ON SUPPLEMENTS IN FINITE GROUPS

R. KOCHENDÖRFFER

(received 5 February, 1962)

Let G be a finite group. If N denotes a normal subgroup of G, a subgroup S of G is called a supplement of N if we have $G=S N$. For every normal subgroup of G there is always the trivial supplement $S=G$. The existence of a non-trivial supplement is important for the extension theory, i.e., for the description of G by means of N and the factor group G / N. Generally, a supplement S is the more useful the smaller the intersection $S \cap N$. If we have even $S \cap N=1$, then S is called a complement for N in G. In this case G is a splitting extension of N by S.

A number of theorems state that a given subgroup S of G is a complement of a suitable normal subgroup N. A well known example is the following theorem of Burnside: If S is a Sylow subgroup of G which is contained in the centre of its normalizer then G contains a normal subgroup N of which S is a complement, i.e. $G=S N$ and $S \cap N=1$. A paper by D. G. Higman [l], for instance, contains a generalization of this theorem. Another generalization of the theorem of Burnside has been obtained by the author [2] and under much weaker conditions by Gr. Zappa [3].

The theorems in [2] and [3] are based upon a special property which a system of coset representatives of a subgroup may have. Let H be a subgroup of G and let

$$
G=\sum_{r \in R} H r
$$

denote the decomposition of G into cosets with respect to H. If the system R of coset representatives has the property:

$$
h^{-1} R h=R \quad \text { for any } \quad h \in H
$$

then R is called a distinguished system of coset representatives. The main theorem in [3] deals with Hall subgroups H, i.e., subgroups H whose order is prime to their index $[G: H]$. It states:

Let H be a nilpotent Hall subgroup of G possessing a distinguished system of coset representatives. Then G contains a normal subgroup N such that $G=H N, H \cap N=1$.

In the present note, we shall generalize the theorem of Zappa by giving a condition under which a subgroup H is a supplement of a suitable normal
subgroup N and an upper bound for the intersection $H \cap N$.
Let r_{1}, \cdots, r_{n} denote a system of coset representatives of G with respect to H. So we have $n=[G: H]$ and

$$
G=\sum_{\nu=1}^{n} H r_{\nu}
$$

Transforming r_{1}, \cdots, r_{n} by the elements of H we obtain

$$
\begin{equation*}
h^{-1} r_{\nu} h=c_{\nu, h} r_{\nu h} \quad(\nu=1, \cdots, n ; h \in H) \tag{1}
\end{equation*}
$$

where the $c_{\nu, h}$ are in H and $r_{1 h}, \cdots, r_{n h}$ form a permutation of r_{1}, \cdots, r_{n}, depending on h. The mappings

$$
r_{\nu} \rightarrow c_{\nu, h} \gamma_{\nu h} \quad(\nu=1, \cdots, n)
$$

yield an intransitive monomial representation of H, the coefficients of which belong also to H. The subgroup C of H which is generated by all $c_{\nu, h}(\nu=1$, $\cdots, n ; h \in H$) shall be called the coefficient group belonging to the system r_{1}, \cdots, r_{n} of coset representatives. The distinguished systems of coset representatives are exactly those for which the corresponding coefficient group consists of the unit element alone.

It is easy to see that C is always a normal subgroup of H. For if $k \in H$ we have

$$
k^{-1} h^{-1} r_{\nu} h k=k^{-1} c_{\nu, h} k k^{-1} r_{\nu h} k=k^{-1} c_{\nu, h} k c_{\nu h, k} r_{\nu h k}
$$

and on the other hand

$$
(h k)^{-1} r_{\nu}(h k)=c_{\nu, h k} r_{\nu h k}
$$

Hence

$$
\begin{aligned}
& k^{-1} c_{\nu, h} k c_{\nu h, k}=c_{\nu, h k}, \\
& k^{-1} c_{\nu, h} k=c_{\nu, h k} c_{\nu h, k}^{-1} \in C .
\end{aligned}
$$

This proves that C is a normal subgroup of H.
Theorem. Let H be a subgroup of G and let C denote the coefficient group belonging to a system R of coset representatives of G with respect to H. If H / C is nilpotent and if $[G: H]$ is prime to $[H: C]$ then G contains a normal subgroup N such that $G=H N$ and $H \cap N \subseteq C$.

Using the terminology of [1], the proof of this theorem may be sketched as follows: From our condition it follows that C is chained to H in G. So Theorem 3.1 of [1] is valid, and Corollary 3.5 yields the theorem. We shall give a detailed proof, however.

If V, W are subgroups of G and $W \subseteq V$, then $(W, V)^{*}$ shall denote the subgroup of W generated by all those commutators

$$
(w, v)=w v w^{-1} v^{-1}(w \in W, v \in V)
$$

which are contained in W. Obviously, $(W, V)^{*}$ contains the commutator subgroup W^{\prime} of W, hence $(W, V)^{*}$ is a normal subgroup of W.

For a set π of prime numbers we shall denote by $P(\pi)$ the subgroup of G which is generated by all those elements of G whose orders are not divisible by any prime in π.

Let U be a subgroup of G and T a normal subgroup of U. We assume that π contains all prime divisors of $[U: T]$ and write

$$
P(\pi)=P, \quad P \cap U=A, \quad P \cap T=B
$$

Lemma 1.

$$
x^{[P: A]} \in(A, P)^{*} B \quad \text { for each } \quad x \in A
$$

Proof. The transfer of P into A is a homomorphism τ of P into the factor group A / A^{\prime}. In order to compute the image x^{τ} of an element x in P we may use the formula

$$
x^{\tau}=A^{\prime} \prod_{\lambda=1}^{l} t_{\lambda} x^{f_{\lambda}} t_{\lambda}^{-1}
$$

Here the t_{λ} are suitable elements in P, the f_{λ} are integers, and

$$
t_{\lambda} x^{f_{\lambda}} t_{\lambda}^{-1} \in A, \quad f_{1}+\cdots+f_{l}=[P: A]
$$

In particular, if x is in A we have

$$
t_{\lambda} x^{f_{\lambda}} t_{\lambda}^{-1} x^{-f_{\lambda}}=\left(t_{\lambda}, x^{f_{\lambda}}\right) \in A
$$

hence

$$
t_{\lambda} x^{f \lambda} t_{\lambda}^{-1}=\left(t_{\lambda}, x^{f \lambda}\right) x^{f \lambda} \equiv x^{f \lambda} \bmod .(A, P)^{*}
$$

So we find

$$
x^{\tau} \equiv x^{f_{1}+\cdots+f_{l}}=x^{[P: A]} \bmod (A, P)^{*}
$$

Now A^{\prime} is contained in $(A, P)^{*} B$, for A^{\prime} is even a subgroup of $(A, P)^{*}$. There exists therefore a natural homomorphism v of A / A^{\prime} onto $A /(A, P)^{*} B$. Then $\sigma=\tau v$ is a homomorphism of A into $A /(A, P)^{*} B$ such that

$$
\begin{equation*}
x^{\sigma} \equiv x^{[P: A]} \bmod .(A, P)^{*} B \quad(x \in A) \tag{2}
\end{equation*}
$$

The order of the factor group $A /(A, P)^{*} B$ divides $[A: B]$, and $[A: B]=$ [$P \cap U: P \cap T]$ divides $[U: T]$. Since π contains all prime divisors of [$U: T$], all prime divisors of the order of $A /(A, P)^{*} B$ are in π. Hence, since $x \in A \cong P$, it follows from the definition of P that $\sigma=0$. So (2) yields

$$
1 \equiv x^{[P: A]} \quad \bmod . \quad(A, P)^{*} B
$$

which proves the lemma.
The main step towards the proof of our theorem is the following lemma, asserting that the divisibility theorem 3.1 of [1] holds, if the conditions of our theorem are satisfied.

Lemma 2. Let the conditions of the theorem be satisfied and let $\boldsymbol{\pi}$ denote the set of all prime divisors of $[H: C]$. Then every prime divisor of $[P(\pi) \cap H$: $P(\pi) \cap C]$ divides $[P(\pi): P(\pi) \cap H]$.

Proof. Let $H^{(\mu)}$ denote the μ-th term of the lower central series of H, i.e.

$$
H^{(0)}=H,
$$

$H^{(\mu+1)}=$ the subgroup of H which is generated by all commutators

$$
\left(h^{(\mu)}, h\right) \quad \text { with } \quad h^{(\mu)} \in H^{(\mu)}, h \in H \quad(\mu=0,1, \cdots) .
$$

Since H / C is nilpotent there exists an integer m such that $H^{(m)} \cong C$. Writing

$$
H_{\mu}=H^{(\mu)} C \quad(\mu=0,1, \cdots, m)
$$

we obtain the series

$$
H=H_{0} \supset H_{1} \supset \cdots \supset H_{m}=C .
$$

Here every H_{μ} is a normal subgroup of H. The subgroup $\left(H_{\mu}, G\right)^{*}$ is generated by all those commutators

$$
h_{\mu} g h_{\mu}^{-1} g^{-1} \quad\left(h_{\mu} \in H_{\mu}, g \in G\right)
$$

which are contained in H_{μ}. Writing $g=h r(h \in H, r \in R)$ we have in view of (1) and since C is a normal subgroup of H

$$
\begin{aligned}
h_{\mu} g h_{\mu}^{-1} g^{-1} & =h_{\mu} h r h_{\mu}^{-1} r^{-1} h^{-1} \\
& =h_{\mu} h h_{\mu}^{-1} c_{1} r_{1} r^{-1} h^{-1} \\
& =h_{\mu} h h_{\mu}^{-1} h^{-1} c_{2} r_{2} r_{3}^{-1},
\end{aligned}
$$

where c_{1}, c_{2} are in C and r_{1}, r_{2}, r_{3} in R. If the last product is contained in H_{μ}, it follows that $r_{2}=r_{3}$ and furthermore

$$
h_{\mu} g h_{\mu}^{-1} g^{-1}=h_{\mu} h h_{\mu}^{-1} h^{-1} c_{2} \in H^{(\mu+1)} C=H_{\mu+1} .
$$

Hence we have

$$
\begin{equation*}
\left(H_{\mu}, G\right)^{*} \cong H_{\mu+1} . \tag{3}
\end{equation*}
$$

We write $P(\pi)=P$,

$$
P \cap H_{\mu}=T_{\mu} \quad(\mu=0,1, \cdots, m)
$$

in particular $P \cap H=T_{0}, P \cap C=T_{m}$. Then $T_{\mu+1}$ is a normal subgroup of T_{μ} and, by (3),

$$
\begin{equation*}
\left(T_{\mu}, P\right)^{*} \cong T_{\mu+1} \quad(\mu=0,1, \cdots, m-1) \tag{4}
\end{equation*}
$$

Since π contains all prime divisors of $\left[T_{\mu}: T_{\mu+1}\right]$, Lemma 1 can be applied and yields in view of (4)

$$
\begin{equation*}
x^{\left[P: T_{\mu}\right]} \epsilon\left(T_{\mu}, P\right)^{*} T_{\mu+1}=T_{\mu+1} \quad \text { for every } \quad x \in T_{\mu} \tag{5}
\end{equation*}
$$

Now we prove that every prime divisor of $\left[P: T_{\mu}\right.$] also divides $\left[P: T_{0}\right.$] $=$ [$P: P \cap H]$. This proposition being true for $\mu=0$ we may proceed by induction. We have $\left[P: T_{\mu+1}\right]=\left[P: T_{\mu}\right]\left[T_{\mu}: T_{\mu+1}\right]$. By (5), the index [$\left.T_{\mu}: T_{\mu+1}\right]$ cannot be divisible by any prime different from those dividing [$P: T_{\mu}$]. So $\left[P: T_{\mu+1}\right.$] contains only such prime divisors which divide [$P: T_{\mu}$]. Hence, if we assume that every prime divisor of $\left[P: T_{\mu}\right.$] divides [$P: P \cap H$], the same is true for [$P: T_{\mu+1}$]. For $\mu=m$ we obtain that every prime divisor of $[P: P \cap C$] divides $[P: P \cap H]$. This proves Lemma 2.

Using Lemma 2 it is easy to prove our theorem.
Since π is the set of all primes dividing [$H: C$] and since, by hypothesis, $[G: H]$ is prime to $[H: C]$, no prime divisor of $[G: H]$ is contained in π. It follows that $G=H P(\pi)$. For let q be a prime which is not in π, then $P(\pi)$ contains the Sylow q-subgroups of G. On the other hand for a prime $p \in \pi$ the index $[G: H]$ is not divisible by p, so the order of H must be divisible by the same power of p as the order of G. Hence $H P(\pi)$ has the same order as G.

By Lemma 2, every prime divisor of $[P(\pi) \cap H: P(\pi) \cap C]$ divides $[P(\pi): P(\pi) \cap H]$. On the other hand $[P(\pi) \cap H: P(\pi) \cap C]$ divides [$H: C$] and hence is prime to

$$
[G: H]=[H P(\pi): H]=[P(\pi): P(\pi) \cap H] .
$$

We have therefore $[P(\pi) \cap H: P(\pi) \cap C]=1$, hence $P(\pi) \cap H \cong C$, which proves the theorem.

The assumption that H / C is nilpotent can probably by replaced by a weaker one (cf. [3]). The following example shows, however, that it would not be sufficient to assume only that H / C is solvable. Let G be the symmetric group of degree 5 on $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5} ; H$ the subgroup which leaves α_{5} unchanged, and let R consist of $1,\left(\alpha_{1}, \alpha_{5}\right),\left(\alpha_{2}, \alpha_{5}\right),\left(\alpha_{3}, \alpha_{5}\right),\left(\alpha_{4}, \alpha_{5}\right)$. Then we have $C=1$, hence R is a distinguished system of coset representatives. However, G contains no normal subgroup of order 5 .

References

[1] Higman, D. G., Focal series in finite groups, Canad. J. Math. 5 (1953), 477-497.
[2] Kochendörffer, R., Ein Satz über Sylowgruppen, Math. Nachr. 17 (1959), 189-194.
[3] Zappa, G., Generalizzazione di un teorema di Kochendörffer, Matematiche, Catania, 13 (1959), 61-64.

University of Rostock, Germany.

