ON SUPPLEMENTS IN FINITE GROUPS

R. KOCHENDÖRFFER

(received 5 February, 1962)

Let G be a finite group. If N denotes a normal subgroup of G, a subgroup S of G is called a supplement of N if we have G = SN. For every normal subgroup of G there is always the trivial supplement S = G. The existence of a non-trivial supplement is important for the extension theory, i.e., for the description of G by means of N and the factor group G/N. Generally, a supplement S is the more useful the smaller the intersection $S \cap N$. If we have even $S \cap N = 1$, then S is called a complement for N in G. In this case G is a splitting extension of N by S.

A number of theorems state that a given subgroup S of G is a complement of a suitable normal subgroup N. A well known example is the following theorem of Burnside: If S is a Sylow subgroup of G which is contained in the centre of its normalizer then G contains a normal subgroup N of which S is a complement, i.e. G = SN and $S \cap N = 1$. A paper by D. G. Higman [1], for instance, contains a generalization of this theorem. Another generalization of the theorem of Burnside has been obtained by the author [2] and under much weaker conditions by G. Zappa [3].

The theorems in [2] and [3] are based upon a special property which a system of coset representatives of a subgroup may have. Let H be a subgroup of G and let

$$G = \sum_{r \in R} Hr$$

denote the decomposition of G into cosets with respect to H. If the system R of coset representatives has the property:

$$h^{-1}Rh = R$$
 for any $h \in H$,

then R is called a *distinguished* system of coset representatives. The main theorem in [3] deals with Hall subgroups H, i.e., subgroups H whose order is prime to their index [G:H]. It states:

Let *H* be a nilpotent Hall subgroup of *G* possessing a distinguished system of coset representatives. Then *G* contains a normal subgroup *N* such that $G = HN, H \cap N = 1$.

In the present note, we shall generalize the theorem of Zappa by giving a condition under which a subgroup H is a supplement of a suitable normal

subgroup N and an upper bound for the intersection $H \cap N$.

Let r_1, \dots, r_n denote a system of coset representatives of G with respect to H. So we have n = [G:H] and

$$G=\sum_{\nu=1}^n Hr_{\nu}.$$

Transforming r_1, \dots, r_n by the elements of H we obtain

(1)
$$h^{-1}r_{\nu}h = c_{\nu,h}r_{\nu h} \qquad (\nu = 1, \cdots, n; h \in H),$$

where the $c_{\nu,h}$ are in H and r_{1h}, \dots, r_{nh} form a permutation of r_1, \dots, r_n , depending on h. The mappings

$$r_{\nu} \rightarrow c_{\nu,h} r_{\nu h}$$
 $(\nu = 1, \cdots, n)$

yield an intransitive monomial representation of H, the coefficients of which belong also to H. The subgroup C of H which is generated by all $c_{\nu,h}(\nu = 1, \dots, n; h \in H)$ shall be called the *coefficient group* belonging to the system r_1, \dots, r_n of coset representatives. The distinguished systems of coset representatives are exactly those for which the corresponding coefficient group consists of the unit element alone.

It is easy to see that C is always a normal subgroup of H. For if $k \in H$ we have

$$k^{-1}h^{-1}r_{\nu}hk = k^{-1}c_{\nu,h}kk^{-1}r_{\nu h}k = k^{-1}c_{\nu,h}kc_{\nu h,k}r_{\nu hk}$$

and on the other hand

$$(hk)^{-1}r_{\nu}(hk) = c_{\nu,hk}r_{\nu hk}.$$

Hence

$$k^{-1}c_{\nu,h}kc_{\nu h,k} = c_{\nu,hk},$$

$$k^{-1}c_{\nu,h}k = c_{\nu,hk}c_{\nu h,k}^{-1} \in C$$

This proves that C is a normal subgroup of H.

THEOREM. Let H be a subgroup of G and let C denote the coefficient group belonging to a system R of coset representatives of G with respect to H. If H/C is nilpotent and if [G:H] is prime to [H:C] then G contains a normal subgroup N such that G = HN and $H \cap N \subseteq C$.

Using the terminology of [1], the proof of this theorem may be sketched as follows: From our condition it follows that C is chained to H in G. So Theorem 3.1 of [1] is valid, and Corollary 3.5 yields the theorem. We shall give a detailed proof, however.

If V, W are subgroups of G and $W \subseteq V$, then $(W, V)^*$ shall denote the subgroup of W generated by all those commutators

$$(w, v) = wvw^{-1}v^{-1}(w \in W, v \in V)$$

which are contained in W. Obviously, $(W, V)^*$ contains the commutator subgroup W' of W, hence $(W, V)^*$ is a normal subgroup of W.

For a set π of prime numbers we shall denote by $P(\pi)$ the subgroup of G which is generated by all those elements of G whose orders are not divisible by any prime in π .

Let U be a subgroup of G and T a normal subgroup of U. We assume that π contains all prime divisors of [U:T] and write

$$P(\pi) = P$$
, $P \cap U = A$, $P \cap T = B$.

LEMMA 1.

$$x^{[P:A]} \in (A, P)^* B$$
 for each $x \in A$.

PROOF. The transfer of P into A is a homomorphism τ of P into the factor group A/A'. In order to compute the image x^{τ} of an element x in P we may use the formula

$$x^{\tau} = A' \prod_{\lambda=1}^{l} t_{\lambda} x^{\prime_{\lambda}} t_{\lambda}^{-1}.$$

Here the t_{λ} are suitable elements in P, the f_{λ} are integers, and

 $t_{\lambda} x^{t_{\lambda}} t_{\lambda}^{-1} \epsilon A, \quad f_1 + \cdots + f_l = [P:A].$

In particular, if x is in A we have

$$t_{\lambda} x^{f_{\lambda}} t_{\lambda}^{-1} x^{-f_{\lambda}} = (t_{\lambda}, x^{f_{\lambda}}) \epsilon A,$$

hence

$$t_{\lambda} x^{f_{\lambda}} t_{\lambda}^{-1} = (t_{\lambda}, x^{f_{\lambda}}) x^{f_{\lambda}} \equiv x^{f_{\lambda}} \operatorname{mod.} (A, P)^{*}.$$

So we find

$$x^{\tau} \equiv x^{f_1 + \dots + f_l} = x^{[P:A]} \mod (A, P)^*.$$

Now A' is contained in $(A, P)^*B$, for A' is even a subgroup of $(A, P)^*$. There exists therefore a natural homomorphism ν of A/A' onto $A/(A, P)^*B$. Then $\sigma = \tau \nu$ is a homomorphism of A into $A/(A, P)^*B$ such that

(2)
$$x^{\sigma} \equiv x^{[P:A]} \mod (A, P)^* B \quad (x \in A).$$

The order of the factor group $A/(A, P)^*B$ divides [A : B], and $[A : B] = [P \cap U : P \cap T]$ divides [U : T]. Since π contains all prime divisors of [U : T], all prime divisors of the order of $A/(A, P)^*B$ are in π . Hence, since $x \in A \subseteq P$, it follows from the definition of P that $\sigma = 0$. So (2) yields

$$1 \equiv x^{[P:A]} \mod. (A, P)^*B,$$

which proves the lemma.

The main step towards the proof of our theorem is the following lemma, asserting that the divisibility theorem 3.1 of [1] holds, if the conditions of our theorem are satisfied.

R. Kochendörffer

LEMMA 2. Let the conditions of the theorem be satisfied and let π denote the set of all prime divisors of [H:C]. Then every prime divisor of $[P(\pi) \cap H: P(\pi) \cap C]$ divides $[P(\pi):P(\pi) \cap H]$.

PROOF. Let $H^{(\mu)}$ denote the μ -th term of the lower central series of H, i.e.

$$H^{(0)} = H$$
,

 $H^{(\mu+1)}$ = the subgroup of H which is generated by all commutators

$$(h^{(\mu)}, h)$$
 with $h^{(\mu)} \epsilon H^{(\mu)}, h \epsilon H$ $(\mu = 0, 1, \cdots).$

Since H/C is nilpotent there exists an integer *m* such that $H^{(m)} \subseteq C$. Writing

$$H_{\mu} = H^{(\mu)}C$$
 $(\mu = 0, 1, \cdots, m)$

we obtain the series

$$H = H_0 \supset H_1 \supset \cdots \supset H_m = C.$$

Here every H_{μ} is a normal subgroup of H. The subgroup $(H_{\mu}, G)^*$ is generated by all those commutators

$$h_{\mu}gh_{\mu}^{-1}g^{-1}$$
 $(h_{\mu} \epsilon H_{\mu}, g \epsilon G)$

which are contained in H_{μ} . Writing $g = hr(h \in H, r \in R)$ we have in view of (1) and since C is a normal subgroup of H

$$h_{\mu}gh_{\mu}^{-1}g^{-1} = h_{\mu}hrh_{\mu}^{-1}r^{-1}h^{-1}$$
$$= h_{\mu}hh_{\mu}^{-1}c_{1}r_{1}r^{-1}h^{-1}$$
$$= h_{\mu}hh_{\mu}^{-1}h^{-1}c_{2}r_{2}r_{3}^{-1}$$

where c_1 , c_2 are in C and r_1 , r_2 , r_3 in R. If the last product is contained in H_{μ} , it follows that $r_2 = r_3$ and furthermore

$$h_{\mu}gh_{\mu}^{-1}g^{-1} = h_{\mu}hh_{\mu}^{-1}h^{-1}c_{2} \in H^{(\mu+1)}C = H_{\mu+1}.$$

Hence we have

(3)
$$(H_{\mu}, G)^* \subseteq H_{\mu+1}.$$

We write $P(\pi) = P$,

$$P \cap H_{\mu} = T_{\mu} \qquad (\mu = 0, 1, \cdots, m),$$

in particular $P \cap H = T_0$, $P \cap C = T_m$. Then $T_{\mu+1}$ is a normal subgroup of T_{μ} and, by (3),

(4) $(T_{\mu}, P)^* \subseteq T_{\mu+1}$ $(\mu = 0, 1, \cdots, m-1).$

Since π contains all prime divisors of $[T_{\mu}: T_{\mu+1}]$, Lemma 1 can be applied and yields in view of (4)

On supplements in finite groups

(5)
$$x^{[P:T_{\mu}]} \in (T_{\mu}, P)^* T_{\mu+1} = T_{\mu+1} \quad \text{for every} \quad x \in T_{\mu}$$

[5]

Now we prove that every prime divisor of $[P:T_{\mu}]$ also divides $[P:T_0] = [P:P \cap H]$. This proposition being true for $\mu = 0$ we may proceed by induction. We have $[P:T_{\mu+1}] = [P:T_{\mu}][T_{\mu}:T_{\mu+1}]$. By (5), the index $[T_{\mu}:T_{\mu+1}]$ cannot be divisible by any prime different from those dividing $[P:T_{\mu}]$. So $[P:T_{\mu+1}]$ contains only such prime divisors which divide $[P:T_{\mu}]$. Hence, if we assume that every prime divisor of $[P:T_{\mu}]$ divides $[P:P \cap H]$, the same is true for $[P:T_{\mu+1}]$. For $\mu = m$ we obtain that every prime divisor of $[P:P \cap C]$ divides $[P:P \cap H]$. This proves Lemma 2.

Using Lemma 2 it is easy to prove our theorem.

Since π is the set of all primes dividing [H:C] and since, by hypothesis, [G:H] is prime to [H:C], no prime divisor of [G:H] is contained in π . It follows that $G = HP(\pi)$. For let q be a prime which is not in π , then $P(\pi)$ contains the Sylow q-subgroups of G. On the other hand for a prime $\phi \in \pi$ the index [G:H] is not divisible by ϕ , so the order of H must be divisible by the same power of ϕ as the order of G. Hence $HP(\pi)$ has the same order as G.

By Lemma 2, every prime divisor of $[P(\pi) \cap H : P(\pi) \cap C]$ divides $[P(\pi) : P(\pi) \cap H]$. On the other hand $[P(\pi) \cap H : P(\pi) \cap C]$ divides [H:C] and hence is prime to

$$[G:H] = [HP(\pi):H] = [P(\pi):P(\pi) \cap H].$$

We have therefore $[P(\pi) \cap H : P(\pi) \cap C] = 1$, hence $P(\pi) \cap H \subseteq C$, which proves the theorem.

The assumption that H/C is nilpotent can probably by replaced by a weaker one (cf. [3]). The following example shows, however, that it would not be sufficient to assume only that H/C is solvable. Let G be the symmetric group of degree 5 on α_1 , α_2 , α_3 , α_4 , α_5 ; H the subgroup which leaves α_5 unchanged, and let R consist of 1, (α_1, α_5) , (α_2, α_5) , (α_3, α_5) , (α_4, α_5) . Then we have C = 1, hence R is a distinguished system of coset representatives. However, G contains no normal subgroup of order 5.

References

- [1] Higman, D. G., Focal series in finite groups, Canad. J. Math. 5 (1953), 477-497.
- [2] Kochendörffer, R., Ein Satz über Sylowgruppen, Math. Nachr. 17 (1959), 189-194.
 [3] Zappa, G., Generalizzazione di un teorema di Kochendörffer, Matematiche, Catania, 13 (1959), 61-64.

University of Rostock, Germany.