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LOCAL TOPOLOGICAL PROPERTIES OF MAPS 
AND OPEN EXTENSIONS OF MAPS 

J. K. KOHLI 

1. Introduction. A a-discrete set in a topological space is a set which is a 
countable union of discrete closed subsets. A mapping / : X —» F from a 
topological space X into a topological space F is said to be (j-discrete (count­
able) if each fibre }~liy)y y € Fis (7-discrete (countable). In 1936, Alexandroff 
showed that every open map of a bounded multiplicity between Hausdorff 
spaces is a local homeomorphism on a dense open subset of the domain [2]. 
(The original result was stated in a less general situation (see [11, 2.3])). 
Similarly, Kolmogoroff proved in 1941 that each countable open mapping 
between compact metric spaces is a local homeomorphism on a dense subset 
of the domain [6]. In 1967, Pasynkov generalized this result of Kolmogoroff 
to show that every open or-discrete mapping between Tychonoff spaces with 
locally Cech complete domain is a local homeomorphism on a dense open 
subset of the domain [7]. The same year, Proizvolov obtained the same result 
for finite-to-one open mappings between Tychonoff spaces with Cech com­
plete range [9]. Here we show that the device of open extensions of maps 
[3 ; 4] can be used to weaken the hypothesis of openness of the mapping in all 
these results to a certain extent. Precise statements of improved theorems are 
given in Sections 2 and 3, and Section 4 is devoted to examples. 

Notation and Terminology. All maps are assumed to be continuous. Let 
/ : X —> F be a map from a topological space X into a topological space Y. 
A point x 6 X and its image f(x) £ Y are called singular points of X and F, 
respectively, if there is an open set U of X containing x such that / (£/) is not 
a neighbourhood oif(x). Throughout the paper 5 and T will always denote the 
sets of singular points of X and F respectively. The branch set Bf of/ is the set 
of all points of X where / fails to be a local homeomorphism. The multiplicity 
of/ at x, N(x, / ) , is the number of points in /_ 1 /(x) if it is finite, +oo other­
wise. The multiplicity of/ on X, N(f), is the supremum of N(x, / ) , x Ç X. 

The sets of real numbers, integers and natural numbers with usual topologies 
will be denoted by R, Z and N respectively. Interior of a set A in a topological 
space B will be denoted by int# A. 

2. Quotient open extensions. The method discussed in this section for 
obtaining open extensions of maps was first constructed in [3]. For the sake of 
completeness and to acquaint the reader with notation and terminology, we 
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include a brief description of the construction. For more details and properties 
see [3; 5 ] . 

For each singular point x of X, let Yx be a copy of Y. Let W = X © ( 0 Yx), 
where the second disjoint topological sum is taken over all singular points of X. 
By identifying each singular point x £ X (with X th rought of as a subset of W) 
with its i m a g e / ( x ) (as a point of Yx C W), we arrive a t a quot ient space X* 
of W. The inclusion map ix : X —> IF composes with the quot ient m a p q : W —> 
X*, to give an embedding of X into X*. Hence X* may be considered as a 
superspace of X . 

Let / i from FF onto F be the function whose restriction to X is / and whose 
restriction to Yx is the ident i ty m a p of Yx onto Y. T h e unique function 
/* : X* —> Y satisfying / * o q = / i is an open extension of / . Since / is con­
tinuous, the function / * is continuous. 

Throughout the paper symbols X*, /* , q will have the same meaning as in 
this section. We may remind the reader t ha t a Tychonoff space is said to be 
complete in the sense of Cech if it is a GÔ in its Stone-Cech compactification. 

2.1. LEMMA. If X and Y are Tychonoff spaces which are locally complete in the 
sense of Cech and if singular points of X do not accumulate, then X* is locally 
complete in the sense of Cech. 

Proof. Since X and F a r e Tychonoff spaces, so is X* [3, 1.3]. Now, let p G X* 
be any point. T h e following cases arise. 

Case I. T h e set q~~1(p) = {x,f(x)}. Then there are open neighbourhoods U 
(in X) of x and V (in Yx) of f(x) which are complete in the sense of Cech. 
Fur ther , since completeness in the sense of Cech is open hereditary, by hypoth­
esis on singular points U may be so chosen t ha t it contains no other singular 
point. Then q(U KJ V) is an open neighbourhood of p which is complete in the 
sense of Cech. 

Case II. T h e set q~l(p) is a singleton. We leave it for the reader to complete 
the proof in this case. 

2.2. LEMMA. If singular points of X do not accumulate, then \ntx Bf = 0 
implies int x* Bf* = 0. Further, if in addition no singular point is open in X, 
then intx* Bf* = Q implies i n t x Bf = 0. 

Proof. Firs t we show tha t Bf* C q(Bf). Since for each x £ S, q(Yx)\{q(x)} 
is open in X* and since / * restricted to each q(Yx)\{q(x)} is topologically 
equivalent to the identi ty m a p on F \ { / ( x ) } , Bf* C q(X). Now, let p G Bf*. 
Then / * fails to be locally one-one a t p. If q~l(p) = {x, f(x)}, then x G Bf 

and so p G q(Bf). If q~~l(p) is a singleton, then q~l(p) G X a n d / f a i s to be 
locally one-one a t q~l{p), for otherwise by hypothesis on singular points, / * 
will be locally one-one a t p. So, q~l{p) G Bf and consequently p G q{Bf). 
T h u s Bf* C q(Bf) C q(X). Now, suppose i n t x Bf = 0. T o show int x* Bf* = 
0, assume not, and let V = int x* Bf*. Then q~l(V) Pi X is a nonempty open 
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subset of X which is contained in Bf and thus contradicts the fact that intx Bf 

= 0. 
Suppose no point of 5 is open in X. We first show that q(Bf) C Bf*. Let 

x G Bf. If/ fails to be locally one-one at x, then/* fails to be locally one-one 
at q(x) and so q(x) 6 Bf*. In the other case, if x Ç 5, let £7 be a neighbour­
hood of g(x) in X*. There exist open neighbourhoods JJ\ of x in J and V\ of 
f(x) in Yx such that q(Ui^J Vi) C £/, and f/i contains no other singular 
point. By continuity of/, there is a neighbourhood JJi of x such that/(1/2) C 
Fi (here Fi is regarded as a subset of F). Since {x} is not open in X, there is 
a point Xi G ftH £/2 such that x ^ Xi. Then q(xi) and q(f(xi)) (here/(xi) is 
considered as a point of Yx) are distinct points of q{U\ \J Vi) and f*(q(xi)) = 
f*(q(f(xi))). Thus /* fails to be one-one on U and hence q(x) £ Bf*. Now 
suppose intx* Bf* — 0. To show intx Bf = 0, assume not. Then by hypothesis 
on the set S, intx Bf\S is a nonempty open subset of Bf. Consequently, 
q(intx Bf\S) is a nonempty open subset of Bf*. This contradicts the fact that 
intx* Bf* = 0. 

2.3. THEOREM. Le/ / : X —•» F &e a ma£ /row a Hausdorff space X into a 
Hausdorff space Y such that f is open except at finitely many points. If no singular 
point is open in X and if N(f) < co, then intx Bf = 0. 

Proof. Since X and Fare Hausdorff spaces, so is the space X* [3, 1.3]. Since 
N(f) < 00 and since the set 5 is finite, /* : X* —> F is an open map such that 
^ ( / * ) < 00. By [11, Theorem 2.3] int^* Bf* = 0. The proof is complete in 
view of Lemma 2.2. 

2.4. THEOREM. Letf : X —> Y be a locally a-discrete mapping from a Tychonoff 
space X into a Tychonoff space Y such that singular points do not accumulate. IfX 
and Y are locally complete in the sense of Cech and if no singular point is open in 
X, then intx Bf = 0. 

Proof. Since X and F are Tychonoff spaces which are locally complete in 
the sense of Cech, by Lemma 2.1. X* is a Tychonoff space which is locally 
complete in the sense of Cech. Since/ is a locally er-discrete map, f* : X* —> F 
is an open locally c-discrete map. By [8, Theorem 1] intx* Bf* = 0. Since no 
point of S is open in X, by Lemma 2.2 intx Bf = 0. 

2.5. Remark. In [10] Vàisàlâ proved that every discrete open mapping on 
a locally compact Hausdorff space is a local homeomorphism on a dense open 
subset of the domain. In [11] Vâisâlâ, apparently unaware of the work of 
Pasynkov [8], showed that every countable open map between locally com­
pact separable metric spaces is a local homeomorphism on a dense open subset 
of the domain. Since a locally compact Hausdorff space is complete in the sense 
of Cech, the above theorem includes improved versions of Vâisâlà's result. 

2.6. THEOREM. Let f : X —> Y be a finite-to-one map of a Tychonoff space X 
into a Tychonoff space Y and let Y be complete in the sense of Cech. If f is open 
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except at finitely many points, and if no singular point is open in X, then i n t x Bf 

= 0. 

Proof. Since X and Y are Tychonoff spaces and since the set S is finite, 
f* : X* —* Y is an open finite-to-one map between Tychonoff spaces. The proof 
follows immediately in view of [9, Theorem 2], and Lemma 2.2. 

2.7. Remark. In the above theorem, as well as in the original theorem of 
Proizvolov the hypothesis of completeness can be replaced by any condition 
which ensures tha t Y is of second category. In part icular , if Y is locally 
complete in the sense of Cech or locally countably compact , the theorem still 
holds. Moreover, it is sufficient to require t h a t / be locally finite-to-one instead 
of finite-to-one. 

3. Unified o p e n e x t e n s i o n s . In [4], there is given a method of unifying the 
domain and range of a mapping so as to yield a meaningful open extension. 
Usually, the unified extension is not Hausdorff. However, in some special cases 
it can be modified so as to be Hausdorff or possesses other separation properties. 
Here we give a brief description of the construction. For more details and 
properties see [4]. 

Let VT denote the disjoint set theoretic union of X and Y. Then the collection 
J^~of all subsets Q Ç W, which satisfy the following two conditions (i) and (ii), 
is a topology for W. 

(i) T h e sets Q C\ X and Q f~\ Y are open in X and Y respectively. 
(ii) The set Q C\ S = 0 or else for each x £ Q H S , the set Q C\ Y contains 

a neighbourhood of f(x) in Y. 

Hereafter, W is always assumed to be endowed with the topology^7". T h u s 
the spaces X and Y are embedded in W as closed and open subspaces respec­
tively. The retraction map r : W —> Y from W onto Y defined by r(z) = z for 
z (E Y and r(z) = f(z) for z Ç X is an open continuous extension of / . If / is 
an open map, then W coincides with the disjoint topological sum of X and Y. 
In no other case is W a IVspace . However, in some special cases it is possible 
to reduce W to satisfy certain separation axioms and other properties by 
deleting some of its points. In part icular, the following holds. 

3.1. T H E O R E M [4]. Suppose singular points of X and Y do no' accumulate and 
let X = W\T. Then f = r\X is an open map. Further, if f\S is one-to-one, then 

(a) the space X is Hausdorff, whenever X and Y are Hausdorff; 
(b) the space X is locally compact Hausdorff, whenever X and Y are locally 

compact Hausdorff spaces. 

3.2. T H E O R E M . Suppose singular points of X and Y do not accumulate, f\S is 
one-to-one and let X = W\T. If X and Y are locally compact separable metrizable 
spaces, so is the space X. 
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Proof. By the above theorem X is a locally compact Hausdorff space. The 
spaces X and Y are separable metrizable and hence second countable. Thus 
their disjoint topological sum X © Y is second countable. The space W being 
a continuous image of X © Y possesses a countable net [1]. Thus X is a locally 
compact Hausdorff space with a countable net and hence second countable [1]. 
By Uryshon's metrization theorem X is metrizable. 

3.3. Remark. If the set S is a singleton, then the two open extensions f* and 
/ coincide. The converse, that the two open extensions f* and / coincide 
implies 5 is a singleton, is also true. 

Throughout the paper, the symbols X a n d / will have the same meaning as 
in the above paragraphs. 

3.4. LEMMA. If singular points of X do not accumulate, then intx Bf = 0 
implies intx Bj = 0. Further, if in addition no point of S is open in X, then 
intx Bf = 0 implies intx Bf = 0. 

Proof. Since F \ T is open in X and since/ restricted to Y\T is a homeomor-
phism, ^7 ÇI X. Let z £ $7. Then / is not locally one-to-one at z and z £ X. 
H z £ S, then s G Bf. lî z Q S, then / fails to be locally one-to-one at z. For 
otherwise, by hypothesis on singular points, / will be locally one-one at z. 
Thus BfQ Bf Q X and therefore intx Bf = 0 implies intx £7 = 0. 

Now, suppose no point of S is open in X. We first show that Bf C ^7. Let 
x G -5/. Then either / fails to be locally one-one at x or x 6 S. If / fails to be 
locally one-one at x, then / also fails to be locally one-one at x and hence 
x G Bf. If x Ç 5, by hypothesis {x} is not open in X, / is not local y one-one 
at x. So, x Ç ^7. Thus i?/ £ By. 

Now, suppose inty ^ 7 = 0. To show intx Bf = fj, assume the contrapositive. 
Then by hypothesis on the set S, intx Bf\S is nonempty and open. But intx 

Bf\S is open in X and intx Bf\S Q Bf. This contradicts the fact that intx Bf = 
0. 

3.5. THEOREM. Letf : X —> Y be a map of a Hausdorff space X into a Hausdorff 
space Y such that singular points of X and Y do no I accumulate, and f\S is 
one-to-one. If N(f) < 00 and if no point of S is open in X, then intx Bf = 0. 

Proof. Since/ satisfies the hypothesis of Theorem 3.1, and since X and Y 
are Hausdorff spaces, the space X is Hausdorff a n d / : X —» F is an open map. 
Since N(f) < 00, N(f) < 00. By [11, Theorem 2.3], intx Bj= 0. Since no 
point of S is open in X, by Lemma 3.4, intx Bf — 0. 

3.6. Remark. At a first glance Theorem 3.5 may seem superfluous in view of 
Theorem 2.3. However, this is not so. In Theorem 2.3 the set 5 is always as­
sumed to be finite while in Theorem 3.5 it may be infinite. There exist con­
tinuous real-valued maps of reals which satisfy the hypothesis of Theorem 3.5 
and the set 5 is infinite (see Example 4.5). 
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4. Examples. First we give some simple examples of continuous real-valued 
maps of reals. These examples will illustrate the facts that (1) maps which are 
open except at finitely many points occur more frequently than open maps, and 
(2) the class of maps which are open except at countably many points such that 
singular points do not accumulate is much larger than the class of maps which 
are open except at finitely many points. The another set of examples show that 
the hypotheses in results of Section 2 and 3 are not superfluous. Lastly, we 
give an example which suggests the cases when the open extensions f* : X* —> Y 
and / : X —> Y are local homeomorphisms. 

Functions open except at finitely many points. 

4.1. Let / : R —» R be defined by f(x) = x2 or f(x) = |x|. Then / is open 
everywhere except at the origin. Since translations are homeomorphisms for 
each r G R there exists a continuous g : R —> R such that r is the only singular 
point of g. 

4.2. Let / : R —> R be defined by f(x) = x ii —oo < x ^ l and f(x) = 
\x — 2| if 1 ^ x < oo. Then / is an at most three-to-one map of R onto R 
such that / is open everywhere except at the points x = 1 and x = 2, i.e., 
S = {1, 2}. In fact, if k is any positive integer, then there exists an at most 
(k + 1)-to-one continuous map h : R —> R such that the set of singular points 
of h is precisely {1, 2, . . . , k). Moreover, the functions with these properties 
may be chosen to be C°° maps. 

4.3. Every nonconstant polynomial P : R —» R is either an open map or is 
open except at finitely many points. 

Functions open except at countably many points. 

4.4. L e t / : R —» R be a continuous periodic function of finite period T such 
t h a t / has at most finitely many singular points in the interval [0, 2"]. T h e n / 
is open except at countably many points and singular points do not accumulate. 

4.5. L e t / : R -> R be defined by 

S x if — oo < x ^ 1 
— | (x — n) + n iîn^x^n-\-l and n is a positive odd integer 

j y*j — \ 

if (x — n) + (n — f) if n ^ x S n + 1 and n is a positive 
\ even integer. 

Then / is at most three-to-one continuous map of R onto R. The set S = 
N, T = {1, 1/2, 3, 5/2, 5, 9/2, 7, . . .}, / | 5 is one-to-one and is, in fact, defined 
by 

n if n is an odd integer 

n — f if n is an even integer. 
/(») = 
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Thus Example 4.5 satisfies the hypothesis of Theorem 3.5 and the set of 
singular points is infinite. 

In Example 4 . 5 / is not differentiable at every singular point. However, this 
example may be modified so that / is differentiable and has other desired 
properties. 

General maps. 

4.6. If/ : R —> R is any constant map, then every point is a singular point, 
i.e., 5 = R. There exists no non constant real-valued map of reals such that every 
point is a singular point. For, let / : R —» R be any non constant map. Then 
there are points x, y £ R such tha t / (x) ?* f(y). For definiteness, assume/(x) 
< f(y). By the intermediate value theorem, the closed interval [f[x], f(y)] Q 

/ ( R ) . By [12, p. 942], there is a countable subset C of R such t h a t / is open 
at every point of R \ / _ 1 (C) . Since / (R) is uncountable, there exists a point 
p Ç / (R) such t h a t / is open at every point of f~l(p) and so 5 ^ R. 

However, there exists a nonconstant real-valued map of reals such that 
the set 5 is dense. For, let 4>{x) = \x\ if — J S x ^ h- Extend </> continuously 
to whole of the real line by defining </>(x) = 4>(x + 1) for all x G R. Define 

71=1 ^ 

Since this series is uniformly convergent, / is/continuous on R. It is shown in 
[7, p. 29] t h a t / is nowhere monotonie. That is for any open interval (a, b)f 

there are three points Xi, x2, x3 such that a < xi < x2 < Xz < b and either 
/(xi) < / ( x 2 ) and/(x 2 ) > /(x3) (or /(xi) > / ( x 2 ) and/(x 2 ) < / ( x 3 ) ) . Since / 
is continuous on the closed interval [xi, x3], it assumes maximum (or minimum) 
value at an interior point x0 of [xi, x3] and hence/ is not open at x0. Thus S is 
dense in R. 

It seems interesting to determine the set 5 in this example. 

4.7. L e t / : R -> R be defined by 

^x + 1 if — c o < x ^ — 1 

/(x) = < 0 if - 1 ^ x ^ 1 

\x — 1 i f l ^ x < o o 

T h e n / is continuous and 5 = Bf = [ — 1, 1]. Thus the hypothesis of/ being 
(7-discrete and finite-to-one can not be omitted in Theorems 2.4 and 2.5 
respectively. 

4.8. In [11, p. 542] Vâisâlâ has given an example of a finite-to-one open map 
between o--compact separable metric spaces which is nowhere a local homeo-
morphism. Thus the hypothesis of completeness cannot be omitted in Theorems 
2.4 and 2.6; and also the hypothesis t h a t / is of bounded multiplicity cannot be 
weakened to even finite-to-one in Theorems 2.3 and 3.5. 
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4.9. Let F be the real line with its usual topology and let X be F with integers 
as an open discrete set. L e t / be the identity mapping of X onto F. Then every 
integer in X is open and is a singular point. In this case the open extensions 
/* a n d / are local homeomorphisms. So, Bf* = Bj = 0 but intx Bf = Z ^ 0. 

This example shows that the restriction of a local homeomorphism need not be 
a local homeomorphism. Moreover, this example shows that in some special 
cases the open extensions /* and / are local homeomorphisms. Precisely, we 
have the following. 

4.10. THEOREM. Suppose singular points of X do not accumulate and let each 
singular point of X be open in X. If f\ (X\S) is a local homeomorphism, then /* 
is a local homeomorphism. Further, if in addition singular points of Y do not 
accumulate, then fis also a local homeomorphism. 

In [11] jVàisàlà proved as a main result that every countable map between 
iz-manifolds, 1 S n S 3, is a local homeomorphism on a dense open subset of 
the domain (In a personal communication, Professor P. T. Church informed 
the author that he could remove the restriction on n in Vàisàlâ's result.) We 
ask whether in Vàisàlâ's theorem 'countable map' can be replaced by a 
V-discrete map'. 

Finally, the au thor thanks the referee for helpful suggestions. 
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