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Abstract

An extension of a result of Sela shows that if Γ is a torsion-free word hyperbolic group, then
the only homomorphisms Γ → Γ with finite-index image are the automorphisms. It follows
from this result and properties of quasiregular mappings, that if M is a closed Riemannian
n-manifold with negative sectional curvature (n �= 4), then every quasiregular mapping
f : M → M is a homeomorphism. In the constant-curvature case the dimension restriction
is not necessary and Mostow rigidity implies that f is homotopic to an isometry. This is
to be contrasted with the fact that every such manifold admits a non-homeomorphic light
open self-mapping. We present similar results for more general quotients of hyperbolic
space and quasiregular mappings between them. For instance, we establish that besides
covering projections there are no π1-injective proper quasiregular mappings f : M → N
between hyperbolic 3-manifolds M and N with non-elementary fundamental group.

1. Introduction

Roughly speaking, a quasiregular mapping is a (possibly) branched covering map with bounded
distortion. These include, for instance, piecewise linear maps between ‘fat’ triangulations of mani-
folds and maps preserving measurable conformal structures. The theory of quasiregular mappings,
founded by Resetnyak and Martio–Rickman–Väisälä in the 1970s, seeks to establish the analogue
in higher dimensions of the geometric aspects of the theory of analytic and conformal mappings in
the plane, see [IM96, Res89, Ric93] and the references therein.

Here we study the existence or otherwise of branched (not locally injective) quasiregular maps
between manifolds of negative curvature. We show, as a particular case of a more general result, that
a non-trivially-branched quasiregular mapping f : M → N between closed hyperbolic manifolds can
never induce an injection on fundamental groups. We also strengthen the result of [MMP] that the
only uniformly quasiregular automorphisms of closed hyperbolic manifolds are the obvious ones
(i.e. uniformly quasiconformal mappings isotopic to periodic isometries). In the present article we
prove that such manifolds admit no non-obvious quasiregular self-mappings at all: in fact we show
that there are no discrete open self-maps whatsoever which are not homeomorphisms isotopic to an
isometry. We also prove a number of related results, including an extension of the above theorem
to convex co-compact manifolds and a generalization concerning open mappings between closed

Received 22 September 2006, accepted in final form 21 February 2007, published online 9 November 2007.
2000 Mathematics Subject Classification 20F67, 30C65, 53A35.
Keywords: hyperbolic group, Hopfian, quasiregular, hyperbolic manifold, open mapping.

This material is based upon work supported by the National Science Foundation under Grants No. 0200752 and
0457291, the N.Z. Marsden Fund and the NZIMA. The first author is supported by a Royal Society Wolfson Merit
Award. He was also the Forder Lecturer during the completion of this work and would like to thank the London
Mathematical Society and the New Zealand Mathematical Society for their support.
This journal is c© Foundation Compositio Mathematica 2007.

https://doi.org/10.1112/S0010437X07003028 Published online by Cambridge University Press

http://www.compositio.nl
http://www.ams.org/msc/
http://www.compositio.nl
https://doi.org/10.1112/S0010437X07003028


M. Bridson, A. Hinkkanen and G. Martin

negatively curved manifolds of dimension n �= 4. We further discuss the case of complete finite-
volume hyperbolic manifolds. The proofs of these latter results rely on an analysis of the self-maps
of word hyperbolic and relatively hyperbolic groups which is of independent interest.

1.1 Context
To set the context, we recall the content of [MMP]. We use [Ric93] as a basic reference to the theory
of quasiregular mappings.

The Lichnerowicz conjecture [Lic64], formulated around 1964, asserts that the only compact
Riemannian n-manifold which admits a non-compact conformal automorphism group is the
n-sphere. This was proved in 1973 by Lelong-Ferrand [Lel73]. Her argument applies beyond
the smooth setting: the only n-manifold which admits a non-compact group G of uniformly quasi-
conformal homeomorphisms is (up to quasiconformal equivalence) the n-sphere. This statement
subsumes the Lichnerowicz conjecture because any uniformly quasiconformal group G admits a
bounded measurable conformal structure in which G acts conformally [Gro81, Tuk86]. (Of course,
it only makes sense to talk of quasiconformal homeomorphisms when one has a quasiconformal
structure on the manifold, but Sullivan proved that, with the possible exception of n = 4, every
n-manifold admits such a structure (see [TV81]).)

In the light of the Lelong-Ferrand theorem, it is natural to ask which non-injective mappings
preserve some bounded measurable conformal structure on a closed n-manifold; such maps are called
rational. The iterates of a rational map will form a non-compact semigroup of uniformly quasiregular
mappings (more briefly, uqr-maps). There are a number of different types of such mappings in the
literature [IM96, May97, Pel99] and a focus of study has been investigating the analogies between
the dynamics associated with iterating these maps and the classical Fatou–Julia theory of iteration
of rational maps of Ĉ (see [HMM04, IM96, MM03]). In [MMP] the authors studied the following.

The Lichnerowicz Problem. Classify those compact n-manifolds, n � 3, that admit a non-
injective rational map.

It was shown in [MMP] that the only n-manifolds which admit an unbranched (that is
locally injective) but not globally injective uqr-map are those quasiconformally homeomorphic to
the n-dimensional euclidean space forms. Further, each such map is quasiconformally conjugate to
a conformal map. It was also proved in [MMP] that there are no branched quasiregular self-maps of
euclidean space forms. Hyperbolic space forms admit no uqr-maps either, but to see this one must
appeal to two deep facts. First, any manifold that admits a uqr-map is qr-elliptic, that is, there is a
non-constant quasiregular mapping R

n → Mn; this is proved using non-compactness and a version
of the Zalcman rescaling lemma. Secondly, a difficult result of Varopolous et al. [VSC92], answering
a question of Gromov [Gro81], shows that the fundamental group of a qr-elliptic manifold has poly-
nomial word growth. The proof is completed by the elementary observation that the fundamental
group of a hyperbolic manifold must have exponential word growth.

Motivated by this discussion, we wish to show that a closed hyperbolic manifold admits no
non-trivial quasiregular self-maps whatsoever.

2. Proper open surjections and π1

The following lemma of Walsh [Wal76, (4.1)] and Smale [Sma57] will turn out to be quite impor-
tant in what follows and we give a proof of it as it pertains to our study. (Walsh and Smale were
working in greater generality but the proof is the same.) Recall that a map is proper if the preimage
of a compact set is compact.
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Lemma 2.1. Let M1 and M2 be connected manifolds (possibly with boundary). If a map f : M1 →
M2 is proper, open and surjective, then the index of f∗π1M1 in π1M2 is finite.

Proof. Let f̃ : M1 → M̃2 be a lift of f to the connected cover p : M̃2 → M2 corresponding to
f∗π1M1. We claim that f̃ is surjective. Since f is open and M̃2 is connected, it is enough to show
that the image of f̃ is closed. Suppose that y ∈ M̃2 is in the complement of the image and fix a
compact neighbourhood U of p(y) such that p−1(U) is a disjoint union of copies Ui of U with p|Ui

a homeomorphism to U ; let U0 be the copy containing y. Since f−1(U) is compact, f̃(f−1(U)) is
closed and U0 \ f̃(f−1(U)) is a neighbourhood of y.

For x ∈ M2, we have that f−1(x) = f̃−1(p−1(x)) is compact. Thus, since f̃ is surjective, p−1(x)
is compact, hence finite.

The same argument applies with minor modification in the case that Mi are orbifolds, but we
only use this in a minor way in the next section. Further it is also noted in [Sma57, Theorem 3] that
under the hypotheses of the lemma the map f induces a surjection on rational homology. Finally,
to lend context to what follows, we note a main result of Walsh’s paper [Wal76, Corollary 5.15.3],
which is essentially a converse to Lemma 2.1.

Theorem 2.2. If M and N are compact connected PL manifolds and f : M → N a map with
|f∗π1M : π1N | < ∞, then f is homotopic to a light open mapping.

Here a light mapping is one for which the preimage of every point is totally disconnected, for
instance a Cantor set.

3. Quasiregular mappings between hyperbolic manifolds

The two basic topological properties of quasiregular mappings are that they are open and discrete
(the preimage of any point is a discrete set). Thus a proper quasiregular mapping is open and has
the property that the preimage of any point is a finite set. The branch set of a quasiregular mapping
f , denoted Bf , is the closed set of points where f fails to be a local homeomorphism.

Chernavskĭı [Cer64] and Väisälä [Vai66] proved a theorem that is key to what we wish to do:
they proved that a discrete open mapping f : M → M of an n-manifold has the dimension of its
branch set less than or equal to n − 2, dim(Bf ) � n − 2, and further dim(f(Bf )) � n − 2. As a
consequence of the Hurewicz and Wallman theorems [HW41], the set Bf does not locally separate
M at any point. Thus, f |M \ f−1(f(Bf )) → M \ f(Bf ) is a covering map, where M \ f−1(f(Bf ))
itself is a connected open manifold, dense in M . Moreover, for each y ∈ M \ f(Bf ) the set f−1(y)
must contain exactly the same number d (the degree) points.

If Γ ⊂ Isom+(Hn) is a discrete non-elementary (Kleinian) group [Bea83], we denote its limit
set by Λ(Γ) ⊂ ∂H

n = R
n−1. The orbit space of a Kleinian group Γ is H

n/Γ a hyperbolic orbifold
(manifold, should Γ be torsion-free).

In what follows dim refers to the topological dimension while dimH refers to the Hausdorff
dimension. Also note that we use the term hyperbolic manifold to mean a hyperbolic manifold
whose fundamental group is non-elementary (equivalently not virtually abelian).

Theorem 3.1. For i = 1, 2, let Mi be a hyperbolic n-orbifold with fundamental group Γi and limit
set Λi. Let f : M1 → M2 be a proper quasiregular mapping such that f∗ : Γ1 → Γ2 has finite kernel.
Suppose that one of the following four conditions is satisfied:

(i) dim(Λ1) � n − 2;

(ii) dim(Λ2) � n − 2;
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(iii) dimH(Λ1) = n − 1;

(iv) dimH(Λ2) = n − 1.

Then f is a finite-sheeted covering map whose lift to H
n is a quasiconformal homeomorphism with

f(Λ1) = Λ2.

Proof. The map f has a lift to the universal covering space f̂ : H
n → H

n automorphic with respect
to the groups Γi,

f̂ ◦ γ = φ(γ) ◦ f̂ : H
n → H

n (1)

where φ = f∗. The map f̂ is quasiregular since the projections H
n → Mi are conformal. We claim

that (for topological reasons alone)

xn → ∂H
n ⇒ f̂(xn) → ∂H

n. (2)

To see this we argue by contradiction, assuming that after passing to a subsequence f̂(xn) → y ∈ H
n

with the xn all distinct. Writing pi for the covering projection H
n → Mi, we would then have

f(p1(xn)) = p2(f̂(xn)) → p2(y) ∈ M2. Since f is proper this would force the sequence p1(xn)
to lie in a compact subset of M1 and hence have a subsequence that converged to z ∈ M1 with
f(z) = p2(y). Choose x ∈ p−1

1 (z) so that f̂(x) = y. Then γn(xn) → x for a sequence of distinct
γn ∈ Γ1. Now (f̂ ◦ γn)(xn) → y. Since f̂(xn) → y, the automorphic relation f̂ ◦ γn = φ(γn) ◦ f̂
implies that φ(γn)(y) → y. As φ has finite kernel, the set {φ(γn)} is infinite. This provides the
desired contradiction, since Γ2 is assumed to be discrete.

Next a theorem of Martio and Rickman [MR72, Theorem 5.2, p. 10] (see also [Ric93, Sre73])
allows us to deduce from (2) that f̂ extends continuously to ∂H

n and then, by reflection, extends
to a quasiregular map R

n → R
n. The continuity of the extension guarantees that the automorphic

relation (1) holds on ∂H
n.

The branch set of f̂ , Bf̂ , is closed and, if it is non-empty, (1) implies it clusters to the limit set

of Γ1, so Λ1 ⊂ Bf̂ . Let g = f̂ |∂H
n. Clearly Bg = Bf ∩ ∂H

n and so

Λ1 ⊂ Bg.

Note too that g is a quasiregular map of ∂H
n = R

n−1 and so is finite to one. If dim(Λ1) � n − 2,
then the co-dimension of Bg in ∂H

n = R
n−1 is no more than one and this contradicts the fact that

the co-dimension of Bg is at least two. Thus condition (i) implies Bg = ∅ which in turn implies
Bf̂ = ∅, f̂ is a local homeomorphism of R

n (after reflection) and so a homeomorphism.
We next show that

Λ2 = g(Λ1) ⊂ g(Bg) ⊂ f̂(Bf̂ ).

From Walsh’s Lemma 2.1 we see that H = φ(Γ1) ⊂ Γ2 has finite index. Thus,

Λ(H) = Λ(Γ2).

Let x0 ∈ H
n and x ∈ Λ1. Then there is an infinite sequence γn ∈ Γ1 with γn(x0) → x and by

continuity (on R
n) and the automorphic relation we have

φ(γn)(f̂(x0)) → f̂(x)

and, again, as φ has finite kernel and H is discrete, orbits can only accumulate on the limit set.
Thus, f̂(x) ∈ Λ(H) = Λ2 and g(Λ1) ⊂ Λ2. The converse containment is similar. If y ∈ Λ2, then
there are hn ∈ H infinite and distinct with hn → y. As H = Im(φ) there are γn with φ(γn) = hn

and the γn are infinite and so forth. Then if condition (ii) holds dim(g(Bg)) � dim(Λ2) � n− 2 and
so g(Bg) has co-dimension at most one in R

n−1, which is a contradiction unless Bg = ∅, as before.
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Finally, the finite to one quasiregular self-mapping g of the sphere R
n−1 preserves sets of maximal

Hausdorff dimension n − 1 (see [Ric93]). Thus, since g(Λ1) = Λ2 ⊂ g(Bg) under either condition
(iii) or (iv), we see that dimH(Λ2) = n − 1 and so

dimH(g(Bg)) = n − 1.

However, it is known [Ric93] that for such a quasiregular mapping dimH(g(Bg)) < n−1. This again
will force Bg = ∅ and f̂ to be a homeomorphism.

If the hyperbolic manifolds Mi are closed, then the hypothesis that f is proper is redundant and
all four conditions are satisfied. Thus, we have the following.

Corollary 3.2. Let M and N be closed hyperbolic n-manifolds. Then there is no π1-injective
branched quasiregular mapping f : M → N .

Note next that the above dimension hypothesis on the limit sets is satisfied if one of them
separates H

n. This will be the case if, for instance, one of the manifolds has more than one boundary
component (other than cusps).

Corollary 3.3. Let M and N be convex co-compact hyperbolic n-manifolds one of which has
more than one boundary component. Then there is no proper π1-injective branched quasiregular
mapping f : M → N .

One may wonder whether, given any hyperbolic manifolds M and N , there can exist proper
branched π1-injective quasiregular mappings M → N . We prove that in dimension three there are
none.

Theorem 3.4. Let M and N be hyperbolic 3-manifolds with non-elementary fundamental group.
Then there is no proper π1-injective branched quasiregular mapping f : M → N .

Proof. Let ΓM
∼= π1(M) be the non-elementary Kleinian group with H

3/ΓM = M . Supposing that
there is such a map f we argue as in the proof of Theorem 3.1 to produce a map g : ∂H

3 → ∂H
3 with

Bg ⊃ ΛM . We identify Ĉ = ∂H
3. In two dimensions rather more is known about the topological

structure of quasiregular maps. In particular, the Stoilow factorization theorem (see the survey
[Sto98]) asserts that g = h ◦R where h : Ĉ → Ĉ is a homeomorphism and R : Ĉ → Ĉ is an analytic
rational endomorphism. In particular, BR and hence Bg are finite point sets. This implies that ΛM

is finite (and therefore contains at most two points) and this contradicts our hypothesis that ΓM is
non-elementary.

Specific applications of the conditions on the Hausdorff dimension of the limit sets can be found
when considering geometrically infinite Kleinian groups [BJ97, Tuk84].

It is clear from Theorem 3.1 that we will have to address the question of when a quasiregular map,
or more generally an open map, between hyperbolic manifolds induces an injection on fundamental
groups.

4. Endomorphisms of hyperbolic groups

The following theorem was proved by Sela [Sel99, Theorem 3.9] (see also [Sel97, Theorem 1.12]) in
the course of his work on the Hopf property for word hyperbolic groups [Gro87].

Theorem 4.1. Let Γ be a torsion-free hyperbolic group and let φ : Γ → Γ be a homomorphism.
Then there is an integer k0, so that ker(φn) = ker(φk0) for every n > k0.
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Sela also proved that torsion-free, freely indecomposable, non-elementary word hyperbolic groups
are co-Hopfian [Sel97]. In particular, co-compact lattices of n-dimensional hyperbolic space are
co-Hopfian. Groves recently extended Sela’s results from the hyperbolic setting to toral relatively
hyperbolic groups [Gro05]. Every geometrically-finite subgroup of SO(n, 1) has a subgroup of finite
index that lies in this class.

In the current setting we require a variation on what they proved: we must allow freely-
decomposable groups, but we need only constrain homomorphisms whose image is of finite index.
To this end, we focus on the following invariant of a finitely generated group: the maximum number
of non-trivial factors in a free-product decomposition of the group.

Lemma 4.2. If a finitely generated torsion-free group Γ can be expressed as a free product Γ = A∗B
with A and B non-trivial, then there does not exist an injective homomorphism φ : Γ → Γ with
1 < [Γ : φ(Γ)] < ∞.

Proof. Recall that the algebraic rank of an abstract group Γ is the minimum cardinality among all
generating sets for Γ. It follows from the Grushko–Neumann theorem that if G1 and G2 are finitely
generated groups, then the rank of G1 ∗G2 is the sum of the ranks of G1 and G2 [Ser80]. Thus, there
is an upper bound n := λ(Γ) on the number of factors in any free decomposition Γ = A1 ∗ · · · ∗ An

with the Ai non-trivial. Assume that the displayed decomposition for Γ is maximal in this sense
and note that since Γ is torsion-free, the Ai are infinite.

We will be done if we can prove that λ(H) > n for every proper subgroup H ⊂ Γ of finite index.
To form a space Y with fundamental group Γ, we take for i = 1, . . . , n, a connected space Xi

with basepoint vi and π1(Xi, vi) = Ai, and we identify the vi to a single vertex v. Let Ỹ denote
the universal covering of Y , let Y = Ỹ /H and consider the covering p : Y → Y . The Seifert–
van Kampen theorem expresses H = π1Y as the free product of the fundamental groups of the
connected components Cij of the p−1Xi together with a finitely-generated free group F which is
the fundamental group of the graph G that has a vertex eij in each Cij and m edges joining eij to
elk if |Cij ∩ Clk| = m.

Each π1Cij is isomorphic to a subgroup of finite index in Ai and hence is infinite. If for each i,
there is only one component in p−1Xi then G has no vertices of valence 1 and hence F has positive
rank. Thus, in all cases, λ(H) > n.

Theorem 4.3. If Γ is a torsion-free non-elementary hyperbolic group, then there is no homomor-
phism φ : Γ → Γ with 1 < [Γ : φ(Γ)] < ∞.

Proof. By Lemma 4.2 we may assume that Γ is freely indecomposable and hence co-Hopfian [Sel97].
So if a homomorphism φ : Γ → Γ whose image had finite index greater than one were to exist, then
ker(φ) �= {1}. Let k0 be the number given by Sela’s Theorem 4.1 and set Γ0 = φk0(Γ). Then
[Γ : Γ0] < ∞ and the restriction of φ to Γ0 is injective. Given γ ∈ Γ \ {1}, as Γ is torsion-free,
γm ∈ Γ0 \ {1} for some m > 0. Thus, 1 �= φ(γm) = φ(γ)m, so φ(γ) �= 1, contradicting the fact that
ker(φ) �= {1}.

For residually finite groups (such as subgroups of SO(n, 1), our main interest) one may also
deduce Theorem 4.3 from Theorem 4.1 by using the following generalization of Malcev’s famous
observation that finitely generated residually finite groups are Hopfian.

Proposition 4.4. If Γ is finitely-generated, torsion-free and residually finite, and φ : Γ → Γ is a
homomorphism for which [Γ : φk(Γ)] remains bounded as k → ∞, then φ is an isomorphism.

Proof. It is clear that if φ is injective then it must be an isomorphism, so it is enough to derive a
contradiction from the assumption that ker(φ) is non-trivial (hence, infinite since Γ is torsion-free).
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To this end, we consider an element γ ∈ ker(φ)\{1} that lies in the finite-index subgroup
⋂

k∈N φk(Γ).
By residual finiteness, there is a finite quotient π : Γ → Q with π(γ) �= 1. Since γ ∈ φk(Γ), for all
k ∈ N there is some γk ∈ Γ such that π ◦ φn(γk) = 1 if n > k and π ◦ φk(γk) = π(γ) �= 1. Thus, we
obtain infinitely many distinct maps π ◦ φn from the finitely generated group Γ to the finite group
Q, which is absurd.

5. Topological rigidity results

The following is an immediate consequence of Theorem 4.3 and Lemma 2.1.

Theorem 5.1. If M is a connected manifold whose fundamental group is torsion-free, non-
elementary and word hyperbolic, then every proper open surjective mapping f : M → M induces
an isomorphism of the fundamental group.

Remark 5.2. We stated Theorem 5.1 only for manifolds because it is manifolds that are the theme
of this section. However, the proof of Walsh’s lemma applies in far greater generality and hence the
above theorem can be generalized enormously: it suffices to assume that M is a locally-finite cell
complex, for example.

If M is closed, then the hypotheses that f is surjective and proper are redundant.

Corollary 5.3. If M is a closed n-manifold whose fundamental group is torsion-free,
non-elementary and word hyperbolic, then every quasiregular mapping f : M → M is a homeo-
morphism.

Proof. Every quasiregular map f : M → M is open discrete and so finite to one. As above, the
induced map on fundamental group is an isomorphism. Thus, f has degree one, B(f) = ∅ and f is
a covering map by [Vai66]. Thus, f is a homeomorphism.

The Farrell and Jones [FJ89] topological rigidity theorem for non-positively curved manifolds
tells us that closed negatively curved manifolds of dimension n � 5 are homeomorphic if their
fundamental groups are isomorphic. Perelman’s proof of the geometrization conjecture [Per03a,
Per02, Per03b] implies that the same result is true in dimension three. If the curvature is strictly
negative, the fundamental group of such a manifold is word hyperbolic. Thus, Theorem 5.1 implies
the following.

Theorem 5.4. Let M1 and M2 be closed Riemannian n-manifolds (n �= 4) of negative sectional
curvature. Suppose there are open maps f : M1 → M2 and g : M2 → M1. Then M1 is homeomorphic
to M2.

Proof. By Theorem 5.1, the compositions f◦g : M2 → M2 and g◦f : M1 → M1 induce isomorphisms
on π1.

Sela noted a version of this result for degree one maps. Ian Agol (personal communication) has
suggested an alternative proof in the hyperbolic case based on the Gromov norm.

The results of Farrell–Jones and Perelman also yield the following refinement.

Theorem 5.5. If M is a closed n-manifold of negative sectional curvature (n �= 4), then every open
mapping f : M → M is homotopic to a homeomorphism.

6. Quasiregular maps and rigidity of hyperbolic manifolds

We combine Theorem 3.1 with the results of the sort in the last section to prove the results that
are the main focus of this article.
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Theorem 6.1. If M is a convex co-compact hyperbolic n-manifold, then every proper, quasiregular
mapping f : M → M is a homeomorphism.

Proof. Once again Lemma 2.1 tells us that f∗(π1M) ⊂ π1M is of finite index. Theorem 4.3 then
tells us that f∗ is an isomorphism, and Theorem 3.1 tells us that f is a homeomorphism.

We combine the above result with Mostow rigidity to obtain the first item in the following
corollary, and include the Euclidean case for comparison.

Corollary 6.2. Let M be a space form and f : M → M quasiregular.

• If M is hyperbolic, then f is quasiconformal and homotopic to an isometry of finite period.

• If M is euclidean, then f is quasiconformally conjugate to a multiplication or f is quasicon-
formal (i.e. injective).

In the spherical case, above dimension one, a locally injective map must be injective.
Our results combine to give the following generalization of the Mostow rigidity theorem [Mos68].

Theorem 6.3. Let M1 and M2 be closed hyperbolic n-manifolds. Suppose that there is an open
mapping f : M1 → M2 and an injection φ : π1(M2) → π1(M1) with [π1(M1) : φ(π1(M2))] < ∞.
Then f is homotopic to an isometry.

One can extend our results for convex co-compact subgroups of SO(n, 1) to all geometrically
finite torsion-free lattices by using the work of Groves [Gro05] in place of Sela’s theorem. Walsh’s
lemma still applies in this context, but one needs an adaptation of Theorem 3.1, which we do not
present here. The conclusion is that every quasiregular self-mapping of a finite volume hyperbolic
n-manifold is isotopic to an isometry. There are interesting applications for knot groups which we
shall report on elsewhere.

Finally we want to make the following observation relating what we have above with Wilson’s
counterexample to the Whyburn conjecture [Wil73] giving a dichotomy between discrete open and
light open mappings of hyperbolic manifolds.

Theorem 6.4. Let M be a closed hyperbolic n-manifold. Then any discrete open mapping
f : M → M is a homeomorphism isotopic to an isometry. However, there are light open map-
pings g : M → M which are not homeomorphisms.

Proof. If f : M → M is discrete and open, then f∗ is an isomorphism on π1 and a homeomorphism
(as above). Another way to see this is to use Mostow rigidity: lift f to the universal cover H

n,
this lifted map is continuous, open and discrete. Using π1 injectivity as we did earlier, the lifted
map extends continuously to Hn and the boundary values are those of an isometry: by rigidity.
However, the Whyburn conjecture, known for discrete open maps of the closed ball by [Cer64, Vai66],
says that a discrete open mapping of the closed ball which restricts to a homeomorphism on the
boundary is a homeomorphism on the interior as well. Thus, f is a covering map of degree one and
a homeomorphism. However, the Whyburn conjecture is false in the case of light open mappings
and as a consequence it is shown in [Wil73] that every n-manifold M admits a non-homeomorphic
light open mapping f : M → M . Wilson’s construction actually gives a mapping homotopic to the
identity: we already know it must be homotopic to an isometry as f∗ induces an isomorphism.

The above arguments extend to any closed negatively curved n-manifold. The fundamental group
acts on the visual boundary of the universal cover as a convergence group [GM87] with every limit
point a point of approximation (or conical limit point), and from this one can deduce that the lift
of f induces a homeomorphism of the boundary at infinity (cf. [MT88, MT92]), knowing that f
induces an isomorphism on π1.
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