J. Austral. Math. Soc. (Series A) 66 (1999), 373-378

THE MÖBIUS BOUNDEDNESS OF THE SPACE Q_p

HU PENGYAN, SHI JIHUAI and ZHANG WENJUN

(Received 2 December 1998; revised 24 February 1999)

Communicated by P. G. Fenton

Abstract

In this note, a characterization of the Möbius invariant space Q_p for the range 1 - 1/n is given.As a special case <math>p = 1, we get the Möbius boundedness of *BMOA* in the space H^2 . This extends the corresponding result for 1-dimension.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 32A37, 47B38. Keywords and phrases: Möbius invariant space, Dirichlet type space, invariant volume measure, tangent gradient.

1. Introduction

Let B be the unit ball of \mathbb{C}^n $(n \ge 1)$ with boundary S, v the Lebesgue measure on B normalized so that v(B) = 1 and σ the normalized rotation invariant measure on S, that is $\sigma(S) = 1$. The class of all holomorphic functions with domain B will be denoted by H(B).

Let f be in H(B) with Taylor expansion $f(z) = \sum_{\alpha \ge 0} a_{\alpha} z^{\alpha}$. For $p \in \mathbb{R}$, f is said to be in the *Dirichlet type space* \mathcal{D}_p provided that

(1)
$$\|f\|_{\mathscr{D}_p}^2 = \sum_{\alpha \ge 0} (|\alpha| + n)^p \omega_{\alpha} |a_{\alpha}|^2 < \infty.$$

Here [Ru]

$$\omega_{\alpha} = \int_{S} |\zeta^{\alpha}|^2 d\sigma(\zeta) = \frac{(n-1)!\alpha!}{(n+|\alpha|-1)!}$$

Project supported by the Natural Science Foundation of Guangdong Province and partially supported by the National Natural Science Foundation of China.

© 1999 Australian Mathematical Society 0263-6115/99 \$A2.00 + 0.00

The space \mathscr{D}_1 is called *Dirichlet space*. The spaces \mathscr{D}_0 and \mathscr{D}_{-1} are just the Hardy space H^2 and the Bergman space $L^2_a(B)$, respectively.

For $a \in B$, φ_a is the Möbius transformation of B which satisfies $\varphi_a(0) = a$, $\varphi_a(a) = 0$ and $\varphi_a = \varphi_a^{-1}$, $\varphi_a \in \text{Aut}(B)$. Aut(B) is the group of biholomorphic automorphisms of B [Ru].

Let $D_j = \partial/\partial z_j$, j = 1, ..., n and $\nabla f = (D_1 f, ..., D_n f)$ denote the complex gradient of f, $\Re f = \sum_{j=1}^n z_j D_j f$ denote the radial derivative of f. If we let $d\lambda(z) = d\nu(z)/(1-|z|^2)^{n+1}$, then $d\lambda$ is \mathscr{M} -invariant (see [Ru]), which means

(2)
$$\int_{B} f(z) d\lambda(z) = \int_{B} f \circ \psi(z) d\lambda(z)$$

for each $f \in L^1(\lambda)$ and $\psi \in Aut(B)$. Let $\widetilde{\nabla} f(z) = \nabla (f \circ \varphi_z)(0)$ denote the invariant gradient of f. In [St], the invariant Green's function is defined as $G(z, a) = g(\varphi_a(z))$, where

(3)
$$g(z) = \frac{n+1}{2n} \int_{|z|}^{1} (1-t^2)^{n-1} t^{-2n+1} dt.$$

We define (as in [OYZ]), for 0 ,

$$Q_p(B) = \left\{ f \in H(B) : \sup_{a \in B} \int_B \left| \widetilde{\nabla} f(z) \right|^2 G^2(z, a) d\lambda(z) < \infty \right\}.$$

Obviously, $Q_p(B)$ is *M*-invariant.

In [OYZ], the authors proved that $Q_p(B) = \text{Bloch}(B)$ (the Bloch space) for $1 , <math>Q_1(B) = BMOA(S)$ and $Q_p(B)$ is trivial when $0 or <math>p \ge n/(n-1)$. For the case of $(n-1)/n , they proved that <math>Q_p(B) = \{f \in H(B) : \sup_{a \in B} \int_B |\widetilde{\nabla}f(z)|^2 (1 - |\varphi_a(z)|^2)^{np} d\lambda(z) < \infty\}$. In this note, a new characterization of $Q_p(B)$ for $(n-1)/n is given by using the Möbius boundedness in the space <math>\mathcal{D}_{n(1-p)}$. As a special case, we get a characterization of *BMOA*. These results in the setting of one dimension can be found in [ALXZ] and [Ba].

Our main result is the following theorem.

THEOREM 1. For $f \in H(B)$, if $1 - 1/n , then <math>f \in Q_p$ if and only if Möb(f) is bounded in $\mathcal{D}_{n(1-p)}$, where

(4)
$$\text{M\"ob}(f) = \{f_a(z) = f(\varphi_a(z)) - f(a) : a \in B\}.$$

The fact $\mathscr{D}_0 = H^2$ together with this theorem gives a corollary.

COROLLARY 1. For $f \in H(B)$, the following are equivalent:

The Möbius boundedness of the space Q_p

- (i) $f \in BMOA$;
- (ii) Möb (f) is bounded in H^2 .

In the following C denotes a positive constant which may be different from one occurrence to the next.

2. The proof of the main result

In order to prove the theorem, we first give some lemmas.

LEMMA 1 ([OYZ]). Let $0 and <math>f \in H(B)$, then $f \in Q_p$ if and only if $\sup_{a \in B} \int_B |\widetilde{\nabla}f(z)|^2 (1 - |\varphi_a(z)|^2)^{np} d\lambda(z)$ is finite.

LEMMA 2. Let p < 2, then $f \in \mathcal{D}_p$ if and only if

$$\int_{B} |\nabla f(z)|^{2} (1-|z|^{2})^{1-p} d\nu(z) < \infty,$$

and $||f||_{\mathscr{D}_p}^2 - |f(0)|^2 \sim \int_B |\nabla f(z)|^2 (1-|z|^2)^{1-p} d\nu(z).$

The notation ' $A \sim B$ ' means that there exist constants C_1 and C_2 such that $C_1B \leq A \leq C_2B$.

PROOF. It is the direct result of calculation with integration in polar coordinates. \Box

LEMMA 3. Let $f \in H(B)$ and p > 1 - 1/n, then the following are equivalent:

 $\begin{array}{ll} (\mathrm{i}) & \int_{B} |\widetilde{\nabla}f(z)|^{2}(1-|z|^{2})^{-1-n+np}d\nu(z) < \infty; \\ (\mathrm{ii}) & \int_{B} |\nabla_{T}f(z)|^{2}(1-|z|^{2})^{np-n}d\nu(z) < \infty; \\ (\mathrm{iii}) & \int_{B} |\nabla f(z)|^{2}(1-|z|^{2})^{np-n+1}d\nu(z) < \infty. \end{array}$

Here $|\nabla_T f(z)|^2 = 2(|\nabla f(z)|^2 - \Re f(z)|^2)$, and $\nabla_T f(z)$ is called the tangent gradient of f.

PROOF. First we show that (i) is equivalent to (ii). This is a direct result of the equality in [JP]

$$|\widetilde{\nabla}f(z)|^2 = (1 - |z|^2) |\nabla_T f(z)|^2$$

Next we show that (ii) implies (iii). This we can get from

$$|\nabla_T f(z)|^2 = |\nabla f(z)|^2 - |\mathscr{R} f(z)|^2 \ge (1 - |z|^2) |\nabla f(z)|^2.$$

Hu Pengyan, Shi Jihuai and Zhang Wenjun

Now suppose (iii) holds, we show that (ii) is true. Then

(5)
$$|\mathscr{R}f(z)|^2 \le |z|^2 |\nabla f(z)|^2 \le |\nabla f(z)|^2$$

implies that

(6)
$$\int_{B} |\mathscr{R}f(z)|^{2} (1-|z|^{2})^{np-n+1} d\nu(z) < \infty.$$

Since

(7)
$$|z|^2 |\nabla_T f(z)|^2 = 2 \left((1 - |z|^2) |\mathscr{R} f(z)|^2 + \sum_{i < j} |T_{ij} f(z)|^2 \right),$$

where $T_{ij} = \overline{z_i} D_j - \overline{z_j} D_i$. Since f is holomorphic, then by (6) and (7), we need only to prove that

(8)
$$\int_{B} |T_{ij}f(z)|^{2} (1-|z|^{2})^{np-n} d\nu(z) < \infty$$

for all $1 \le i < j \le n$.

An integration by parts shows that

(9)
$$f(z) = \int_0^1 (\mathscr{R}f(tz) + f(tz))dt.$$

Then

$$T_{ij}f(z) = \int_0^1 \left(\sum_{k=1}^n t z_k T_{ij} D_k f(tz) + 2T_{ij} f(tz) \right) dt.$$

From this we conclude that it is sufficient to prove

(10)
$$\int_{B} \left(\int_{0}^{1} |T_{ij} D_{k} f(tz)| dt \right)^{2} (1 - |z|^{2})^{np-n} d\nu(z) < \infty$$

and

(11)
$$\int_{B} \left(\int_{0}^{1} |T_{ij}f(tz)| dt \right)^{2} (1 - |z|^{2})^{np-n} d\nu(z) < \infty.$$

To prove (10), we note that for any s > 0, [Je]

(12)
$$\int_0^1 |T_{ij} D_k f(tz)| dt \le C \int_B \frac{(1-|w|^2)^s |D_k f(w)|}{|1-\langle z,w\rangle|^{n+s+\frac{1}{2}}} d\nu(w)$$

376

Since p > 1 - 1/n, then there exists $\delta > 0$ such that $p - \delta > 1 - 1/n$. Using Hölder's inequality, Fubini's theorem and [Ru, Proposition 1.4.10], (12) we obtain

$$\begin{split} &\int_{B} \left(\int_{0}^{1} |T_{ij} D_{k}f(tz)| dt \right)^{2} (1 - |z|^{2})^{np-n} dv(z) \\ &\leq C \int_{B} \left(\int_{B} \frac{(1 - |w|^{2})^{s} |D_{k}f(w)|}{|1 - \langle z, w \rangle|^{n+s+\frac{1}{2}}} dv(w) \right)^{2} (1 - |z|^{2})^{np-n} dv(z) \\ &\leq C \int_{B} \left(\int_{B} \frac{(1 - |w|^{2})^{s} |D_{k}f(w)|^{2}}{|1 - \langle z, w \rangle|^{n+s-n\delta}} dv(w) \right) \\ &\cdot \left(\int_{B} \frac{(1 - |w|^{2})^{s}}{|1 - \langle z, w \rangle|^{n+s+1+n\delta}} dv(w) \right) (1 - |z|^{2})^{np-n} dv(z) \\ &\leq C \int_{B} (1 - |z|^{2})^{np-n-n\delta} \int_{B} \frac{(1 - |w|^{2})^{s} |D_{k}f(w)|}{|1 - \langle z, w \rangle|^{n+s-n\delta}} dv(w) dv(z) \\ &= C \int_{B} (1 - |w|^{2})^{s} |D_{k}f(w)|^{2} \int_{B} \frac{(1 - |z|^{2})^{np-n-n\delta}}{|1 - \langle z, w \rangle|^{n+s-n\delta}} dv(z) dv(w) \\ &\leq C \int_{B} |D_{k}f(w)|^{2} (1 - |w|^{2})^{np-n+1} dv(w). \end{split}$$

This gives (10).

(13)

In order to get (11), we first prove

(14)
$$\int_{B} |f(z)|^{2} (1-|z|^{2})^{np-n+1} d\nu(z) < \infty.$$

From [Je], for s > 1,

(15)
$$|f(z)|^{2} \leq C \int_{B} \frac{|\nabla f(w)|^{2}(1-|w|^{2})^{s}}{|1-\langle w,z\rangle|^{n+1+s}} dv(w).$$

Fubini's theorem and [Ru, Proposition 1.4.10], and (15) gives

(16)
$$\int_{B} |f(z)|^{2} (1 - |z|^{2})^{np-n+1} d\nu(z) \leq C \int_{B} |\nabla f(w)|^{2} (1 - |w|^{2})^{s} \int_{B} \frac{(1 - |z|^{2})^{np-n+1}}{|1 - \langle w, z \rangle|^{n+1+s}} d\nu(z) d\nu(w) \leq C \int_{B} |\nabla f(w)|^{2} (1 - |w|^{2})^{np-n+1} d\nu(w).$$

Then (14) is valid. The similar method used in the proof of (10) gives (11). So the proof is complete. \Box

PROOF OF THEOREM 1. By Lemma 1, Lemma 2 and Lemma 3, and the invariance of $\tilde{\nabla}$ for 1 - 1/n , we have

$$f \in Q_p \iff \sup_{a \in B} \int_B \left| \widetilde{\nabla} f(z) \right|^2 (1 - |\varphi_a(z)|^2)^{np} d\lambda(z) < \infty$$
$$\iff \sup_{a \in B} \int_B \left| \widetilde{\nabla} (f \circ \varphi_a)(z) \right|^2 (1 - |z|^2)^{np} d\lambda(z) < \infty$$
$$\iff \sup_{a \in B} \int_B |\nabla (f \circ \varphi_a)(z)|^2 (1 - |z|^2)^{np-n+1} d\nu(z) < \infty$$
$$\iff \text{Möb} (f) \text{ is bounded in the space } \mathcal{D}_{n(1-p)}.$$

This completes the proof.

References

- [ALXZ] R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, 'On α-Bloch spaces and multipliers of Dirichlet spaces', J. Math. Anal. Appl. 209 (1997), 103–121.
- [Ba] A. Baernstein II, Analytic functions of bounded mean oscillation, aspects of contemporary complex analysis (Academic Press, New York, 1980) pp. 3–36.
- [Je] M. Jevtić, 'On the Carleson measure characterization of BMO functions on the unit sphere', Proc. Amer. Math. Soc. 123 (1995), 3371–3377.
- [JP] M. Jevtić and M. Pavlović, 'On *M*-harmonic Bloch space', Proc. Amer. Math. Soc. 123 (1995), 1385–1392.
- [OYZ] C. Ouyang, W. Yang and R. Zhao, 'Möbius invariant Q_p spaces associated with the Green's function on the unit ball of \mathbb{C}^n ', *Pacific J. Math.* (to appear).
- [Ru] W. Rudin, Function theory in the unit ball of \mathbb{C}^n (Springer, New York, 1980).
- [St] M. Stoll, *Invariant potential theory in the unit ball of* \mathbb{C}^n , London Math. Soc. Lecture Notes 199 (Cambridge Univ. Press, New York, 1994).

Department of Mathematics Normal College of Shenzhen University Shenzhen Guangdong 518060 P. R. China e-mail: szuss@szu.edu.cn Department of Mathematics University of Science and Technology of China Hefei Anhui 230026 P. R. China