THE MÖBIUS BOUNDEDNESS OF THE SPACE Q_{p}

HU PENGYAN, SHI JIHUAI and ZHANG WENJUN

(Received 2 December 1998; revised 24 February 1999)

Communicated by P. G. Fenton

Abstract

In this note, a characterization of the Möbius invariant space Q_{p} for the range $1-1 / n<p \leq 1$ is given. As a special case $p=1$, we get the Möbius boundedness of $B M O A$ in the space H^{2}. This extends the corresponding result for 1 -dimension.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 32A37, 47B38.
Keywords and phrases: Möbius invariant space, Dirichlet type space, invariant volume measure, tangent gradient.

1. Introduction

Let B be the unit ball of $\mathbb{C}^{n}(n \geq 1)$ with boundary S, v the Lebesgue measure on B normalized so that $\nu(B)=1$ and σ the normalized rotation invariant measure on S, that is $\sigma(S)=1$. The class of all holomorphic functions with domain B will be denoted by $H(B)$.

Let f be in $H(B)$ with Taylor expansion $f(z)=\sum_{\alpha \geq 0} a_{\alpha} z^{\alpha}$. For $p \in \mathbb{R}, f$ is said to be in the Dirichlet type space \mathscr{D}_{p} provided that

$$
\begin{equation*}
\|f\|_{\mathscr{D}_{p}}^{2}=\sum_{\alpha \geq 0}(|\alpha|+n)^{p} \omega_{\alpha}\left|a_{\alpha}\right|^{2}<\infty \tag{1}
\end{equation*}
$$

Here [Ru]

$$
\omega_{\alpha}=\int_{S}\left|\zeta^{\alpha}\right|^{2} d \sigma(\zeta)=\frac{(n-1)!\alpha!}{(n+|\alpha|-1)!}
$$

Project supported by the Natural Science Foundation of Guangdong Province and partially supported by the National Natural Science Foundation of China.
(C) 1999 Australian Mathematical Society 0263-6115/99 \$A2.00 +0.00

The space \mathscr{D}_{1} is called Dirichlet space. The spaces \mathscr{D}_{0} and \mathscr{D}_{-1} are just the Hardy space H^{2} and the Bergman space $L_{a}^{2}(B)$, respectively.

For $a \in B, \varphi_{a}$ is the Möbius transformation of B which satisfies $\varphi_{a}(0)=a$, $\varphi_{a}(a)=0$ and $\varphi_{a}=\varphi_{a}^{-1}, \varphi_{a} \in \operatorname{Aut}(B) . \operatorname{Aut}(B)$ is the group of biholomorphic automorphisms of $B[\mathrm{Ru}]$.

Let $D_{j}=\partial / \partial z_{j}, j=1, \ldots, n$ and $\nabla f=\left(D_{1} f, \ldots, D_{n} f\right)$ denote the complex gradient of $f, \mathscr{R} f=\sum_{j=1}^{n} z_{j} D_{j} f$ denote the radial derivative of f. If we let $d \lambda(z)=d \nu(z) /\left(1-|z|^{2}\right)^{n+1}$, then $d \lambda$ is \mathscr{M}-invariant (see [Ru]), which means

$$
\begin{equation*}
\int_{B} f(z) d \lambda(z)=\int_{B} f \circ \psi(z) d \lambda(z) \tag{2}
\end{equation*}
$$

for each $f \in L^{1}(\lambda)$ and $\psi \in \operatorname{Aut}(B)$. Let $\widetilde{\nabla} f(z)=\nabla\left(f \circ \varphi_{z}\right)(0)$ denote the invariant gradient of f. In [St], the invariant Green's function is defined as $G(z, a)=g\left(\varphi_{a}(z)\right)$, where

$$
\begin{equation*}
g(z)=\frac{n+1}{2 n} \int_{|z|}^{1}\left(1-t^{2}\right)^{n-1} t^{-2 n+1} d t \tag{3}
\end{equation*}
$$

We define (as in [OYZ]), for $0<p<\infty$,

$$
Q_{p}(B)=\left\{f \in H(B): \sup _{a \in B} \int_{B}|\widetilde{\nabla} f(z)|^{2} G^{2}(z, a) d \lambda(z)<\infty\right\} .
$$

Obviously, $Q_{p}(B)$ is \mathscr{M}-invariant.
In [OYZ], the authors proved that $Q_{p}(B)=\operatorname{Bloch}(B)$ (the Bloch space) for $1<p<n /(n-1), Q_{1}(B)=\operatorname{BMOA}(S)$ and $Q_{p}(B)$ is trivial when $0<p \leq$ $(n-1) / n$ or $p \geq n /(n-1)$. For the case of $(n-1) / n<p \leq 1$, they proved that $Q_{p}(B)=\left\{f \in H(B): \sup _{a \in B} \int_{B}|\widetilde{\nabla} f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n p} d \lambda(z)<\infty\right\}$. In this note, a new characterization of $Q_{p}(B)$ for $(n-1) / n<p \leq 1$ is given by using the Möbius boundedness in the space $\mathscr{D}_{n(1-p)}$. As a special case, we get a characterization of $B M O A$. These results in the setting of one dimension can be found in [ALXZ] and [Ba].

Our main result is the following theorem.
Theorem 1. For $f \in H(B)$, if $1-1 / n<p \leq 1$, then $f \in Q_{p}$ if and only if Möb (f) is bounded in $\mathscr{D}_{n(1-p)}$, where

$$
\begin{equation*}
\operatorname{Möb}(f)=\left\{f_{a}(z)=f\left(\varphi_{a}(z)\right)-f(a): a \in B\right\} . \tag{4}
\end{equation*}
$$

The fact $\mathscr{D}_{0}=H^{2}$ together with this theorem gives a corollary.
Corollary 1. For $f \in H(B)$, the following are equivalent:
(i) $f \in B M O A$.
(i) Möb (f) in noinded:> H^{2}.

In the following C denotes a positive constant which may be different from one cocurrence $\%$ the next.

2. The proof of the main result

In order to prove the theorem, we first give some lemmas.
Lemma 1 ([OYZ]). Let $0<p \leq 1$ and $f \in H(B)$, then $f \in Q_{p}$ if and only if $\sup _{a \in B} \int_{B}|\widetilde{\nabla} f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n p} d \lambda(z)$ is finite.

Lemma 2. Let $p<2$, then $f \in \mathscr{D}_{p}$ if and only if

$$
\int_{B}|\nabla f(z)|^{2}\left(1-|z|^{2}\right)^{1-p} d v(z)<\infty
$$

and $\|f\|_{\mathscr{D}_{p}}^{2}-|f(0)|^{2} \sim \int_{B}|\nabla f(z)|^{2}\left(1-|z|^{2}\right)^{1-p} d \nu(z)$.
The notation ' $A \sim B$ ' means that there exist constants C_{1} and C_{2} such that $C_{1} B \leq$ $A \leq C_{2} B$.

PROOF. It is the direct result of calculation with integration in polar coordinates.

Lemma 3. Let $f \in H(B)$ and $p>1-1 / n$, then the following are equivalent:
(i) $\int_{B}|\widetilde{\nabla} f(z)|^{2}\left(1-|z|^{2}\right)^{-1-n+n p} d v(z)<\infty$;
(ii) $\int_{B}\left|\nabla_{T} f(z)\right|^{2}\left(1-|z|^{2}\right)^{n p-n} d \nu(z)<\infty$;
(iii) $\int_{B}|\nabla f(z)|^{2}\left(1-|z|^{2}\right)^{n p-n+1} d v(z)<\infty$.

Here $\left|\nabla_{T} f(z)\right|^{2}=2\left(|\nabla f(z)|^{2}-\left.\mathscr{R} f(z)\right|^{2}\right)$, and $\nabla_{T} f(z)$ is called the tangent gradient of f.

Proof. First we show that (i) is equivalent to (ii). This is a direct result of the equality in [JP]

$$
|\widetilde{\nabla} f(z)|^{2}=\left(1-|z|^{2}\right)\left|\nabla_{T} f(z)\right|^{2}
$$

Next we show that (ii) implies (iii). This we can get from

$$
\left|\nabla_{T} f(z)\right|^{2}=|\nabla f(z)|^{2}-|\mathscr{R} f(z)|^{2} \geq\left(1-|z|^{2}\right)|\nabla f(z)|^{2}
$$

Now suppose (iii) holds, we show that (ii) is true. Then

$$
\begin{equation*}
|\mathscr{R} f(z)|^{2} \leq|z|^{2}|\nabla f(z)|^{2} \leq|\nabla f(z)|^{2} \tag{5}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\int_{B}|\mathscr{R} f(z)|^{2}\left(1-|z|^{2}\right)^{n p-n+1} d v(z)<\infty \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
|z|^{2}\left|\nabla_{T} f(z)\right|^{2}=2\left(\left(1-|z|^{2}\right)|\mathscr{R} f(z)|^{2}+\sum_{i<j}\left|T_{i j} f(z)\right|^{2}\right) \tag{7}
\end{equation*}
$$

where $T_{i j}=\overline{z_{i}} D_{j}-\overline{z_{j}} D_{i}$. Since f is holomorphic, then by (6) and (7), we need only to prove that

$$
\begin{equation*}
\int_{B}\left|T_{i j} f(z)\right|^{2}\left(1-|z|^{2}\right)^{n p-n} d v(z)<\infty \tag{8}
\end{equation*}
$$

for all $1 \leq i<j \leq n$.
An integration by parts shows that

$$
\begin{equation*}
f(z)=\int_{0}^{1}(\mathscr{R} f(t z)+f(t z)) d t \tag{9}
\end{equation*}
$$

Then

$$
T_{i j} f(z)=\int_{0}^{1}\left(\sum_{k=1}^{n} t z_{k} T_{i j} D_{k} f(t z)+2 T_{i j} f(t z)\right) d t
$$

From this we conclude that it is sufficient to prove

$$
\begin{equation*}
\int_{B}\left(\int_{0}^{1}\left|T_{i j} D_{k} f(t z)\right| d t\right)^{2}\left(1-|z|^{2}\right)^{n p-n} d v(z)<\infty \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B}\left(\int_{0}^{1}\left|T_{i j} f(t z)\right| d t\right)^{2}\left(1-|z|^{2}\right)^{n p-n} d v(z)<\infty \tag{11}
\end{equation*}
$$

To prove (10), we note that for any $s>0$, [Je]

$$
\begin{equation*}
\int_{0}^{1}\left|T_{i j} D_{k} f(t z)\right| d t \leq C \int_{B} \frac{\left(1-|w|^{2}\right)^{s}\left|D_{k} f(w)\right|}{|1-\langle z, w)|^{n+s+\frac{1}{2}}} d v(w) \tag{12}
\end{equation*}
$$

Since $p>1-1 / n$, then there exists $\delta>0$ such that $p-\delta>1-1 / n$. Using Hölder's inequality, Fubini's theorem and [Ru, Proposition 1.4.10], (12) we obtain

$$
\begin{aligned}
& \int_{B}\left(\int_{0}^{1}\left|T_{i j} D_{k} f(t z)\right| d t\right)^{2}\left(1-|z|^{2}\right)^{n p-n} d v(z) \\
& \leq C \int_{B}\left(\int_{B} \frac{\left(1-|w|^{2}\right)^{s}\left|D_{k} f(w)\right|}{|1-\langle z, w)|^{n+s+\frac{1}{2}}} d v(w)\right)^{2}\left(1-|z|^{2}\right)^{n p-n} d v(z) \\
& \leq C \int_{B}\left(\int_{B} \frac{\left(1-|w|^{2}\right)^{s}\left|D_{k} f(w)\right|^{2}}{|1-\langle z, w\rangle|^{n+s-n \delta}} d v(w)\right) \\
& \cdot\left(\int_{B} \frac{\left(1-|w|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{n+s+1+n \delta}} d v(w)\right)\left(1-|z|^{2}\right)^{n p-n} d v(z) \\
& \leq C \int_{B}\left(1-|z|^{2}\right)^{n p-n-n \delta} \int_{B} \frac{\left(1-|w|^{2}\right)^{s}\left|D_{k} f(w)\right|}{|1-\langle z, w)|^{n+s-n \delta}} d v(w) d v(z) \\
& \quad=C \int_{B}\left(1-|w|^{2}\right)^{s}\left|D_{k} f(w)\right|^{2} \int_{B} \frac{\left(1-|z|^{2}\right)^{n p-n-n \delta}}{|1-\langle z, w\rangle|^{n+s-n \delta}} d v(z) d v(w) \\
& \leq C \int_{B}\left|D_{k} f(w)\right|^{2}\left(1-|w|^{2}\right)^{n p-n+1} d v(w)
\end{aligned}
$$

This gives (10).
In order to get (11), we first prove

$$
\begin{equation*}
\int_{B}|f(z)|^{2}\left(1-|z|^{2}\right)^{n p-n+1} d \nu(z)<\infty . \tag{14}
\end{equation*}
$$

From [Je], for $s>1$,

$$
\begin{equation*}
|f(z)|^{2} \leq C \int_{B} \frac{|\nabla f(w)|^{2}\left(1-|w|^{2}\right)^{s}}{|1-\langle w, z\rangle|^{n+1+s}} d \nu(w) . \tag{15}
\end{equation*}
$$

Fubini's theorem and [Ru, Proposition 1.4.10], and (15) gives

$$
\begin{align*}
& \int_{B}|f(z)|^{2}\left(1-|z|^{2}\right)^{n p-n+1} d \nu(z) \\
& \leq C \int_{B}|\nabla f(w)|^{2}\left(1-|w|^{2}\right)^{s} \int_{B} \frac{\left(1-|z|^{2}\right)^{n p-n+1}}{|1-\langle w, z\rangle|^{n+1+s}} d \nu(z) d \nu(w) \\
& \quad \leq C \int_{B}|\nabla f(w)|^{2}\left(1-|w|^{2}\right)^{n p-n+1} d \nu(w) . \tag{16}
\end{align*}
$$

Then (14) is valid. The similar method used in the proof of (10) gives (11). So the proof is complete.

Proof of Theorem 1. By Lemma 1, Lemma 2 and Lemma 3, and the invariance of $\widetilde{\nabla}$ for $1-1 / n<p \leq 1$, we have

$$
\begin{aligned}
f \in Q_{p} & \Longleftrightarrow \sup _{a \in B} \int_{B}|\widetilde{\nabla} f(z)|^{2}\left(1-\left|\varphi_{a}(z)\right|^{2}\right)^{n p} d \lambda(z)<\infty \\
& \Longleftrightarrow \sup _{a \in B} \int_{B}\left|\widetilde{\nabla}\left(f \circ \varphi_{a}\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{n p} d \lambda(z)<\infty \\
& \Longleftrightarrow \sup _{a \in B} \int_{B}\left|\nabla\left(f \circ \varphi_{a}\right)(z)\right|^{2}\left(1-|z|^{2}\right)^{n p-n+1} d \nu(z)<\infty \\
& \Longleftrightarrow \operatorname{Möb}(f) \text { is bounded in the space } \mathscr{D}_{n(1-p)} .
\end{aligned}
$$

This completes the proof.

References

[ALXZ] R. Aulaskari, P. Lappan, J. Xiao and R. Zhao, 'On α-Bloch spaces and multipliers of Dirichlet spaces', J. Math. Anal. Appl. 209 (1997), 103-121.
[Ba] A. Baernstein II, Analytic functions of bounded mean oscillation, aspects of contemporary complex analysis (Academic Press, New York, 1980) pp. 3-36.
[Je] M. Jevtić, 'On the Carleson measure characterization of BMO functions on the unit sphere', Proc. Amer. Math. Soc. 123 (1995), 3371-3377.
[JP] M. Jevtić and M. Pavlović, 'On \mathscr{M}-harmonic Bloch space', Proc. Amer. Math. Soc. 123 (1995), 1385-1392.
[OYZ] C. Ouyang, W. Yang and R. Zhao, 'Möbius invariant Q_{p} spaces associated with the Green's function on the unit ball of \mathbb{C}^{n}, Pacific J. Math. (to appear).
$[\mathrm{Ru}] \quad$ W. Rudin, Function theory in the unit ball of \mathbb{C}^{n} (Springer, New York, 1980).
[St] M. Stoll, Invariant potential theory in the unit ball of \mathbb{C}^{n}, London Math. Soc. Lecture Notes 199 (Cambridge Univ. Press, New York, 1994).

Department of Mathematics
Normal College of Shenzhen University
Shenzhen
Guangdong 518060
P. R. China
e-mail: szuss@szu.edu.cn

Department of Mathematics
University of Science and
Technology of China
Hefei
Anhui 230026
P. R. China

