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Abstract. The effect of convection on the strength of coupling is examined. It is found 
that in Cepheid models the inclusion of convection smooths the sharp peak of entropy 
perturbation in the ionization region and reduces significantly the coupling. 

1. Introduction 

The nonadiabatic amplitude equations formalism has been extensively stud
ied in the case of Cepheids and other stars populating the instability strip 
(see e.g. Buchler, Moskalik and Kovacs, 1991). In radiative models, for which 
the formalism was developed (Buchler and Goupil, 1984, hereinafter BG) it 
is found that perturbations of thermodynamic quantities in the ionization 
zones become very large and numerical problems appear in the calculation of 
coupling coefficients (Pesnell and Buchler, 1986). Buchler and Kovacs (1987, 
hereinafter BK, see also Kovacs and Buchler, 1989) have devised a method 
in which the coupling coefficients are derived from a fit to the results of 
nonlinear calculations, however in this approach one has to verify the ap
plicability of amplitude equations by comparing their prediction with the 
behavior of nonlinear models. To avoid the difficulties of the BG formalism 
Takeuti, Yamakawa and Ishida (1991, hereinafter TYI) have introduced a 
modified nonadiabatic formalism for amplitude equations. 

With TYI formalism it is found that in radiative Cepheid models the cou
pling is very strong — the nonadiabatic coupling coefficients are by about 
two orders of magnitude larger than those calculated from adiabatic eigen-
functions. Basing on these results it has been suggested by Tanaka et al. 
(1991) that the inclusion of convection may reduce the strength of coupling. 

Here I describe the effect the convection has on linear pulsations and 
on the coupling coefficients. The convection in the background models was 
described by the mixing length theory, and in linear pulsation calculations 
the usual approximation viz. that V • F'c = 0 (see Unno et a l , 1989) has 
been made. 
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Fig. 1. Dependence of \Ap/p\ on a in a Cepheid model. Curves are labeled with a. The 
curve labeled N represents the Lagrangean density fluctuation at the instant of maximum 
compression in the ionization region (see text). 

2. The Effect of Convection on Linear Eigenvectors 

In purely radiative models of Cepheids the amplitudes of density or tem
perature eigenfunctions (calculated from linear nonadiabatic equations) are 
sharply peaked in the ionization region of H/He (see e.g. Stellingwerf, 1990), 
partly due to strong nonlinearity of opacity and partly due to sharp gradi
ents occurring in this region which are due to the lack of effective energy 
transport mechanism in these models. 

To examine the effect of convection series of static models parametrized 
by a - l/Hp (see Paczynski, 1969), the ratio of mixing length to the pressure 
scale height, have been computed. The linear nonadiabatic pulsations have 
been calculated using Dziembowski's (1977) code. The dependence of the 
density eigenfunction on is shown in Fig. 1. The temperature perturbation 
behaves in a similar way. As it is seen the amplitude and steepness of the 
peak are strongly reduced relative to purely radiative model due to the 
decreased radiation flux. This also leads to the decrease of nonadiabaticity in 
the ionization zones because the total pressure perturbation is smooth across 
the ionization region. For efficient convection, then, it may be expected that, 
qualitatively, the nonadiabatic eigenfunctions will behave similarly to the 
adiabtic ones. 

Also in Fig. 1 is shown the maximum lagrangean density variation ob
tained from nonlinear calculations (the density variation is scaled in such a 
way that the surface amplitude of relative radius variation is unity). As it 
is seen the linear Ap/p for a• ~ 1 - 2 qualitatively resembles the nonlinear 
variation, what indicates that the effect of nonlinearity can be to a certain 
degree modeled by the inclusion of convection. Thus amplitude equations 
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Fig. 2. Dependence of C on a for a model with M = 6Me, L = 2280I e , log(reff) = 3.767. 

calculated basing on the results of linear pulsations with a ~ 1.5 may better 
represent the behavior of nonlinear models. 

3. The Effect of Convection on Coupling in Cepheids 

To examine qualitatively the effect of convection on the strength of coupling 
the nonadiabatic formalism of TYI is adopted. This formalism, although 
it contains several simplifying assumptions, is used in the present case to 
obtain qualitative estimate of the coupling coefficients because (as it uses 
the second law of thermodynamics in phase of energy equation) it does not 
require the explicit specification of the mode of energy transport (radiative 
vs. radiative/convective). 

In the TYI formalism the (second order nonresonant) coupling coeffi
cients are calculated from Cijk = Qijk/(<?JEKi), where ER'i and ai are the 
kinetic energy and nondimensional frequency of mode ?', respectively, and 
the integral Qijk gives the strength of coupling between the three modes 
{i,j, k} (TYI, Eq. (26)). The main contribution to this integral comes from 
the ionization region. With the increase of a the contribution from this 
region diminishes. 

The dependence of C on a is shown in Fig. 2. From this figure it is 
seen that in radiative models the coupling is strong and strongly nonadia
batic, \ReC\ ~ |ImC| ~ 102. For a = 1 the coupling coefficients decrease 
to \C\ ~ 10, and for larger a they become of comparable order to those 
calculated from adiabatic eigenfunctions, though they remain weakly nona
diabatic (\ReC\ » |ImC| > 0). 

For Cepheid models the coupling coefficients scale with model parameters 
approximately as \C\ a A2, with A = (L/LQ)(MQ/M)2 (the fit is based on 
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calculations for Cepheid models listed in Tables Ia,b in TYI). Hence with 
an increase of L/M, or a decrease of M they increase rapidly. 

4. Conclusions 

The inclusion of convection in the background models reduces the steep 
gradients in the ionization region and hence results in a decrease of the 
amplitudes of thermodynamic eigenfunctions in this region. The coupling 
which is determined by the behavior of eigenfunction in the ionization region 
is thus reduced. 

For Cepheid models the investigations of the effect of the strength of cou
pling on the occurrence of double mode behavior (Dziembowski and Kovacs, 
1984, Kovacs and Kollath, 1988, Tanaka et al., 1991) have shown that the 
type of behavior is determined by the degree of nonadiabaticity and by the 
magnitude of coupling. Therefore in these stars the influence of convection 
should be included in the ab initio calculation of nonadiabatic coupling co
efficients. 

For higher L/M supergiants the convection becomes inefficient, so that 
it can not reduce the amplitudes of linear perturbations in the ionization 
region. Hence the coupling coefficients obtained from linear eigenvectors may 
lead to a significant overestimate of the strength of coupling. It would be 
interesting to see whether in extreme supergiant stars the approach of BK 
leads to amplitude equations which are compatible with the hydrodynamical 
calculations. 
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