

Recall that

Log(F)(X) = wCY(F)(X,D) = lim Hom(wih5 (X, D +nD'), F).

Writing G as colimit of representable sheaves, G = colimg. x —, ¢ adnisZit: (X ), we have
Homgy1e (G, Log(F)) = Homgy1er (C%/lgl aaNisZier (X ), Log(F))
= )1(1?(1; Homgy1r (aanisZatr (X)), Log(F))
= }Q%H%HomRsc(wghoﬁ(y7D +nD'),F)
= lim Homy, rsc(“lim”w h(X,D+nD'),F),

where the last equality simply follows from the definition of the morphisms in the pro-
category pro-RSC. By Proposition 6.4, RSCyjs is cocomplete; hence, pro-RSCyjs is
cocomplete by, for example, [13, Proposition 11.1] and we can pass the limit inside the
Hom to get

pro-RSChnis = __
HomShv}ﬁ{I. ) (Gv ['Og(F)) = Hompro—RSC( C)(glilén “ hm”OJ!hE (X,D —+ TLDI),F)
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Thus, we can identify the pro-left adjoint to Log with the functor
pro-RSCnis = __
Rsc(G):= colim “lim”whS (X,D+nD"),
XlG n

from Shv''%. (k,Z) to RSChyis. =

6.7. The category of reciprocity sheaves is equipped with a lax monoidal structure
constructed in [27], given by

(F.G) sy, = wi (@ Fogf wa), (6.7.1)

for F,G € RSCyjs. More generally, there are functors for n > 1,
RSC;I:; — RSCNiS,(Fl, . ,Fn) — (Fl,FQ, e 7Fn)RSCN;Sa

which satisfies only a weak form of associativity, see [27, Corollary 4.18-4.21]. See [27]
and [23] for some computations. In particular, a nontrivial argument (see [27, Theorem
5.2]) shows that

(F,G)rscy, = F @uly, G

whenever F,G € HIy;s and ch(k) = 0. We can extend the bifunctor (—,—)rscy,. to the
pro-category as follows.

Definition 6.8. Let F'= “lim” F;,G = “lim” G € pro-RSCx;s; then we define
(F,G)grsc = “lim ™ (F5,Gj)RSCi, -

Proposition 6.9. (_,_)ksc is well defined and bifunctorial.

Proof. We first show that the assignment is well defined; that is, that it does not depend
on the chosen representation of “lim” F' as object in pro-RSCxyjs. Thus, let “lim” F &
“lim” F/ be another representation of the pro-system F. For every “lim”G,“lim”H €
pro-RSCyjis, we have canonical identifications
Homyo-rscn. ((“Im” F, “lim” G) g s, “lim” H) (6.9.1)
= Jim lim Homgscy,. (F,G)rsc, H)
H F,G
—® Jim lim Homps oy, (6 (0 F &35 w©'G), 0w H)
H F,G
=) lim lim Homerg, (WCOF @8k wCG,wC H),
H F,G ’
=4 lim lim Homerg, (wC'F, Hom(w®'G,wCr H)),
H F,G

where (1) is given by the definition of the morphisms in the pro category, (2) is simply
the definition of the monoidal structure, (3) follow from the fact that w: restricts to a
functor Clyis — RSChuys that is left adjoint to the fully faithful functor w®! and (4) is the
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adjunction for the internal Hom structure in Clyjs. The functor WwCl preserves all limits
being a right adjoint; hence, it induces a functor on the pro categories defined level-wise:

pro-wCr: pro-RSCuis — pro-CI%,,  pro-wC(“lim” F) := “lim”wCF.
Hence, because “lim” F' = “lim” F, we have that
pro-wC(“lim” F) & pro-wC(“lim” F').
In particular, for fixed G and H in RSCyjs, we have isomorphisms

lim Homerg, (wCF, Hom(w®'G,wC H))
F

= Homy,,-crg, (pro-wCt“lim” F, Hom (w<'G,w® H)) (6.9.2)

s

~ Homyyo-crg, (pro-w® “lim” F’, Hom(w®'G,w® H))

s

~ lim Homerg, (WO, Hom (wC'G,wC H)).
F/

Combining (6.9.1) and (6.9.2) we have that

Jim lim Homerg, (wC'F, Hom (wCtG,wCt H))
H F,G
= lim lim Homerg, (W F’, Hom (w®'G,wC H))
H F',G
= %in hi>n HOInRSCNis((F/?G)RSC’H)
H F,G

— Hompro- RS Gy, ((“lim” F/, “lim” )28, “lim” H).

This shows that (,-)gsc is indeed well defined.

We now prove the functoriality statement. Let f: “lim” F' — “lim” G be a morphism in
pro-RSCyis. We can use, for example, [1, Appendix 3.2] to reindex the limit by choosing
isomorphisms a: “lim” F' = “lim” , F,, and b: “lim”G = “lim” .G, and level-wise defined
morphisms f, : F, = G4 in RSCyis such that f=b"1“lim” f,a. Let H = “lim” Hg be
another pro-reciprocity sheaf. Then for all «, 3 we have a map

(farid)rscn,. : (FaHp)rscy, = (Ga, Hg)RsCi, -
The previous computations show that both a and b induce isomorphisms
(aid): (F,H)psc — (“lim” Fy,, H)R S o
(bid): (G,H)Rsc — (“lim” G g, H) s
which then induce a morphism

(avid) AN k) 70 (Alim”(fa»id) T0 (bvid)71 T0
T> (“lim” Fo, H)Rs o (Ga H)Rsc B (G,H)Rsc-

(F,H)‘;{gc
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It is clear that this morphism depends only on f, because if ¢’ : F = “lim” Fgz and b’ :
G = “lim”Gg, then the diagram below commutes:

. . “lm” (fo,id) . .

« ” pro « 9 pro
_—

(“lim” F, H) RS c (“lim” Go, H)Rsc

=] E

(F,H)Rsc (G H)grsc

“lim” (f3,id) T

(“lim” Fg, H)gsc ——— (“lim” G, H)RSe

The composition and the identity are clearly respected, and the same computation gives
functoriality for the other component. g

Remark 6.10. If C is a category equipped with a monoidal structure ® (in particular,
associative), then the category pro-C is equipped with the level-wise monoidal structure
{Xa}@{Ys} ={Xo®Y3}. See [10, 11]. Because the construction (6.7.1) gives a monoidal
structure on RSCyjs only in a weak sense (in particular, associativity is not known to
hold), we need to verify explicitly that the level-wise assignment 6.8 is indeed well defined.
Note that the argument is ad hoc and only proves the existence of a bi-functor at the
level of pro categories.

The functoriality statement of the previous proposition implies in particular that if
(Fi)ier and (Gj)jes are diagrams in pro-RSCuyis, then there is a natural map

pro- RSChnis ro pro- RSCnis pro- RSCnis pro
colim (F;,G;)Rsc — colim Fj;, colim G, (6.10.1)
%, ? J RSC

In general, there is no reason to expect that (6.10.1) is an isomorphism (see also [10,
Exercise 11.2] for a similar problem). Using the explicit description of the pro-left adjoint
to Log, we get then the following result.

Theorem 6.11. For F,.G € Clgll}is, there exists a natural map
Rsc(F @"" G) — (Rsc(F), Rse(G))rsc-

Proof. The tensor product in Shvlfﬁﬁs(k) is given by Day convolution from the monoidal
structure on SmlSm(k). So, if F' = colimx | p aqnisZir (X) and G = colimy | ¢ aanisZr (Y),
then

Itr
Shvgyis

Fe' G = cg(li}r/n aqNisZir (X XY).

A Cartier compactification of X x Y is given by X x Y, where X and Y are Cartier
compactifications of X and Y. Let D% = X — X and D}, =Y — Y. Using the explicit
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description of the functor Rsc given in the proof of Lemma 6.6, we get

Rsc(F ' Q)

pro- RSCnis -
= colim  “lim"whY(X xV,Dx x Y + X x Dy +n(Dy x Y + X x D))

R L B D D
= colim “lim’wi(hg (X,Dx +nD%)®cr1hg (Y,Dy +nDy)).

Consider now the natural maps
h§ (X, Dx +nDY) — ww (5 (X, Dx +nDly),
which give a natural map
“im”w, (h5 (X, Dx +nD% ) ®c1 h (Y, Dy +nD),))

— “lim”w, (wCIw!hOi(Y, Dx +nDY)®c1 wCIwghOE(V, Dy +nDy))

— “lim” (wh (X, Dx +nDY),wh5 (Y, Dy +nDj))rsc.
By definition the last term is equal to

(“lim” hOE(Y, Dx +nD'), “lim” hoi(?,Dy +nDy))Rsc-

Hence, we obtained a natural map

Rsc(F ' @) —

pro- RSCnis - _
colim  (“lim” Y (X, Dx +nD), “lim” S (Y, Dy +nD})2de.  (6.11.1)

Finally, as observed in (6.10.1) there is a natural map

pro- RSCni

colim  (“lim”h5(X,Dx +nDy), “him”h (V, Dy +nD} )23 —
pro-RSCnis - pro-RSCnis = __ pro
( colim  “lim”h(X,Dx +nD%), colim “lim” 5 (Y,Dy + nD&))
RSC
and the last term is equal to (Rsc(F), Rsc(G))rsc- O
Corollary 6.12. Let F,G € RSC; then there exists a natural map
Log(F) Derby, Log(G) — Log((F,G)rscps)- (6.12.1)

Proof. Let (—)P : RSCyis — pro-RSChuis be the constant functor F'+— “lim” F'. Because
Log is fully faithful, we have

FP =Rsc(Log(F)), GP=TRsc(Log(Q)).
By definition, we have that
(F?.G")gsc = (F.G)rsc)”,
so the previous lemma gives a natural map

Rsc(Log(F) " Log(G)) = ((F,G)rsc)?
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whose adjoint gives a map

Log(F)@"" Log(G) — Log((F,G)rsc)-
Finally, because Log((F,G)rsc) € CIix,,, the previous map factors through the locali-
sation hO ([_',og(F) ®ltr ﬁog(G)) = ,Cog(F) ®CI£{I{I. [,OQ(G), glvmg the desired map. O

7. Log reciprocity sheaves

In this final section, we assume that our field satisfies resolution of singularities, (RS)
for short (see, e.g., [7, Definition 7.6.3] for a precise definition). We construct a full
subcategory LogRec of Shv{, (k,A) such that RSCy;s C LogRec.

Our definition generalises the construction of [18] and it is very similar in spirit.

Definition 7.1. We define a pair of adjoint functors
1 ltr
w(cl)%: CIles E— ShVle(k A) wlog
where wg% = wyi and wfgé := h{, w*, where hY, is the right adjoint to the inclusion
of Proposition 5.8. The counit map iCIldcﬁ h?tr — 4d induces for all F' € Shvgnis(k,A) a
canonical map )

zwlOgF—>w F. (7.1.1)
Lemma 7.2. For ecach F € Shviy.(k,A), the map (7.1.1) is injective.

Proof. Let X € SmISm(k) with X connected, and let x be the generic point of X. By
Theorem 5.10, we have an injective map

zwlo IP(X)— zwggF(nX,trlv)
Hence, we get the following commutative diagram:
zwlOIF(X) —— W'F(X)
zwl(ggF(nX,trlv) —— w*F(nx,triv).
Because the left vertical arrow is injective, it is enough to check that the bottom arrow
is injective.
We have that
zwlOgF(nX) Hom (wyho(nx,triv), F).

By [7, Proposition 8.2.2] (this is the point where we use the hypothesis that k satisfies
(RS)), we have that

wiho (A (nx,triv)) = wiho (W™ A (nx)),
and by [7, Proposition 8.2.4],

ho(w* A (1)) = W B Ape (7).
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Finally, using the Suslin complex, we have a surjective map

Au(nx) = B A (nx)-

Putting everything together, we conclude that the map

Atr(nx) = wiho(Aree (nx, triv))

is surjective; hence, the following map

wgéF(nX,triv) = Hom(wpho (A1 (nx,triv),F') — Hom(Aw(nx),F) = w*F(nx,triv)
is injective, which concludes the proof. O

Proposition 7.3. Assume that k satisfies (RS). The composition

itr

CIétIGis — Shvlitlilis % Shv%\?is
18 fully faithful and exact.

Proof. Exactness follows from the exactness of i" and Wy
It is enough to show that for all F' € CIgﬁHS, the unit map

F - wllw(F) (7.3.1)

is an isomorphism.
Because F' € CIx;,, by Theorem 5.10 we have that for all X € SmlSm(k),

F(X)— F(X —[0X|) = w*wyi' F;

hence, u : F — w*wlé%F is injective. Because F € CIgﬁHS, the map u factors through

wg’éwg%F, showing injectivity of (7.3.1).
Let T be the cokernel of (7.3.1) and let @ be the cokernel of w.
On the other hand, we have the following diagram:

R % ) A J—

L]

0 —— F —“— wwEF —— Q —— 0
By Lemma 7.2, the middle veritcal arrow is injective, so T < @ is injective.
Because w* is fully faithful and exact, we have that wy@ = 0; hence, wyT' = 0 because
wy 1s exact.
Because T € CI'i%;., Theorem 5.10 implies that 7' = 0. This concludes the proof. [

Definition 7.4. Let LogRec denote the essential image of wg%; that is, the category of

sheaves F' € Shvi,. such that there exists G € CI'ix;, such that F = wcrG.
By definition, wg% induces an equivalence between CIy;. and LogRec with quasi-
inverse the restriction of WS; to LogRec.

is

Remark 7.5. Let F' € LogRec and let G € CIgﬁiS such that F' =wyG. We deduce some
immediate properties:
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(1) For all X € Sm and U C X dense open, Theorem 5.10 implies that F'(X) < F(U)
is injective.
(2) For all n and all X € Sm, we have that

*1 *2
anisHYo (- % X, F) = anig Hy, (Hom (X, Fis)) = anis Hyy (Hom (X s Ganis)) =)

anis H (w03 Hom((X, triv), Ganis)) = wyaanis Hy (Hom((X, triv), Ganis)),

where (%1) comes from Proposition 5.11, (%2) comes by definition of wy and
(*3) from the fact that wy is t-exact and [7, (4.3.4)]. By Corollary 5.9,
agNisHp (Hom(( X, triv),Ganis)) € Cll&is, so the cohomology sheaf anisHF;,(- %
X,F) € LogRec.

Theorem 7.6. The category RSCnis is a full subcategory of LogRec. In particular,
L’og:wgéiRsc. (7.6.1)

Proof. Because RSCy;s is a full subcategory of Shvyis(k,A), it is enough to show that
for every F € RSCyis there exists G € CI08,  such that F = wyG.
By [29, Section 4] we have that

wy Log(F)(X) =wCF(X,0) = F(X). (7.6.2)

Hence, RSCyjs is a full subcategory of LogRec.
Finally, because wy is an equivalence, (7.6.1) follows directly from (7.6.2). O

Corollary 7.7. Let F € RSCyis and let X € Sm(k). Then the cohomology of F satisfies
H"(X xY,F)—H"(X xny,F)

for everyn >0 and Y Henselian local essentially smooth k-scheme with generic point ny .

Proof. It follows immediately from Theorem 7.6 and Remark 7.5. O

Let irsc (respectively ilﬁgsc) denote the inclusion of RSCyis in Shviy,, (k) (respectively
in LogRec). Recall by [18] that irgc has a pro-left adjoint p such that for X € Sm(k)
and X a Cartier compactification with D = X — X, then

p(Zer(X)) = “lim” wihF (X, nD).

Proposition 7.8. The functor ilﬁgsc has a pro-left adjoint piog, which factors p. In
particular,

_ log
Rsc= progwer -

Proof. Because irsc = iLogRecill:(;gSC and iLogRec is fully faithful, for F' € Shvf\?is Ge
RSCyj;s we have that

. . . -log
Hompro—RSC (pZLogRecF7G) = HomShvf{iS (ZLogRecFvlLogRecZRscG) =

. . -log _ -log
HOIHShvf\{iS (ZLogRecF>ZLogRecZRSCG) = HomLogRec(FaZRSCG)~

https://doi.org/10.1017/51474748021000256 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000256

376 F. Binda and A. Merici

Finally, for F € CIIdtI{HS and G € RSCyjs, we have that
Homypro-rsc(Rse(F),G) = Homgpir (F, Log(G))
= Homenqy (£, WS;ZIQSCG)
= Homgpyt (iLogRecw s FirsCG)

= Hompro—RSC (plongIF7G)- O

Remark 7.9. Because CIlﬁ{HS is a symmetric monoidal Grothendieck abelian category,
LogRec is symmetric monoidal with tensor product given by

F®LogRecG = wﬁ(hO(wloIF®ltr logG))
By 6.12, for all F,G € RSCyjs we have a map
F ®LogRec G — (F,G)Rrsc-

If ch(k) # 0, this map is not an isomorphism (see 7.10 below). We do not know whether
we expect it to be an isomotphism when ch(k) = 0: this would prove that (._)rscy.
defines a monoidal structure on RSCyjs.

7.10. Let F,G € RSCyj; and let F’ C wC!F such that wiF' = F (in the language of [26],
F’ corresponds to a semi-continuous conductor of F different from the motivic conductor).
By construction, there exists a canonical map

(F/ Nlb CIG) S W ( (:I_F’®1\hb CIG) = (F;G)RSC' (7.].0.].)

This map is surjective: let @ be the cokernel of the inclusion F’ — w®IF such that w@Q = 0.
Hence, because _®c1wCIG is right exact, there is a right exact sequence

F/®le CIG—)(,«)CIF@NN CIG_>Q®N1§ CIG—>O,

and because Q@Nlb wClG is a quotient of Q OMNST wClG and w is exact and monoidal
in MINST, we conclude w(Q ®crw®!G) = 0, which shows the surjectivity of (7.10.1).

The kernel of (7.10.1) encapsulates the obstruction to the associativity of (., )rsc,
and it seems to be very difficult to compute in general. We know that it is not trivial if
ch(k) # 0; see [27, Theorem 4.17] and [27, Theorem 5.19] for an explicit computation.

On the other hand, we do not have any counterexamples if ch(k) = 0; hence, we do not
know whether to expect that the map above is an isomorphism. In this direction, we have
the following result.

Proposition 7.11. Let F,G € RSCxis. Then for all ' CwC'F (in MNST) such that
wiF' = F, the canonical map

F®LogRec G— (FaG)RSC
factors through w (F' @8 wClQ).
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Proof. Let (—)!°% be the functor of [29] and recall that Log(F) = (wClF)8. Because
Log(F) = (F")!°8 by construction, we can look at the diagram

Eog(F) ®CI$§;S ,COg(G) SN (wCIF ®léiIS, sp wCIG)log

| I

(F/)log ®Cllfﬁus Eog(G) (F/ le sp CIG)log

It is enough to show that there is a map
(F)5 @cpy Log(G) = (F' @gp " w'G)'

that makes the diagram above commutative. By adjunction, it is enough to construct a
map

(F/)log N @ShV§§is (COg(G), (wCIF ®1(\;ils,sp WCIG)log)
that factors the map
(F')'°8 = Log(F) = Homgpyie (L0g(G), (w'F @&y P wC'@)"%). (7.11.1)

Consider the following map given by the closed monoidal structure of CIY.’ (see

23, §3]):
F' = Homgyror (W'G F @67 w9'G). (7.11.2)

Let X € SmISm(k) and let X € MCor be the corresponding reduced modulus pair. By
construction, we have that

(Hom e (wC'G, F' @32 (,CIG)) 08 (X ) = Hommpst (WG @ Ziy (X), F' @85 C1@q)
= Hompmpst (WG, Homey (hG (X), F' @NP wC1@)).  (7.11.3)

Then the unit id — w®Iw, induces the following map:

HomMPST(wCIG7H()7mCI(hO( )Fl le sp CIG))

— HomprpsT (wCG wC ngoimm(hE( ), F’ ®Nlb anTel))

() Hompgsc(G,w HomCI(hOE(X),F'(X) = ,C1G))

2 Homgpyi: (L0g(G), Log(er Homay (W] (%), F X wC'@)))
= Homgpyse, (Log(G),(Homex (k5 (), F/ 0 7 w1G)) %), (7.11.4)
where (x1) (respectively (¥2), respectively (x3)) follows from the full faithfulness of w©!
(respectively the full faithfulness of Log, respectively the fact that Log(w)) = (1)!°8; see
[29, Corollary 2.6 (3)]).
Finally, fix Y € SmlSm(k) and let ) € MCor be the corresponding reduced modulus
pair.
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We have that
(Homey (h (X) F' &gy 0 G))*5(Y) = Homey (h (X @ V), F' ©¢5 " w'G)
= (F' e Q) (X oY) 2 (70X wo1G) (X x Y)
= Homgy, e (Zie(X), (F' @7 w'@)®)(Y), (7.11.5)

where (%) is true by the observation in Remark 6.5. We conclude that

Homgyyie (Log(G), (Homey (h(X), F' &gy ™ wo'G)'%)
= Homgp,1e (Log(G), Homgpyer (Zier(X), (F 2ar T wG)E))
= Homg e (£og(C), (F/ 5857 w€16)*%)(X).  (711.6)
Putting (7.11.3), (7.11.4), (7.11.5) and (7.11.6) together, we have a map

(Hom cy (w CIG F'® le sp CIG))log _>HO7H%hng{I, (Log(G), (F’ le sp CIG)log)
‘ (7.11.7)
Hence, by applying ()!°® to (7.11.2) and composing with (7.11.7), we get the map

(F')'°% — (Homey (w'G, F @y P w'G))' %8 — Homgpye (Log(G), (F' o&F w'G)'®)
= Homgy, e (Log(Q), Eogw.(F'@NlS P CIGY).  (7.11.8)

Finally, notice that the map (7.11.4) factors the map

Homypst(w' G, Homey (h5'(X), F' &8 w'G))

— Homprpst(wCG,w® ngomCI(hOi( X),wClu F' @5 sP wClq)).

So, because w F’ = F and w(wCIF @5 wCl@)) = (F,G)rsc, the equalities of 7.11.4,
7.11.5 and 7.11.6 with w©F instead of F’ conclude that (7.11.8) factor (7.11.1). This
concludes the proof. O

Remark 7.12. For F' € Shuyis, we denote by h%l (F) the biggest Al-local subsheaf as
defined in [26, 4.34]: for U € Sm,

Ko (F)(U) := Hom(hd (U),F).

On the other hand, for U < X a Cartier compactification such that X is proper and
smooth over k£ and X —U is a simple normal crossing divisor, for X = (X,0X) €
SmlSm(k) such that 90X is supported on X —U, by [7, Proposition 8.2.4] we have that

h (X) = wyho(X).
Hence, if F' € LogRec, then
has (F)(U) = Hom(wsho(X), F) = wisg F(X).

Here we underline that this does not depend on X, as long as X is proper.
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We conclude with this observation: for X as above and X € MCor the associated
reduced modulus pair, by [26, Corollary 4.36] if F € RSCyjis, we have that

Hom(w A" (X), F) = 1%, F = Hom(wS8h5 (X)), F).
This implies that
g P (X) = wEEhT (X)),
In particular, by [29, Corollary 2.6 (3)], we have that
Logleay ™ (X)) = g7 ()%

hence, by the fact that wlé)% is an equivalence on LogRec, we have that
75 og ~v ~ * 1
hy ()18 2 ho(X) = Wbt (U),

Again, we stress that these isomorphisms do not depend on X or X, as long as X is
proper.
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