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Superharmonic and triadic resonances
in a horizontally oscillated stably
stratified square cavity
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The response to harmonic horizontal oscillations of a stably stratified fluid-filled
two-dimensional square container is examined as the forcing amplitude is increased. For
the studied forcing frequency, the response flow at very small forcing amplitudes is a
synchronous periodic flow with piecewise-constant vorticity in regions delineated by the
characteristics emanating from the corners of the container, regularized by viscosity. The
second temporal harmonic of the forced response flow resonantly excites an intrinsic mode
of the stratified container, whose magnitude grows as the square of the forcing amplitude.
Above a critical forcing amplitude, a sequence of pairs of other container modes are excited
via triadic resonances with the second-harmonic-driven mode. The flows are computed
from the Navier–Stokes–Boussinesq equations and the ensuing dynamics is analysed using
Fourier techniques, providing a comprehensive picture of the transition to internal wave
turbulence.

Key words: internal waves, parametric instability

1. Introduction

Parametric resonances and instabilities in continuously stratified fluids have attracted
much attention due to their ubiquity in many situations, and in particular in the oceans
where stratification is a result of variations with depth of temperature and salinity, and
where internal waves are naturally caused by tides and currents due to gravitational and
geological effects (Thorpe 1975; Garrett & Munk 1979). Internal waves can transport
energy over large distances, reflect on the submarine topography and interact. They are
believed to play a key role in momentum and energy budgets, either through direct
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turbulent mixing as the waves break or through other nonlinear processes. Questions
remain, however, regarding the vertical mixing processes in the oceans, to what degree
are they related to internal waves and how they impact climate on a global scale
(Thorpe 1975; Sherman, Imberger & Corcos 1978; Garrett & Munk 1979; Hopfinger
1987; Thorpe 1987; Fernando 1991; Staquet & Sommeria 2002; Wunsch & Ferrari 2004;
Ivey, Winters & Koseff 2008; MacKinnon et al. 2017; Dauxois et al. 2018; Savaro et al.
2020). Understanding how turbulence leads to the enhanced irreversible transport of
heat, salt and pollutants in density-stratified fluids is a fundamental and central problem
in geophysical fluid dynamics (Caulfield 2020, 2021; Dauxois et al. 2021). The scale
separation between internal waves and the large-scale circulations renders theoretical
and numerical investigations challenging. Currently, general circulation models cannot
resolve internal waves, and it is not well understood how the energy from these waves
cascades from large scales to sufficiently small scales such that it is efficiently dissipated
(Sutherland 2013).

Due to the challenges in oceanographic observations, which are sparse in time and
space, together with the lack of control over initial conditions and forcing mechanisms
(Wunsch & Ferrari 2004), there has been a large emphasis on studying internal waves,
their parametric resonances and instabilities in laboratory experiments of stratified flows
(McEwan 1971; McEwan & Robinson 1975; Sherman et al. 1978; Staquet & Sommeria
2002; Dauxois et al. 2018). These types of laboratory experiments, as well as their
numerical models, allow one to isolate salient features of the physical properties of internal
wave dynamics.

Laboratory experiments are extensively conducted in containers, often rectangular and
filled with brine. In the absence of forces other than gravity, an equilibrium state with
zero velocity and a linear stable stratification of salt concentration can be achieved, at least
for a period of time, by imposing fixed concentrations at the top and bottom walls of the
container (a temperature stratification, with a hot top wall and a cooler bottom wall, is
more suitable in the long term for maintaining a stable linear stratification). Linearizing
the governing equations (the incompressible Navier–Stokes–Boussinesq system) about
this equilibrium in the diffusionless and inviscid limits, and assuming standing wave
solutions, leads to an eigenvalue problem. Thorpe (1968) obtained the inviscid eigenmodes
(which we simply refer to as Thorpe modes) for a two-dimensional rectangular container of
vertical-to-horizontal aspect ratioA. These are purely harmonic in time and both spatial
directions, with integer numbers of horizontal and vertical half-wavelengths (m and n,
respectively). Their angular frequency, relative to the buoyancy frequency N, is given by

σm : n = 1√
1 + n2/(mA)2

. (1.1)

The Thorpe modes are degenerate in the sense that for a given m and n, there is a
countably infinite set of modes, the km : kn Thorpe modes, that are the spatial harmonics of
the m : n Thorpe mode all with the same value of σm : n. In the theoretical inviscid limit, the
Thorpe modes are neutral (zero growth rates, as the eigenvalues are purely imaginary). For
any non-zero viscosity, these modes are damped, and to realize them in a sustained fashion
the system must be forced. Several forcing strategies employing paddles and plungers were
implemented in early experiments (Thorpe 1968; McEwan 1971; Orlanski 1972; McEwan
1973), and some of the Thorpe modes were realized, but often other complicated flow
features were present.

The experiments of Benielli & Sommeria (1998) used a different forcing protocol,
consisting of vertical harmonic oscillations of a container of aspect ratioA ≈ 1, with a
relatively short spanwise dimension of 0.4 times the depth. For small forcing amplitudes,
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clearly resonated Thorpe modes were revealed. What differentiates the vertical oscillatory
forcing of the container from the forcings using plungers and paddles is that for the vertical
forcing, the static (relative to the oscillating container) linearly stratified state is a solution
of the full nonlinear system of governing equations for any amplitude and frequency of
the forcing, whereas this is not the case for the other forcing protocols. Having such
a simple basic state consisting of zero relative velocity, density varying linearly with
vertical distance and pressure being time periodic, allows for very detailed analyses of its
stability and the nonlinear dynamics following instability. The Floquet analysis delineating
the stability boundaries in frequency–amplitude space was presented in Yalim, Lopez &
Welfert (2018), revealing resonance tongues inside which the Thorpe modes are resonantly
driven, either synchronously or subharmonically, once the forcing amplitude is sufficiently
large so as to overcome viscous damping. Yalim, Welfert & Lopez (2019a) developed a
reduced-order model, accounting for confinement as well as viscous and thermal diffusion
effects. The model consisted of a superposition of Mathieu equations. The linear studies
delineated the stability boundaries, but were unable to distinguish between super- and
subcritical bifurcations, nor were they able to predict the nonlinear states following
instability.

To address nonlinear dynamics, Yalim, Welfert & Lopez (2019b) and Yalim,
Lopez & Welfert (2020) conducted extensive nonlinear numerical simulations in two
and three dimensions, capturing many of the experimental observations reported by
Benielli & Sommeria (1998), as well as elaborating on the complex dynamics on
the low-forcing-frequency sides of primary resonance tongues, where the instability is
subcritical. Of particular relevance to the present study is the role of the spatial harmonics
as the forcing amplitude is increased for frequencies inside resonance tongues. Both
the experiments and the numerical studies showed that inside the subharmonic 1 : 1
resonance tongue, near the onset of instability, the 1 : 1 Thorpe mode was resonantly driven
subharmonically (with the usual viscous detuning spread in frequencies). With increasing
forcing amplitude, this resonated response flow loses stability to higher spatial harmonics,
m : m, with the same angular frequency. Also, as these modes have a period that is twice
the forcing period, they come in two flavours differing by a forcing period in their phases.
Their combinations lead to response flows with broken left–right symmetry. When the
forcing frequency is also varied within the resonance tongue, many other bifurcations
leading to quite exotic nonlinear dynamics were revealed.

Taking the same linearly stratified container, but subjecting it to small time-harmonic
horizontal oscillations, rather than vertical oscillations, changes the nature of the problem
in fundamental ways. The relative static stratified state is not a solution for any forcing
frequency or non-zero horizontal forcing amplitude. As such, there is a non-trivial
response flow for all non-zero forcing amplitudes and frequencies. Grayer et al. (2021)
considered this situation in the small-forcing-amplitude regime. The nonlinear simulations
showed that for large buoyancy number, RN (product of buoyancy frequency N and viscous
time scale L2/ν, where L is the depth of the container and ν is the kinematic viscosity),
the response flows tend to be synchronous standing waves with low spatial regularity
(piecewise-constant or piecewise-linear vorticity distributions). A first-order perturbation
analysis of the relative static stratified state in the inviscid limit, using the forcing
amplitude as the small perturbation parameter, captured most of the high-RN simulation
results. The first-order perturbed system is a non-homogeneous linear boundary value
problem, which reduced to a Poincaré equation for the temperature deviation. Inspired and
guided by the spatio-temporal structure of the high-RN simulation flows, analytic solutions
to the Poincaré equation were obtained by considering a general standing wave ansatz for
the temperature deviation and enforcing symmetries and boundary conditions. This led to
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a system of functional equations for a waveform function, one of which depends on the
forcing.

The nature of the solutions to the horizontally forced system depends on whether or
not the forcing resonates with a Thorpe mode. For non-dimensional forcing frequencies
ω (ratio of forcing frequency to buoyancy frequency) such that ω2 = 1/(1 + r2), with r
being either irrational or rational with r = n/m and the integers m and n having opposite
parities (for A = 1), the harmonic forced response flow is unique and scales with the
forcing amplitude α. For rational r = n/m with the integers m and n having opposite
parities, the response flows have piecewise-constant vorticity which is discontinuous
across characteristic lines and forms a regular harlequin pattern (the slopes of the
characteristic lines are ±1/r); we call these solutions the m : n harlequins. For r irrational,
the resulting harlequin pattern of vorticity is more complicated, becoming fractal at least
for quadratic irrationals. When r = n/m with n and m both odd, instead of a unique
forced response, the result is a resonant response, corresponding to the solutions of
the unforced inviscid linear perturbation equations. The spatial structure of the resonant
response at a resonant frequency can be obtained as the limit of forced responses as the
frequency approaches the resonant frequency. In this limit, the forced response becomes
unbounded, with piecewise quadratic velocity and temperature deviation, and piecewise
linear vorticity. The resulting resonated response can be represented as a superposition of
an infinite set of odd spatial harmonics of the Thorpe mode with that frequency. For small
but finite viscosity (large RN), the higher-order spatial harmonics are damped by diffusion,
and the superposition is effectively of a finite set, which results in a smooth response. This
flow may be hard to distinguish from a pure Thorpe mode, especially in experiments. All
of this comes about in the small-forcing-amplitude regime studied in Grayer et al. (2021).

Here, we consider the responses as the amplitude of the horizontal forcing is increased
and the contributions of the temporal harmonics to the structure of the forced response
flow become more important. There has been much recent interest in higher temporal
harmonics, particularly with possible resonant interactions between them, in various
studies involving internal waves (Ermanyuk & Gavrilov 2008; Jiang & Marcus 2009;
Ermanyuk, Flór & Voisin 2011; Rodenborn et al. 2011; Diamessis et al. 2014; Wunsch
2015; Sutherland 2016; Aksu 2017; Liang, Zareei & Alam 2017; Shmakova, Ermanyuk
& Flór 2017; Wunsch 2017; Husseini et al. 2020; Le Dizès 2020; Varma, Chalamalla
& Mathur 2020; Boury, Peacock & Odier 2021; Dobra, Lawrie & Dalziel 2021, 2022;
Patibandla, Mathur & Roy 2021), as well as horizontally forced interfacial waves
(Marcotte, Gallaire & Bongarzone 2023). Our focus here is on the dynamic roles of the
superharmonics in a square container with initially linearly stratified fluid that is subjected
to periodic horizontal oscillations.

2. Governing equations, symmetries and numerics

We address how the flows with low spatial regularity (piecewise-constant or
piecewise-linear vorticity) found at very small forcing amplitude in Grayer et al. (2021)
respond to larger forcing amplitudes. The system consists of a fluid of kinematic viscosity
ν, thermal diffusivity κ and coefficient of volume expansion β filling a square cavity
of side lengths L. The vertical walls of the cavity are insulated and the horizontal walls
are held at fixed temperatures, Thot at the top and Tcold at the bottom, with �T =
Thot − Tcold > 0. Gravity g acts in the downward vertical direction. In the absence of any
other external force, the fluid is linearly stratified. The non-dimensional temperature is
T = −0.5 + (T∗ − Tcold)/�T , where T∗ is the dimensional temperature. Length is scaled
by L and time by 1/N, where N = √

gβ�T/L is the buoyancy frequency. A Cartesian
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x

z

T = 0.5

T = −0.5

∂xT = 0∂xT = 0

ξ = −α sin ω t x̂ − ẑ

Figure 1. Schematic of the stably stratified square cavity under harmonic horizontal forcing, together with
the effective gravity vector relative to the oscillating cavity, ξ . The inset is a snapshot at maximal phase of
the vorticity, η, at buoyancy number RN = 106, Prandtl number Pr = 1, aspect ratioA = 1, squared forcing
frequency ω2 = 1/5 and forcing amplitude α = 0.01.

coordinate system x = (x, z) ∈ [−0.5, 0.5]2 is attached to the cavity with its origin at the
centre and the directions x and z aligned with the sides. The cavity is subjected to small
harmonic horizontal oscillations of non-dimensional frequency ω and non-dimensional
horizontal displacement (α/ω2) sin ωt, resulting in a non-dimensional effective gravity
seen in the moving cavity reference frame given by ξ = −α sin ωtx̂ − ẑ. In the moving
cavity reference frame, the velocity is u = (u, w). The velocity boundary conditions are
no-slip on all walls, u = 0. For the temperature, T = ±0.5 on the conducting walls at
z = ±0.5 and ∂xT = 0 on the insulated walls at x = ±0.5. Figure 1 shows a schematic of
the system.

Under the Boussinesq approximation, the non-dimensional governing equations are

(∂t + u · ∇)u = −∇p + 1
RN

∇2u − Tξ , ∇ · u = 0,

(∂t + u · ∇)T = 1
PrRN

∇2T,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where p is the reduced pressure, the buoyancy number RN = NL2/ν is the ratio of the
viscous and buoyancy time scales (it is the square root of the Grashof number) and Pr =
ν/κ is the Prandtl number.

The governing equations (2.1) are solved numerically using a spectral-collocation
method; the solutions are referred to as direct numerical simulations (DNS). The
numerical technique used is the same as was used in Wu, Welfert & Lopez (2018),
Yalim et al. (2019b) and Grayer et al. (2020, 2021). Briefly, the velocity, pressure and
temperature are approximated by polynomials of up to degree 280, associated with the
Chebyshev–Gauss–Lobatto grid. A fractional-step improved projection method, based on
a linearly implicit and stiffly stable second-order-accurate scheme, is used to integrate in
time. The temporal resolution used was 1800 time steps per forcing period; this is far
more than needed for numerical stability and accuracy, and was selected for the improved
analysis of the contributions from the higher temporal harmonics.

Although the system is solved in terms of the velocity, temperature and pressure, it is
convenient to present the results in terms of the vorticity, whose only non-zero component
is

η = ∂zu − ∂xw, (2.2)
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and the temperature deviation away from linear stratification

θ = T − z. (2.3)

When the system is subjected to small periodic horizontal oscillations of amplitude α,
the response flow is a synchronous limit cycle with discrete time invariance

T : [η, θ ](x, z, t) �→ [η, θ ](x, z, t + 2π/ω), (2.4)

and centrosymmetry (invariance to a reflection through the origin)

C : [η, θ ](x, z, t) �→ [η, −θ ](−x, −z, t). (2.5)

The symmetry C is the composition, C = HxHz = HzHx, of two half-period flip
space–time symmetries of the forced problem, Hx and Hz. The actions of Hx and Hz
are

Hx : [η, θ ](x, z, t) �→ [−η, θ ](−x, z, t + π/ω),

Hz : [η, θ ](x, z, t) �→ [−η, −θ ](x, −z, t − π/ω).

}
(2.6)

For synchronous response flows that are harmonic in time, the space–time symmetries Hx
and Hz imply that η is even in both x and z, while θ is odd in x and even in z. Limit cycles
that are not pointwise invariant (centrosymmetric at every instant in time) may instead
be setwise invariant, whereby they are invariant to a spatio-temporal symmetry consisting
of C composed with a half-period translation in time. The action of this spatio-temporal
symmetry is

CST : [η, θ ](x, z, t) �→ [η, −θ ](−x, −z, t + π/ω). (2.7)

The degree to which a state has broken centrosymmetry is quantified by an asymmetry
parameter, based on the state’s temperature field, T:

A = ‖T − C T‖
‖T‖ , where ‖(·)‖ =

√∫ 0.5

−0.5

∫ 0.5

−0.5
(·)2 dx dz. (2.8)

The dynamical behaviour of the field q = η or θ of the response flow may be examined
by expanding q as a Fourier series:

q(x, z, t) = q0(x, z) +
∞∑

k=1

qk(x, z) cos(kωt − φk), (2.9)

with coefficients

q0(x, z) = 1
τ

∫ τ

0
q(x, z, t) dt, qk(x, z) = 2

τ

∫ τ

0
q(x, z, t) cos(kωt − φk) dt, k > 0,

(2.10a,b)

where τ is a time length and the phase φk is optimized to maximize ‖qk‖ for each k > 0
(see Appendix C for details). For synchronous responses, τ = 2π/ω is the forcing period.
For quasi-periodic or aperiodic responses, q is detrended and Blackman windowed before
(2.10a,b) is applied with τ = 2πnτ /ω, using a number nτ ≈ kω/ωi of forcing periods for
filtering at a frequency ωi. The values of nτ used range from nτ ≥ 10 for extracting the
Fourier coefficients qk(x, z) from asynchronous responses to nτ = 20 000 for computing
power spectral densities (PSDs).
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3. Nonlinear responses to moderate-amplitude forcing

As mentioned in the Introduction, the analysis in Grayer et al. (2021) forA = 1 showed
that for very small forcing amplitudes α, and sufficiently large RN , the response to
horizontal oscillations of the container with frequency ω comes in two flavours, codified
in terms of a Fredholm alternative, depending on whether or not ω resonates with the
frequency of a Thorpe mode. The m : n Thorpe mode has frequency

σm : n = 1√
1 + n2/m2

∈ (0, 1) (3.1)

for integers m and n; all of its spatial harmonics (the km : kn Thorpe modes) have the
same frequency. For forcing frequencies in the range 0 < ω < 1, we can write ω2 =
1/(1 + r2) ∈ (0, 1) with r any positive real number. For forcing frequencies corresponding
to irrational r, or rational r = n/m with positive integers m and n of opposite parities,
there is a forced response which is synchronous with the forcing and invariant to the
symmetries of the forced system at that frequency (Fredholm alternative A1). On the other
hand (Fredholm alternative A2), r = n/m with integers m and n both odd results in a
response in resonance with Thorpe modes for which σ 2

m : n ≈ ω2, the approximation being
due to viscous effects.

In this paper, we consider in detail the forced responses at

ω = 1/
√

5 ≈ 0.4472, (3.2)

for which the second temporal harmonic is inside the range of frequencies of the Thorpe
modes, i.e. 2ω < 1. These are computed for

A = 1, Pr = 1 and RN = 106. (3.3a–c)

This RN was found to be sufficiently large to produce responses that are not dominated
by viscous damping, and for forcing amplitudes ranging from α = 10−6 up to and beyond
the levels where the symmetric synchronous response flow loses stability. In laboratory
experiments using salt as the stratifying agent, the buoyancy frequency is limited to
N ≈ 0.6 rad s−1, the depth of the fluid to L ∼ 1 m and the kinematic viscosity is
ν ∼ 10−6 m2 s−1, giving RN ∼ 6 × 105 (Savaro et al. 2020). The contributions of the
temporal harmonics to the structure of the forced response flow become more important
with increasing α. Those contributions arise from the interactions between the primary
response and the parametric forcing, Tξ(t), as well as the nonlinear advection terms,
(u · ∇)u and (u · ∇)T .

3.1. Forced symmetric synchronous responses at small α

We begin by considering sufficiently small forcing amplitudes α, for which the response
flow is synchronous with the forcing. The phase of the forced response flow is as expected;
the vorticity η response is maximal at the zero phase of the forcing and the temperature
deviation θ response is maximal a quarter period later. Figure 2 shows snapshots of η

and θ for forcing amplitudes α ∈ [10−6, 0.026]. At the lowest α = 10−6, the response
flow is that reported in Grayer et al. (2021) with essentially piecewise-constant vorticity
(viscously regularized), corresponding to a 1 : 2 harlequin response. Appendix A gives the
explicit analytical expressions for this forced response at ω = 1/

√
5 in the linear inviscid

limits, RN → ∞ and α → 0.
For the forcing frequency considered, ω = 1/

√
5, the characteristics retrace, going from

a corner on one sidewall to the middle of the opposite sidewall, back to the other corner on
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α = 10−6 10−4 0.01 0.02 0.026

η

θ

T

Figure 2. Snapshots of the vorticity η, temperature deviation θ and isotherms T of the response flows at α

as indicated, shown at forcing phases 0 for η and π/2 for θ and T . The contour level bounds are η = ±4α,
θ = ±1.2α and T = ±0.5, with blue negative and red positive.

the original sidewall, and then back again. These characteristic lines demarcate regions of
nearly constant vorticity. The (scaled) vorticity of the response flow at α = 10−4 is visually
very similar, but at α = 0.01 regions demarcated by the characteristics are no longer of
nearly constant vorticity. A cellular pattern with four cells horizontally and two vertically,
reminiscent of the 4 : 2 Thorpe mode, appears. At α � 0.02, these cells are prominent, but
distorted along characteristics associated with the forcing frequency ω, as well as along
characteristics associated with the second harmonic of the forcing frequency, 2ω. This all
suggests that the temporal second harmonic of the response flow is becoming dynamically
important.

Figure 3 shows how ‖ηk‖ and ‖θk‖ for k = 0, 1 and 2 vary with forcing amplitude α.
For α = 10−6, all ‖ηk‖ and ‖θk‖ other than for k = 1 are essentially machine noise, with
optimal phases φ1 ≈ 0 for η and φ1 ≈ π/2 for θ , confirming that the forced response is
essentially the 1 : 2 harmonic standing wave harlequin pattern described in Grayer et al.
(2021). In the range α ∈ [10−6, 0.01], the norms scale with αk for k > 0, whereas the
temporal means, ‖η0‖ and ‖θ0‖, scale with α2, as is expected for a mean flow arising from
quadratic nonlinear interactions in the synchronous response. By α ≈ 0.01, the second
harmonics ‖η2‖ and ‖θ2‖ have grown to just less than an order of magnitude smaller
than the respective first harmonics, ‖η1‖ and ‖θ1‖, resulting in the nonlinear distortions
to the η harlequin pattern and isotherms that are not horizontal. The growth of the second
harmonic with α2 slightly shifts the optimal phases of η1 and θ1 from 0 and 0.5π at low α

to approximately −0.007π and 0.501π at α = 0.026.
Figure 4 shows the Fourier coefficients of η and θ for k = 0, 1 and 2 for various values

of α. For these symmetric synchronous response flows, the space–time symmetries Hx and
Hz imply that the Fourier coefficients of η and θ have the following spatial symmetries:
ηk is odd (even) in both x and z and θk is even (odd) in x and odd (even) in z for k even
(odd), which they do.

The η mean flow is very weak, with ‖η0‖ being two orders of magnitude smaller than
‖η2‖ (see figure 3a). At low α, the structure of η0 consists of thin boundary layers along
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10−6 10−5 10−4 10−3 10−2 10−1
10−8

10−6

10−4

10−2

100

α

||ηk||

10−6 10−5 10−4 10−3 10−2 10−1
10−8

10−6

10−4

10−2

100

α

||θk||

k = 0

k = 1

k = 2

(b)(a)

Figure 3. Variation with α of the leading Fourier coefficient magnitudes, (a) ‖ηk‖ and (b) ‖θk‖, for k = 0, 1
and 2.

α η0 η1 η2 θ0 θ1 θ2

0.
00

01
0.

01
00

0.
02

00
0.

02
60

Figure 4. Fourier coefficients of ηk and θk, k = 0, 1, 2, obtained from DNS via filtering at frequencies 0, ω and
2ω with maximal phase φk, at α as indicated. The fields are scaled by the maximum in (x, z) ∈ [−0.45, 0.45]2

for η and in the whole square for θ . Supplementary movie 1 animates, over one forcing period, η, θ and T from
the DNS (figure 2) along with their Fourier reconstructions using k = 0, 1 and 2 for α = 0.026.

with thin vortex sheets emitted from the four corners of the container. These shear layers
are aligned with the characteristics for ω. For α � 0.02, additional structures are evident
in η0, which correspond to weaker and broader shear layers emitted at the midpoints of the
sidewalls, where the shear layers along the ω characteristics reflect. These weaker shear
layers are aligned with the characteristics for 2ω. In contrast, ‖θ0‖ and ‖θ2‖ are of the same
order. The structure of θ0 is essentially invariant with α, showing no discernible influence
of the second harmonic. Appendix B shows that in the linear inviscid limit, the mean η is
zero but the mean θ is non-zero.
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Supplementary movie 1, available at https://doi.org/10.1017/jfm.2023.618, animates η,
θ and T from the DNS over one forcing period for α = 0.026, along with their truncated
Fourier reconstructions (2.9) using only k = 0, 1 and 2. There is no discernible difference
between the DNS and its truncated Fourier reconstruction. The movie shows that in both
the DNS and its Fourier reconstruction, characteristics associated with the frequency 2ω

are being emitted at the midpoints of the sidewalls, where the characteristics associated
with the forcing frequency ω reflect, as evident in the k = 2 Fourier coefficient η2.
The generation of second-harmonic wavebeams at locations where wavebeams reflect at
walls inclined to the gravity vector has drawn considerable attention (Peacock & Tabaei
2005; Tabaei, Akylas & Lamb 2005; Rodenborn et al. 2011). Here, the walls become
increasingly oblique to the effective gravity vector ξ(t) as the horizontal forcing amplitude
α is increased. The angle between the effective gravity vector and the vertical walls is
arcsin(α sin ωt).

The 4 : 2 regular cellular structures are clearly evident in the Fourier components η2 and
θ2. These second-harmonic Fourier components oscillate at a frequency corresponding
to (2ω)2 = 4/5 = 1/(1 + r2), for which r = n/m = 1/2 = 2/4. The association with the
4 : 2 Thorpe mode, rather than the 2 : 1 Thorpe mode, is a consequence of the space–time
symmetry constraints noted earlier, which imply that the second-harmonic vorticity
Fourier coefficients must be odd functions of both x and z while for the temperature
deviation they must be odd in x and even in z; the 2 : 1 Thorpe mode does not satisfy
these symmetry constraints whereas its spatial harmonic, the 4 : 2 Thorpe mode, does.
The emergence of the 4 : 2 Thorpe mode is not an instability, but rather a superharmonic
resonance. It is present even as α → 0, and the forced response flow is a symmetric
synchronous limit cycle that is not temporally harmonic.

3.2. Triadic instabilities of the forced response as α is increased
As α is increased beyond a critical value, α1 ≈ 0.0261, the symmetric synchronous
response loses stability via a supercritical bifurcation that both breaks the centrosymmetry
C and introduces an additional frequency which is nearly commensurate with ω. The
resulting two-frequency quasi-periodic flow is not setwise C invariant; applying C results in
a slightly different quasi-periodic flow. With further increases in α, additional instabilities
occur. Figure 5 is a bifurcation diagram showing how the time-averaged asymmetry
parameter 〈A〉 varies with α. The time average is taken over nτ = 10 000 forcing periods
as the responses are increasingly temporally complicated for α > α1. The different states
resulting from the sequence of instabilities are colour-coded. The blue curve corresponds
to the symmetric synchronous limit cycle forced response described in § 3.1, the red
curve corresponds to a symmetry-broken quasi-periodic state with two incommensurate
frequencies, the green curve corresponds to another quasi-periodic state with three
incommensurate frequencies and the cyan curve corresponds to states with additional
temporal complexity. Each of these states and the instabilities from which they stem are
described in detail below.

The PSDs obtained from time series of the temperature at a collocation point,
T(1/

√
8, 1/

√
8, t), consisting of nτ = 20 000 forcing periods sampled at a rate of 100

per forcing period, taken long after initial transients have died off (typically after 80 000
forcing periods), are shown in figure 6 for a selection of α. The PSD in figure 6(a) is
of the symmetric synchronous response at α = 0.026 and consists of a peak at the forcing
frequency ω and its superharmonics; the PSDs are only shown for frequencies f ∈ [0, 1.2],
extending a little beyond the range of frequencies of the Thorpe modes. The second
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Figure 5. Bifurcation diagram showing how the time-averaged asymmetry parameter 〈A〉 varies with α.
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Figure 6. The PSDs of the temperature at a point, T(1/
√

8, 1/
√

8, t), for α as indicated. The PSDs were
determined from time series of nτ = 20 000 forcing periods taken well after initial transients have died off
(typically after 80 000 forcing periods).

harmonic, 2ω, is labelled as ω1, plays a fundamental role as α is increased. As described
in the previous subsection, Fourier filtering at ω1 reveals the 4 : 2 Thorpe mode, which is
now labelled M1.

For α = 0.02650 > α1, the PSD in figure 6(b) consists of additional peaks. All of these
correspond to linear combinations of ω and any other peak other than a harmonic of ω.
Fourier filtering at each of these peaks with PSD > 1 only reveals coherent structures
for some frequencies, namely ω, ω1 = 2ω and two other frequencies labelled ω2 and
ω3. The Fourier coefficient at ω2 ≈ 0.5573 is strongly correlated with the Thorpe mode
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Figure 7. Responses η (a) and θ (b) filtered at the indicated frequencies for the indicated α.

M2 = 10 : 15 with σ10 : 15 ≈ 0.5547, and that at ω3 ≈ 0.3371 with the Thorpe mode M3 =
6 : 17 with σ6 : 17 ≈ 0.3328. These Fourier coefficients are shown in figure 7. As M2 and
M3 have m and n of opposite parities, the centrosymmetry C is broken. The three modes
M1, M2 and M3 exactly satisfy the spatial conditions on wavevectors for triadic resonance
(Thorpe 1966), namely 4 = 10 − 6 and 2 = −15 − (−17), i.e. M1 = M̄2 − M̄3, where
M̄ = m : − n is the conjugate of M = m : n. While the response frequencies exactly satisfy
ω1 = 2/

√
5 = ω2 + ω3, the modes M1, M2 and M3 only approximately satisfy the inviscid

frequency condition for triadic resonance, and have a detuning

δσ1 := σ4 : 2 − σ10 : (−15) − σ(−6) : 17 = 2√
5

− 10√
325

− 6√
325

= 2√
5

[
1 − 8√

65

]
≈ 0.0069.

(3.4)
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The PSD in figure 6(b) shows that ω3 and ω are nearly commensurate in a ratio 3
to 4 or, equivalently, the first peak at ω − ω3 is nearly a quarter of ω. The small
detuning

δω1 = ω − 4(ω − ω3) = 4ω3 − 3ω ≈ 0.0068 (3.5)

manifests as sidebands of lower power to the main peaks in the PSD and as a beat frequency
in the corresponding time series, corresponding to a beat period of ω/δω1 ≈ 66 forcing
periods. The near-perfect match between δω1 in (3.5) and δσ1 in (3.4) is not entirely
coincidental. It results from the ratio between individual detunings ω2 − σ10 : 15 ≈ 0.0026
and ω3 − σ6 : 17 ≈ 0.0043, approximately 3/5, being nearly inverse to that, 5/3, between
σ10 : 15 and σ6 : 17; see Appendix D for a justification.

At α = α2 ≈ 0.02711, there is another supercritical instability that introduces another
nearly commensurate frequency. The response is a three-torus, a flow state with three
incommensurate frequencies (Lopez & Marques 2000, 2003). Figure 6(c) shows the
PSD of this solution branch at α = 0.0272, consisting of all the peaks from the
previous two-torus branch plus two additional frequencies, labelled ω4 and ω5, and linear
combinations between all of these. The new frequencies ω4 ≈ 0.5011 and ω5 ≈ 0.3934 are
also in exact triadic resonance with ω1 = ω4 + ω5. These frequencies are close to those of
Thorpe modes M4 = 13 : 23 with σ13 : 23 ≈ 0.4921 and M5 = 9 : 21 with σ9 : 21 ≈ 0.3939.
The Fourier coefficients at ω4 and ω5 for α = 0.0272 are shown in figure 7, along with
those of ω, ω1, ω2 and ω3 which remain essentially unchanged from the two-torus branch
at lower α. The wavevectors of M1, M4 and M5 also are in exact triadic resonance,
4 = 13 − 9 and 2 = 23 − 21, i.e. M1 = M4 − M5. So, the three-torus branch consists of
two sibling triadics spawned from the same parent mode. The Thorpe modes M4 and M5
have m and n of the same parity and the three-torus branch recovers setwise C invariance
but continues to have broken pointwise C symmetry. This very likely accounts for 〈A〉
being nearly constant along this branch (the green curve in the bifurcation diagram of
figure 5). With ω5 ≈ (ω3 + ω)/2, an additional small detuning δω2 = 2ω5 − (ω3 + ω) ≈
0.0025 is introduced. The relation δω1 ≈ 3δω2 introduces an even smaller detuning
δω3 = 3δω2 − δω1 = 6ω5 − 7ω3 ≈ 0.0007 and a longer beat period ω/δ3 ≈ 640 forcing
periods. However, this beat is much weaker than the dominant beat of 66 forcing periods.

At α = α3 ≈ 0.02735, the three-torus solution branch becomes unstable as yet
another weakly incommensurate frequency is introduced in the bifurcated state, whose
time-averaged asymmetry parameter 〈A〉 increases rapidly with small increases in α.
The PSD of this solution branch at α = 0.0280 shown in figure 6(d) consists of all the
frequency peaks identified in the earlier branches, plus two new frequency peaks at ω6 ≈
0.6486 and ω7 ≈ 0.2458, which are also in exact triadic resonance with ω1 = ω6 + ω7.
These frequencies are close to those of Thorpe modes M6 = 5 : 6 with σ5 : 6 ≈ 0.6402
and M7 = 1 : 4 with σ1 : 4 ≈ 0.2425. There are many other peaks in the PSD which are
readily identified as linear combinations of ω, ω3, ω5 and ω7. The Fourier coefficients of
ω and ωi, i = 1, . . . , 7, are shown in figure 7; the Fourier coefficients at the frequency
peaks that existed in the three-torus branch remain essentially the same, and the Fourier
coefficients of ω6 and ω7 have wavevectors corresponding to those of M6 and M7, which
are also in exact triadic resonance with M1 = M6 − M7; 4 = 5 − 1 and 2 = 6 − 4. Modes
M6 and M7 have m and n of opposite parities, contributing to the rise in 〈A〉 shown in
figure 5. The new modes introduce a new small detuning δω4 = 5ω5 − 8ω7 ≈ 0.0004,
associated with a longer beat period of ω/δω4 ≈ 1100 forcing periods. Over the range of
α considered, the spatial structures of the means η0 and θ0 remain essentially the same as
those of the synchronous symmetric limit cycle at α ∼ 0.02 shown in figure 4. This is not
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Figure 8. Triadic resonances from M1. (a) Contour plot of δσm : n (3.6) as a function of wavenumbers m and n.
The crosshair + marks the centre of symmetry. Triadic modes are (approximately) on the zero-level contours
(dark blue curves). (b) Wavevectors associated with the triads M1 = M̄2 − M̄3 = M4 − M5 = M6 − M7.

too surprising as the means are dominated by the Fourier coefficients with largest power,
which are those at ω and 2ω.

Figure 8 and table 1 summarize the resonances of the three triads (M1, M̄2, −M̄3),
(M1, M4, −M5) and (M1, M6, −M7), in both frequency and wavevectors. Figure 8(a)
shows a contour plot of the detuning

δσm : n := σ4 : 2 − σm : n − σ(4−m) : (2−n) = 2√
5

− |m|√
m2 + n2

− |4 − m|√
(4 − m)2 + (2 − n)2

(3.6)

as a function of the horizontal and vertical wavenumbers, m and n, together with thick dark
blue curves of the zero contour level, corresponding to an exact (inviscid) triadic resonance
between the parent mode M1 = 4 : 2 and a pair of offspring modes m : n and (4 − m) : (2 −
n). The expression (3.6) generalizes (3.4), with δσ1 = δσ10 : −15 = δσ(−6) : 17 for m : n =
10 : (−15) = M̄2 or m : n = (−6) : 17 = −M̄3. The symmetry δσm : n = δσ(4−m) : (2−n) is
reflected by the symmetry of the contours about the point (m, n) = (2, 1), marked with a
crosshair +. The two offspring modes of all triads are symmetrically located with respect
to that point. The parent mode M1, from which all triads spawn, is symmetric to the origin
at (m, n) = (0, 0), associated with the mean flow M0 = 0 : 0. Figure 8(b) shows that the
wavevectors of each of the offspring modes in the triads add up exactly to that of the
parent mode, forming triangles. Those offspring modes, however, do not fall exactly on
the zero contour curve of δσm : n, giving the respective small detunings in frequencies. For
each of the triads, these resonances can be made exact in frequencies by slightly adjusting
the aspect ratio of the container, but the adjustment would be different for each triad. For
example, changing the container aspect ratio from A = 1 to A = 0.9899 would make
δσ1 = 0.

Which offspring modes are first spawned in a triad triggered by a parent mode associated
with a resonant superharmonic response is in general unclear. In the case studied here,
the primary forced response has vorticity consisting of a harlequin pattern which is
piecewise-constant, generated by the 1 : 2 Thorpe mode and its odd spatial harmonics.
The second temporal harmonic is a resonant response dominated by the Thorpe mode
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i Mi = m : n C-invariant? σi ωi ωi − σi δσm : n

1 4 : 2 ✓ 0.8944 0.8944 0.0000

2 10 : 15 ✗ 0.5547 0.5573 0.0026 }
0.00693 6 : 17 ✗ 0.3328 0.3371 0.0043

4 13 : 23 ✓ 0.4921 0.5011 0.0090 }
0.00855 9 : 21 ✓ 0.3939 0.3934 −0.0005

6 5 : 6 ✗ 0.6402 0.6486 0.0084 }
0.01177 1 : 4 ✗ 0.2425 0.2458 0.0033

Table 1. Response frequencies ωi, natural frequencies σi and detunings of the modes involved in the triadic
resonances observed in the range α ∈ [0.026, 0.030]. The positive combined detunings in the last column imply
that all triadic siblings are located in the blue area in figure 8(a).

M1 = 2(2 : 1) = 4 : 2 that grows with the square of the amplitude of the forcing, α2,
until its enstrophy approaches the enstrophy level of the primary response. Then, the
synchronous limit cycle loses stability via triadic resonance. The offspring modes in
the three triadic resonances that are successively excited as α is further increased are of
the form

m : n = (2 : 1) ± (k : �), (3.7)

with k : � = 8 : 16 = 8(1 : 2), k : � = 11 : 22 = 11(1 : 2) and k : � = 3 : 5, respectively.
While these have increasing magnitudes of detuning δσ1 ≈ 0.0069, δσ2 ≈ 0.0085 and
δσ3 ≈ 0.0117, other factors may also be contributing to the selection process.

One possible factor in the weakly viscous setting is the size of the wavenumbers m and n
of the offspring modes contributing to their viscous damping. For example, the modes M̄2
and −M̄3 belong to the family of mode pairs (3.7) with � = −2k that are in approximate
triadic resonance with M1 = 4 : 2, with corresponding detuning

δσ(2+k) : (1−2k) = 2√
5

(
1 − k√

k2 + 1

)
= σ4 : 2√

k2 + 1 (k + √
k2 + 1)

, (3.8)

decreasing quadratically with k. At RN = 106, k = 8 appears to be a compromise between
small detuning (large k) and moderate dissipation (small k).

The alignment of the wavevector k : � with the primary Thorpe mode 1 : 2 or its
conjugate 1 : 2 = 1 : − 2 also appears to play a role in the selection of the triadic modes.
In particular, the candidate triad 1 : 5 + 3 : 3 = M1, which has a relatively low detuning
δσ ≈ −0.0088 and low wavenumbers, has k : � = 1 : 4, but is demoted in favour of the
triad M6 − M7 = M1, possibly because of an angle θ = arccos(9/

√
85) ≈ 12.5◦ with 1 : 2,

about three times that, arccos(13/
√

170) ≈ 4.4◦, between 3 : 5 and 1 : 2, thereby lowering
the energy required to sustain modal wavevectors transverse to the characteristic lines,
which act as barriers to modal deformations. In fact, the alignment of wavevectors figures
prominently in the coefficients of standard reduced models of resonant triadic interactions,
in the form of scaled areas of the triangles formed by the wavevectors in figure 8(b)
(Hasselmann 1967; McEwan & Plumb 1977; Bourget et al. 2013; Ha 2021; Grayson,
Dalziel & Lawrie 2022). This alignment favours modes on the ‘straight’ branches of the
zero-contour plot in figure 8(a) and tends to promote parametric subharmonic instability
conditions, with larger k in (3.8) possible at larger RN .
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Figure 9. Variation of the VLF beat period τVLF with α.

Another possible factor in the selection process is that the system favours positive
detunings, which allow for the available energy, proportional to

σ 2
4 : 2 > (σm : n + σ(4−n) : (2−n))

2 > σ 2
m : n + σ 2

(4−m) : (2−n), (3.9)

to be distributed amongst the two offspring modes. The slight negative detuning of −M5
may partially explain the relative weakness, as measured by the intensity of the peaks in
the PSD of figure 6, of the second triad compared with the other ones.

3.3. Very-low-frequency modulations
The third triadic resonance described in the previous subsection triggers a quasi-periodic
response, essentially a four-torus at onset (α ≈ α3), that is strongly influenced by the
beat frequencies manifesting as sidebands. The new low-frequency beat δω4 is relatively
weak compared with the beat frequency δω1 observed at lower α for (α − α3)/α3 small.
Its presence does not become fully apparent in the time series until α � 0.0285. This
very-low-frequency (VLF) modulation regime is also apparent in the oscillations of
〈A〉 for α � 0.0285 seen in the bifurcation diagram in figure 5. How this beat period
τVLF = 2π/δω4 varies with α is shown in figure 9, and was measured from time series of
A, such as those shown in figure 10.

Very-low-frequency states may appear in autonomous (unforced) systems after a
sequence of bifurcations introducing new frequencies into the flow (Lopez & Marques
2003; Abshagen et al. 2005), but in the context of the present study, they have also
been found to play important dynamical roles in parametrically forced flows, particularly
in parameter regimes involving triadic resonances (Marques & Lopez 2015; Lopez &
Marques 2016a,b, 2018).

To put a beat VLF period, τVLF ∼ 3600, into perspective, a typical laboratory
experiment uses a buoyancy frequency N ≈ 0.6 rad s−1, so the dimensional forcing period
considered here is 2π/(ωN) = 2π

√
5/0.6 ≈ 24 s, resulting in a dimensional beat period

3600 times longer, approximately one day.
The PSDs of the four cases in figure 10 are shown in figure 11. The PSD at α = 0.0285

is very similar to that at α = 0.0280 shown in figure 6(d), except that the sidebands have
slightly increased power. The PSD at the beat frequencies grows with α, and so does the
power in the superharmonics of the beat frequencies. This leads to sidebands that are
broad Gaussians rather than discrete peaks. This becomes evident at α ≈ 0.0285 with the
time series transitioning from a harmonically modulated signal to a distinctive slow–fast
signal. By α = 0.0290, the power in the sidebands is considerably larger. More significant,
however, is the decrease in power at frequencies ω4 and ω5 as α is further increased.
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Figure 10. (a–e) Time series of A at α as indicated. The red highlighted region of the α = 0.0290 series
corresponds to the time interval over which a rolling PSD analysis was conducted (see figure 13).

The Fourier coefficients at the frequencies ω and ωi, i = 1, . . . , 7, are shown in figure 12
at the same α values used for the PSDs in figure 11, illustrating that the Fourier coefficients
at ω4 and ω5 (corresponding to the offspring modes in the second triadic) lose coherence
for α � 0.0295. It appears that sibling rivalry is such that the newest triad (M1, M6, −M7)
is growing with increasing α at the expense of the second triad (M1, M4, −M5), whilst
the original triad (M1, M̄2, −M̄3) persists. This is further illustrated for α = 0.0290 by
extracting the PSD at the frequencies involved in the triadic resonances from a sliding
200-forcing-period window within the 2400 forcing periods (approximately one VLF beat
period) highlighted in red in figure 10. Figure 13 shows the temporal evolution of these
PSDs relative to the PSD at the forcing frequency ω, which varies by approximately 2 %
over the beat period τVLF. The rapid increase in A coincides with a rapid increase in
the PSD at ω7, with its partner ω6 also increasing but remaining significantly smaller. This
increase is strongly correlated with a rapid decrease in the PSD at ω3 and ω2 (the offspring
in the first triadic). The PSDs at ω4 and ω5 remain very small throughout the entire beta
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Figure 11. The PSDs of the temperature at a point, T(1/
√

8, 1/
√

8, t), at α as indicated. The PSDs were
determined for time series of 20 000 forcing periods long, well after initial transients have died off (after 80 000
forcing periods).

period, but do show some modest increase during the phase that the PSD of ω7 is rapidly
increasing, but as the PSD at ω7 reaches the PSD level of the parent mode at ω1, the PSDs
of ω4 and ω5 rapidly decay to almost zero. Following this rapid phase is the slow phase
where ω7 has slowly diminishing PSD. This may be viewed as a type of resonant collapse
(McEwan 1970, 1971), whereby the growth of the offspring modes results in diminishing
the parent mode (and in our case, also diminishing the sibling triad modes) to the point that
the conditions have changed so that the triad is no longer supported. As ω7 diminishes and
ω1 is slowly restored, the conditions for the first triad are also restored and ω3 increases,
and sets the scene to support the second and third triads, and then the VLF cycle repeats.

The beat period τVLF is maximal for α ≈ 0.0295 (see figure 9). This is suggestive of the
flow being close to a heteroclinic connection. Such heteroclinic behaviour has been seen
in the context of triadic resonances in other systems, such as precessionally forced flows
in rapidly rotating cylinders (Marques & Lopez 2015; Lopez & Marques 2016b, 2018). For
α in this regime, the response to the harmonic forcing is nonlinear, with several modes
being excited by triadic resonances as described, as well as other nonlinear interactions
leading to what is generally referred to as wave turbulence, a state involving multiple
nonlinear interactions between waves of various wavelengths and frequencies (Newell &
Rumpf 2011; Davis et al. 2020).
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Figure 12. Responses η (a) and θ (b) filtered at the indicated frequencies for the indicated α.
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Figure 13. The PSDs at the indicated frequencies using a sliding 200-forcing-period window within the 2400
forcing periods highlighted in red in figure 10 for α = 0.029. The PSDs are relative to that of the signal at the
forcing frequency ω, which varies by approximately 2 % over the time shown.
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4. Summary and discussion

This study explores numerically the dynamics of a stably stratified fluid in a
square container under horizontal harmonic gravitational modulations of increasing
non-dimensional amplitude α and non-dimensional frequency ω = 1/

√
5, at large

buoyancy number RN = 106 and fixed Prandtl number Pr = 1. The simulations of the
Navier–Stokes–Boussinesq system, with physical no-slip boundary conditions, reveal
how the forced basic state obtained at low α, which is well described in the inviscid
limit RN → ∞ as a superposition of internal waves (Grayer et al. 2021), undergoes a
superharmonic resonance at twice the forcing frequency, followed by a sequence of triadic
resonances spawned by the same second-harmonic parent mode as α is increased. While
this second-harmonic parent mode exists for all non-zero α and its magnitude grows
with α2, it only manifests itself macroscopically once α becomes large enough for the
modulation to overcome viscous effects as well as nonlinear effects due to both nonlinear
advection and parametric forcing. In contrast, all triadic resonant sibling modes arise
from intrinsic instabilities of the second-harmonic parent mode that occur supercritically
in rapid succession within a small range of forcing amplitudes α, each introducing one
new frequency. The increasing multiplicity of non-commensurate frequencies creates,
via linear frequency combinations resulting from nonlinear interactions, small beat
frequencies that eventually lead to a VLF regime associated with mode competition
and near-heteroclinic behaviour. Further increasing α would likely result in additional
resonances between other modes excited at sideband or more detuned frequencies. One
important aspect of this study is the high level of computing resources required for both
the simulations and the data processing to resolve the sharp variations in vorticity, in both
the thin boundary layers and the thin shear layers aligned with the characteristic directions
in the interior, as well as the large-time-scale separations between the wave periods and the
long time scales resulting from their nonlinear interactions, especially in the VLF regime,
for a faithful PSD representation of energy content.

The nonlinear dynamics of internal waves has historically been a challenge to elucidate.
As noted in the review article of Staquet & Sommeria (2002): ‘Internal waves are excited
by the interaction of tide with topography, by wind stress fluctuations, and by various other
processes that are still poorly documented. Owing to cascades of nonlinear interactions,
it is often not possible to track back the origin of the observed waves.’ Phillips (1966,
p. 178) made the comment: ‘It is interesting to notice that the degeneration of a field of
these internal waves to turbulence is not the consequence of an instability in the usual
sense but results from the development of “turbulent” modes in the interactions among
finite amplitude wave modes’.

Low-order models have been used to shed light on the mechanisms underlying nonlinear
interactions between internal waves. McEwan, Mander & Smith (1972) explored such
possible modal interactions and found that several triads satisfying resonance conditions
typically share a forced mode. Their theory suggests that only one of several triads sharing
a common parent wave may persist if an equilibrium state is attained. This is in sharp
contrast with what we find in the present study, where a sequence of states are found to
be excited consisting of multiple triads persisting indefinitely. McEwan et al. (1972) do
note in their conclusions that ‘The possibility that there exist, in addition, stable limit
cycles of energy exchange between triad partners has not been eliminated, but none
were identifiable from numerical integrations of the interaction equations’. This energy
exchange is manifest in the VLF regime described above. An aspect of our problem that is
perhaps not commonly found is that at the forcing frequency used, which is less than half
the buoyancy frequency, the parent mode for all the triadic resonances itself is a resonant
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response to the second temporal harmonic for the forced response. The strongly modulated
responses at the larger forcing amplitudes considered have some aspects in common with
the recent experiments of Grayson et al. (2022), who observed that over long time scales,
the constituent triadic waves synchronously modulate in amplitude and that part of these
modulations are coincident with the growth and decay of separate triads, all linked through
the primary wave beam. They found that secondary waves can be produced via nonlinear
interactions pumping energy into a host of alternative triad combinations.

Current models of triadic resonant interactions typically assume the energy of the parent
mode is only slowly changing in time and more energetic than the offspring modes (the
so-called ‘pump wave’ approximation). While that is a reasonable assumption at onset of
an instability, it is no longer the case once the offspring modes have grown in magnitude,
especially to an extent comparable with the magnitude of the parent mode, as is the
case in the fully developed VLF regime described here at the larger α considered. At
onset, a basic calculation of triadic growth rates for the three triads encountered here
remains inconclusive as to which triad should emerge first, with the growth rates all
being comparable. The roles of other factors which are typically ignored in the models
determining the growth rates of the triadic modes, such as the parametric forcing and the
mean flow, are unclear. This study represents a stepping stone towards the development of
a model of interactions more adapted to regimes involving multiple coexisting triads and
before full turbulence sets in.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.618.
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Appendix A. Forced response at ω = 1/
√

5, RN → ∞ and α → 0

The forced response, u, w, p and T = z + θ , to (2.1) was obtained in Grayer et al. (2021)
in the inviscid setting, RN = ∞, and in the limit α → 0, via a first-order perturbation on
α. For ω = 1/

√
5, the fields u, w, p and θ are (Grayer et al. 2021, (4.15))

[
u
w

]
= α cos ωt

[
U(x, z)
W(x, z)

]
,

[
p
θ

]
= α sin ωt

[
P(x, z)
Θ(x, z)

]
, (A1a,b)

with

[
U(x, z)
W(x, z)

]
= −

√
5

8

[
2[ f (x + 2z) − f (x − 2z)]

2x − f (x + 2z) − f (x − 2z)

]
,

[
P(x, z)
Θ(x, z)

]
= 5

8

[
(2/5)[4xz − F(x + 2z) + F(x − 2z)] + c

2x − f (x + 2z) − f (x − 2z)

]
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A2)
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Figure 14. Contour plots of (a) U, (b) W, (c) H, (d) Θ and (e) P for ω = 1/
√

5, drawn in the region
(x, z) ∈ [−0.5, 0.5]2. The black lines from each of the four corners correspond to characteristics. The values of
each function inside regions delineated by the characteristics are indicated, with ϕ(x, z) = |x| − 2|z| + 1

2 and
Φ(x, z) = 8|x| |z| − (|x| + 2|z| − 1

2 )2. The colourmap is normalized in the interval [−a, a], where a represents
the maximal field value. Colours map to [−6, 6] for H and [−1, 1] for all other fields.

where (Grayer et al. 2021, (4.31))

F′(ξ) = f (ξ) = − 4
π2

∞∑
k=0

(−1)k

(2k + 1)2 sin[(2k + 1)πξ ] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ + 1, −3
2

≤ ξ ≤ −1
2
,

−ξ, −1
2

≤ ξ ≤ 1
2
,

ξ − 1,
1
2

≤ ξ ≤ 3
2
.

(A3)
The vorticity η = uz − wx becomes

η = α cos(ωt)H(x, y) with H(x, z) = −
√

5
8

[5f ′(x + 2z) + 5f ′(x − 2z) − 2]. (A4)

The linear spline nature of f implies that U, W and Θ are continuous and piecewise-linear,
P is continuous piecewise-quadratic and hence H is piecewise-constant. Substituting (A3)
into (A2) and (A4), one obtains the expressions for U, W, H and Θ in the regions of the
domain [−0.5, 0.5]2 delimited by the characteristics x ± 2z = ±1/2, shown in figure 14.
Several remarks are in order. (i) The quantity c in the expression for P(x, z) in (A2) is a
piecewise-constant determined to guarantee the continuity of P. (ii) Here, max |H(x, z)| =
H(0, 0) = 3

√
5/2 ≈ 3.35 and max |Θ(x, z)| = Θ(0.5, 0) = 5/4 are close to the values, 4

and 1.2, used in the scalings of the colourmap in figure 2. (iii) While U vanishes on all
walls, W does not vanish on the vertical walls, leading to a non-trivial (positive) spatial
average of the vorticity in the inviscid setting. No-slip boundary conditions eliminate
this mean vorticity at any finite RN , with thin vortical boundary layers along the walls
compensating for the difference.

Appendix B. Nonlinear shear and mean flow

For a synchronous limit cycle, time-averaging (2.1) yields, in the inviscid limit,

(u · ∇)u = −∇p̄ +
[
αθ sin ωt

z + θ̄

]
, ūx + w̄z = 0, (u · ∇)θ = −w̄, (B1a–c)

where u = (u, w) and the overbar indicates the time average over one forcing period. Only
the first harmonic of θ contributes to the term θ sin ωt. Approximating this harmonic by the
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Figure 15. Contour plots of (a,b) the nonlinear stress terms as indicated and (c,d) the (scaled) inviscid mean
flow (B4). Colours map to [−1, 1].

first-order response (A1a,b) yields α θ sin ωt ≈ 0.5α2Θ to order α2. A similar substitution
into the nonlinear terms of (B1a–c) yields, to order α2,

(u · ∇)u ≈ α2

2

[
UUx + WUz
UWx + WWz

]
, (u · ∇)θ ≈ 0. (B2a,b)

A plot of the nonlinear terms, UUx + WUz and UWx + WWz, is shown in figure 15.
Observe that (u · ∇)u is a gradient field in all regions of the container partitioned by
the characteristic lines, but the respective potentials cannot be reconciled into a global
potential that is continuous across characteristics. This introduces a non-trivial shear
leading to a discontinuous mean flow. Note that this shear is maximal at (±0.5, 0).
Substituting (B2a,b) into (B1a–c) and using u(±0.5, z) = 0 shows that ū ≈ w̄ ≈ 0, while
away from characteristics

θ̄x/α
2 ≈ 0.5Θz = −0.5

√
5Wz = 0.5

√
5Ux. (B3)

As a result,

θ̄/α2 ≈
√

5
2

U + 1
2
(UWx + WWz) + 5

8
ϕc(z), (B4)

for some function ϕc (which cannot be determined from (B1a–c) alone). Figure 15 includes
a reconstruction of θ̄/α2 using ϕc(z) = cz(2|z| − 1)(1 − |z|), which matches fairly well the
graph of θ0 at α = 10−4 (using c = 50) and α = 0.01 (using c = 100) in figure 4.

Appendix C. Fourier coefficient optimal phase computation

The square of the L2-norm of the Fourier coefficient qk, k > 0, takes the form

‖qk‖2(φk) = αk + βk cos 2φk + γk sin 2φk = ak + bk cos(2φk − ck), (C1)

with

ak = αk = 2
τ 2

∫ 0.5

−0.5

∫ 0.5

−0.5

∫ τ

0

∫ τ

0
q(x, z, t)q(x, z, s) cos[kω(t − s)]B(t − s) dt ds dx dz,

bk eick = βk + iγk = 2
τ 2

∫ 0.5

−0.5

∫ 0.5

−0.5

∫ τ

0

∫ τ

0
q(x, z, t)q(x, z, s) eikω(t+s)B(t − s) dt ds dx dz,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(C2)

where B is the Blackman window. The constants ak ≥ bk > 0 and ck can be
determined via fitting at three distinct values of φk, e.g. φk = 0, π/3 and 2π/3.
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If ‖qk‖2(0) = a, ‖qk‖2(π/3) = b and ‖qk‖2(2π/3) = c, obtained from direct numerical
quadrature (spectral in space and uniform in time), then

ak = a + b + c
3

, bk = 1
3

√
(2a − b − c)2 + 3(b − c)2, eick = (2a − b − c) + i(b − c)

√
3

3bk
.

(C3a–c)

Then ‖qk‖2 is maximal for φk = ck/2 (up to a multiple of π, i.e. a sign in qk).

Appendix D. Comparison between (3.4) and (3.5)

Assume that the modes M2 and M3 satisfy ω2 + ω3 = 2ω = σ1, with individual detunings
δσj = ωj − σj from their nominal Thorpe frequencies σj, j = 2 and 3, in a ratio

δσ3/δσ2 = σ2/σ3 =: γ. (D1)

Then
γ + 1
γ − 1

ω3 − 2
γ − 1

ω = (γ + 1)ω3 − (ω2 + ω3)

γ − 1
= γω3 − ω2

γ − 1
= γ (ω3 − σ3) − (ω2 − σ2)

γ − 1

= γ δσ3 − δσ2

γ − 1
= γ 2 − 1

γ − 1
δσ2 = (1 + γ )δσ2 = δσ2 + δσ3 = 2ω − σ2 − σ3

= σ1 − σ2 − σ3. (D2)

The expression (3.4) has γ = 5/3. Note that (D1) is equivalent to the assumption that
δσ 2

2 ≈ 2σ2δσ2 = 2σ3δσ3 ≈ δσ 2
3 , where δσ 2

j = ω2
j − σ 2

j , j = 2 and 3.
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